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Abstract

Background: Vascular smooth muscle cells (VSMC) exhibit phenotypic plasticity in 

atherosclerotic plaques, and among other approaches, has been modeled in vitro by cholesterol 

loading.

Methods: Meta-analysis of scRNA-seq data from VSMC lineage traced cells across five 

experiments of murine atherosclerosis was performed. In vivo expression profiles were compared 

to three in vitro datasets of VSMCs loaded with cholesterol and three datasets of polarized 

macrophages.

Results: We identified 24 cell clusters in the meta-analysis of single cells from mouse 

atherosclerotic lesions with notable heterogeneity across studies, especially for macrophage 

populations. Trajectory analysis of VSMC lineage positive cells revealed several possible paths of 

state transitions with one traversing from contractile VSMC to macrophages by way of a 

proliferative cell cluster. Transcriptome comparisons between in vivo and in vitro states 

underscored that data from three in vitro cholesterol-treated VSMC experiments did not mirror 

cell state transitions observed in vivo. However, all in vitro macrophage profiles analyzed (M1, 

M2, and oxLDL) were more similar to in vivo profiles of macrophages than in vitro VSMCs were 

to in vivo profiles of VSMCs. oxLDL loaded macrophages showed the most similarity to in vivo 

states. In contrast to the in vitro data, comparison between mouse and human in vivo data showed 

many similarities.
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Conclusions: Identification of the sources of variation across single cell datasets in 

atherosclerosis will be an important step towards understanding VSMC fate transitions in vivo. 

Also, we conclude that cholesterol-loading in vitro is insufficient to model the VSMC cell state 

transitions observed in vivo, which underscores the need to develop better cell models. Mouse 

models, however, appear to reproduce a number of the features of VSMCs in human plaques.
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INTRODUCTION

It has been long appreciated that vascular smooth muscle cells (VSMC) can exhibit 

phenotypic plasticity in vivo, especially in atherosclerotic plaques [1]. The establishment of 

model systems in vitro allowed mechanistically-oriented investigations of the phenotypic 

states observed in vivo [2]. Studies of arterial VSMC phenotypes tended to focus on two 

major states, named contractile and synthetic (e.g., ref. [3]). “Contractile” refers to the cells 

in the medial layer of a normal artery, which have the ability to adjust vessel tone in 

response to different stimuli. Under conditions of vascular pathology, such as atherosclerosis 

or injury (such as following an angioplasty), however, some cells in the media clonally 

proliferate and migrate to enter the intimal (subendothelial) space. These are the “synthetic” 

phenotype, so named because of their increased production, or synthesis, of extracellular 

matrix (ECM). Either in vitro or in vivo, the contractile machinery in synthetic cells is 

dampened, as indicated by the lower expression of multiple components, such as smooth 

muscle cell alpha-actin and myosin heavy chain. It has also been found in vitro and in vivo 

that when exposed to lipids or lipoproteins, VSMC could assume the appearance of a foam 

cell, typically identified by the accumulation of lipid droplets [4].

In 2003, it was reported that cholesterol-loaded VSMC foam cells not only had significant 

downregulation of contractile markers in vitro, but also had the induction of markers 

typically expressed by atherosclerotic plaque macrophages [5]. By using a combination of 

markers [6] or a proximity ligation assay [7] for human plaques, or lineage marking in 

mouse plaques [7,8], observations in vivo appeared similar to those in vitro, and suggested 

that a variant of the synthetic phenotype of arterial VSMC was a macrophage-like state. It 

became clear that the existence of such cells would have significant implications about the 

nature of the immune cell repertoire in atherosclerosis. Some estimates have reported that 

upwards of 30–40% [5–7] or even more [9] cells identified by conventional markers as 

macrophages in advanced mouse or human plaques were of VSMC origin. This has focused 

attention on the molecular features of these cells and their functional properties, especially 

in regard to plaque inflammation.

There has been an impressive growth in the number of papers exploring VSMC diversity in 

atherosclerosis, with a consequent acceleration of insights into what was known not only 

about the transition to a macrophage-appearing state, but also about the realization that 

VSMCs in plaques acquire features of cell types beyond what was previously described. 
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While there is general agreement that VSMCs exhibit a higher degree of plasticity in 

atherosclerosis than previously appreciated, controversy lingers over the precise in vivo 

fate(s) of VSMC and their phenotypic states. Questions regarding specific cell states and 

fates of VSMCs remain despite the availability of VSMC lineage-traced mouse models and 

similar manipulations available to the field.

Thus, we felt it timely to assess the current state of the molecular understanding of VSMC 

phenotypic diversity by performing a meta-analysis of the available single cell 

transcriptomic data from VSMC lineage-traced cells from atherosclerotic mouse models. We 

were also particularly interested in the molecular features of VSMC-derived macrophage-

like cells, not only to learn more about mechanisms for this transition, but also to infer their 

functional properties and contributions to plaque inflammation, given their aforementioned 

abundance in atherosclerotic arteries. Also, given the value of an in vitro system to perform 

intensive mechanistic investigations with potential in vivo relevance, we have also compared 

transcriptomic and epigenetic changes, which were induced in VSMCs by cholesterol-

loading, to the emergent transcriptional profiles from our in vivo meta-analysis. Together 

with comparisons to single cell transcriptomics in human atherosclerotic lesions and in vitro 

macrophage signatures, we assess the fidelity of simple in vitro systems to model key 

aspects of more complex in vivo settings.

MATERIALS and METHODS

Murine Atherosclerosis Public Data Download and Integration

Count matrices from four different published single cell RNA sequencing (scRNA-seq) 

datasets were downloaded from the NCBI Gene Expression Omnibus (accessions listed in 

Supplementary Table S1) and then analyzed using Seurat version 4.0 [10]. Note that one 

study fit our other criteria for lineage mapped VSMCs in atherosclerotic lesions yet was not 

included based on data formatting [11]. Seurat objects were created from each dataset, and 

cells with <200 counts or >20,000 counts were removed. This is a quality control step, as it 

is thought that cells with high numbers of counts are more likely to be doublets (two cells 

caught in the same droplet), while cells with low numbers of counts are thought to be of 

poor data quality. Similarly, two additional quality control thresholds based on the methods 

of Alencar et al. [12] were implemented. For each cell, the percentage of counts that come 

from globin-encoding genes (including alpha, beta, and theta globin subunit genes) and 

mitochondrial genes was determined. Cells with >10% mitochondrial gene percent 

expression (which are thought to be of low quality, possibly due to membrane rupture) and 

cells with ≥5% percent globin gene expression (which are likely to be contaminating 

erythroblasts) were excluded. Data normalization, variable feature detection, feature scaling, 

and principal component analysis for 50 PCs were performed in Seurat using default 

parameters. The data were then normalized and integrated using Harmony [13] using the 

Seurat wrapper function RunHarmony; the group.by.vars parameter was set to each public 

dataset used in the analysis. Harmony embeddings were used in all relevant downstream 

analysis.
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Expression of ZsGreen Transcript in Pan et al.

Fastq files from Pan et al. [14] were downloaded from NCBI GEO using the SRA Toolkit 

and processed using cellranger count v6.0.0 and aligned to a custom reference mm10/

ZsGreen-WPRE genome. The custom genome was constructed using cellranger mkref 

v6.0.0 on the mm10 reference genome v3.0.0 and the ZsGreen-WPRE coding sequence 

from an Ai6 construct. The sequence was taken from a plasmid sequence submitted by 

Hongkui Zeng (Addgene plasmid, Seattle, Washington, USA #22798) [15]. Following 

cellranger count, the filtered matrix data was analyzed in Seurat as described above.

Single-Cell Clustering and Annotation

Nearest neighbor detection and clustering were performed using the first 40 Harmony 

embeddings, followed by dimensional reduction to two dimensions using UMAP [16]. 

Canonical markers for endothelial cells, normal VSMCs, and fibroblasts were used to 

annotate relevant clusters (Figure 1). Annotation of fibrochondrocytes (FC) and SEM cells 

was done using previously reported markers [12,14,17] and evidence from relative UMAP 

positions. Annotation of leukocytes was done with published scRNA-seq markers [18]. 

Other immune cell types were annotated using Cluster Identity Predictor (CIPR) Shiny app 

web tool [19] with reference dataset ImmGen [20]. In order to achieve higher resolution 

annotation of immune cells, the Seurat object was subset to include only immune cell 

clusters; nearest neighbor detection, clustering, dimensional reduction, and cluster 

annotation were performed as described above.

Marker Discovery and Differential Gene Expression

The Seurat functions FindMarkers and FindAllMarkers were used to detect cluster markers 

either between clusters or between each cluster and other cells, respectively. To remove 

potential false positive markers driven by different gene symbol annotations between 

datasets, we subset marker discovery to gene symbols with non-zero counts in all of the 

following publication’s data: Wirka et al., Pan et al., and Alencar et al. (Kim et al. was not 

included because only lineage positive cells were sequenced). This intersection of gene 

symbols was then passed to the FindMarkers and FindAllMarkers functions’ “features” 

parameter. To determine markers for lineage positive vs lineage negative cells within a 

cluster, we stratified cells using the “subset.ident” and “ident.1” parameters in FindMarkers.

Single-Cell Data Trajectory Analysis

Single-cell trajectory analysis was performed using Monocle3 [21–23]. The Seurat object 

was subset to include VSMC-lineage positive cells. Following this, the VSMC-lineage 

positive data was converted into a Monocle3 object using the SeuratWrapper function 

as.cell_data_set. Following this, cluster_cells, learn_graph (use_partition = F), and 

order_cells were used to infer the trajectory between healthy VSMCs and VSMC-derived 

macrophages. Several root nodes were selected from within the normal SMC cluster and 

passed to order_cells.
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Single-Cell Clustering and Annotation of Human Carotid Artery Data

One scRNA-seq dataset (carotid 1) from Pan et al. [14] of human carotid atherosclerotic 

lesion cells from an endarterectomy sample was independently clustered and annotated as 

described above. Additional cluster annotation was performed using manual marker gene 

queries to the Human Protein Atlas [24].

Data Visualization of scRNA-seq Data

Data visualizations of scRNA-seq data were performed using Seurat functions DimPlot, 

DotPlot, FeaturePlot, NNPlot, VlnPlot, VariableFeaturesPlot, and ElbowPlot. The Monocle3 

trajectory was visualized using the Monocle3 function plot_cells (with trajectory graph 

shown and colored by pseudotime).

Cell Culture and Cholesterol Loading In Vitro

Mouse VSMCs were isolated from thoracic aortas of 8–10 week-old C57BL/6 mice as 

described [5]. SMC lineage was confirmed by the presence of immunoreactivity for α-actin 

(Sigma, St. Louis, MO, USA) in >99% of the cells. Cells were grown in DMEM containing 

10% FBS, 100 units/mL penicillin, and 100 ug/mL streptomycin. Cells with a passage 

number <5 were used in all described experiments. Cholesterol was delivered to VSMCs by 

using Chol:MβCD complex (Sigma, St. Louis, MO, USA, catalog #C4951). Sub-confluent 

VSMCs were incubated with Chol:MβCD (20 ug/mL) in 0.2% BSA for 24 or 48 h. Cells 

incubated with 0.2% BSA for 0, 24, or 48 h without Chol:MβCD treatment served as 

controls [5]. Chol:MβCD concentration was determined to be the maximum that would 

increase the cholesterol content of the cells (assessed by enzymatic kits as well as by oil red 

O staining) but would not cause toxicity for up to 72 h. These experiments were performed 

with approval from the Institutional Animal Care and Use Committee (IACUC) protocol 

IA16-00494 from NYU Langone Health (New York) approved on 07/31/2017.

Mouse immortalized aortic VSMC cell line (MOVAS, purchased from ATCC, Manassas, 

VA, USA) was cultured in DMEM supplemented 10% FBS, 100 U/mL penicillin, 100 

μg/mL streptomycin and 200 μg/mL geneticin, and incubated at 37 °C in 5% CO2 

environment. Twenty-four hours before cholesterol loading, the culture medium was 

replaced with DMEM supplemented with 0.02% BSA. Subsequently, the medium was 

replaced with DMEM supplemented with 0.02% BSA and Chol:MβCD (Sigma, St. Louis, 

MO, USA, catalog #C4951) for 72 h, after which the cells were collected for scRNA-seq. 

Approximately 2000 cells treated with 0, 25, 50 and 100 μg/mL cholesterol were pooled, 

yielding a total of approximately 8000 cells for 10× Genomics Chromium instrument 

loading. Cell viability prior to loading was >85% for all treatments, as measured by 

hemocytometry with Trypan blue staining.

Transcriptional and Epigenetic Profiling

RNA was extracted from cultured VSMCs using the Quick-RNA Micro Prep kit from 

ZymoResearch (Irvine, CA, USA, #R1051), including optional DNase I treatment. mRNA 

was selected through poly-A isolation using Oligo d(T)25 beads (New England BioLabs, 

Ipswich, MA, USA, #S1419S). Selected RNA was fragmented, followed by single strand 

cDNA synthesis using a Superscript III First-Strand Synthesis System (ThermoFisher 
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Scientific, Waltham, MA, USA, #18080051), followed by second strand synthesis using 

DNA Polymerase I (Qiagen/Enzymatics, Beverly, MA, USA, #P7050L). dsDNA ends were 

repaired with T4 DNA Polymerase (Enzymatics, Beverly, MA, USA, #P7080L). Barcode 

adapters (BIOO Scientific NEXTflex, Austin, TX, USA, #514104) were ligated onto the 

ends of sequences using T4 DNA Ligase (Enzymatics, Beverly, MA, USA, #L-6030-HC-L) 

and samples were treated with Uracil DNA Glycosylase (UDG) (Enzymatics, Beverly, MA, 

USA, #G5010L). Libraries were then amplified by PCR (Phusion Hot Start II, ThermoFisher 

Scientific, Waltham, MA, USA, #F549L) and purified (ZymoResearch, Irvine, CA, USA, 

#D5205) for high-throughput sequencing.

ChIP-seq was performed using an H3K27ac antibody (abcam, Cambridge, MA, USA, 

#ab4729 lot GR45787-1) as previously described [25]. Briefly, cells were fixed at room 

temperature with 1% paraformaldehyde in PBS for 10 min, and then quenched with glycine. 

Between 3 and 5 million cells were used for each ChIP. Fixed lysates were sonicated using a 

BioRuptor Standard (Diagenode, Denville, NJ, USA), and then immunoprecipitated using 

antibodies bound to a 2:1 mixture of Protein A Dynabeads (Invitrogen, Waltham, MA, USA, 

#10002D) and Protein G Dynabeads (Invitrogen, Waltham, MA, USA, #10004D). Following 

immunoprecipitation, crosslinking was reversed, and libraries were prepared using the same 

method described for RNA-seq beginning with dsDNA end repair and excluding UDG. For 

each sample condition, an input library was also created using an aliquot of sonicated cell 

lysate that had not undergone immunoprecipitation. These samples were sequenced as below 

and used as background during peak calling.

scRNA-seq Library Preparation, Sequencing and Data Processing for MOVAS Cells

scRNA-Seq was carried out using the Single Cell 3’ Reagent Kit (v3 Chemistry; 10× 

Genomics) following the manufacturer’s protocol. The library was sequenced in an Illumina 

NextSeq instrument using the cycling program Read1: 28 bp, Index1: 8 bp, Read2: 91 bp. 

The cellranger count pipeline (version 3.0.2; 10× Genomics) and the mm10 reference 

package (version 3.0.0; 10× Genomics) were used to process the sequence read files, 

including genome alignment, UMI deduplication, transcript counting, cell barcode 

attachment and cell calling steps. Downstream processing was performed using Seurat 

(version 3.1.0 [26]) in R (version 3.5.3). For cell quality filtering, cells with 2500–7500 

genes detected, 5000–25,000 total UMI-s and <7.5% mitochondrial reads were retained. 

This resulted in approximately 4300 cells, with a median of 4600 genes and 15000 UMI-s 

per cell. The RNA counts were processed using the standard scRNA-Seq workflow 

recommended by the authors of Seurat v3 with a clustering resolution parameter of 1.0. 

Cluster markers were calculated using the Wilcox test, requiring expression in at least 10% 

of cells in the cluster and a fold change of at least 0.25. Cluster markers with a positive fold 

change were used for gene ontology enrichment analysis with the gProfiler web tool 

(database release 2020-07-22 [27]) using all GO Biological Process gene sets. Gene 

categories were filtered to exclude unenriched (FDR>5%) and very large (>1000 genes) 

categories, and GO semantic similarity filtering (Schlicker’s relevance >0.5 [28]) was used 

to reduce the lists (GOSemSim R package version 2.8.0 [29]). For each cluster, up to 7 

enriched categories were selected by p value, and the resulting categories were plotted for all 

clusters.
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Sequencing Data Samples, Mapping, and Normalization

Libraries were sequenced on an Illumina HiSeq 4000 according to manufacturer’s 

specifications at the University California San Diego and at the University of Chicago. 

Reads from ChIP-seq experiments were mapped to the mm10 build of the mouse genome 

with Bowtie2 [30] and RNA-seq reads were mapped to mm10 with STAR [31]. Mapped 

reads were organized in HOMER [32] using its preferred data structure using the 

makeTagDirectory function. Expression matrices were calculated in HOMER using the 

analyzeRepeats function counting tags in the mm10 RefSeq gene body annotations with 

either no normalization, for input into DESeq2, or with-rpkm, for visualization in heatmaps. 

Because of low read counts (<1 million) and failure to cluster with replicates, control 48hr 

replicate 1 was discarded from all downstream analysis.

RNA-seq Analysis

RNA-seq analysis was performed in R (V4.0.2) using DESeq2 package v1.28.1 [33]. Only 

genes with more than 70 raw counts in at least one sample were kept. Principal Coordinates 

Analysis (classical multidimensional scaling) was performed using cmdscale() function on 

log2 transformed normalized counts obtained with the DESeq2::estimateSizeFactors() 

function. Differential Expression analysis was done by comparing the full model “~time + 

treatment:time” against the reduced model “~time” using a likelihood ratio test (LRT), 

giving 4143 genes with an adjusted p-value <0.05. These 4143 DE genes were clustered 

with the pheatmap package (v1.0.12) using “correlation” clustering distance after row Z-

scaling of normalized counts, and genes were split into their main four clusters by cutting 

the dendrogram tree row with cutree() at k = 4. We then further filtered each cluster by only 

keeping genes with an absolute log fold change of 0.6 or larger in either the 24 or 48 h 

pairwise contrast between cholesterol and control samples. This resulted in a total of 1702 

genes with both padj < 0.05 and |logFC| ≥ 0.6 across all 4 clusters (C1 = 684, C2 = 264, C3 = 

225, C4 = 529), also visualized as volcano plots generated with ggplot package (v3.3.2). 

Next, we calculated the mean of mean-centered and variance-scaled normalized counts for 

the genes in each of the clusters at every control and treatment time point, as performed 

previously [34]. Heatmaps of Cholesterol Biosynthetic and Unfolded Protein Response 

genes were made using the R package “gplots” heatmap.2 function. Genes sets for all 4 

clusters were input in separate analyses using Ingenuity Pathway Analysis (Qiagen) “Core 

Analysis” option.

ChIP-seq Analysis

ChIP-seq H3K27ac-defined genomic regions were identified relative to un-

immunoprecipitated, fixed chromatin, or “input”, as a negative control. Peaks were called 

using HOMER with the findPeaks program using the - histone option. Differential peaks 

between experiments were determined using the getDifferentialPeaks program with default 

parameters (normalized tag count difference >4 fold and poisson enrichment p-value < 

0.0001). Peak merging was performed in HOMER using the “mergePeaks” program to 

define the union of H3K27ac regions. Each region was centered on the calculated greatest 

Nucleosome Free Region (NFR) using the -nfr option. The center of the NFR generally has 

very few H3K27ac tags because this corresponds to the location of TF binding and histone/
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nucleosome exclusion. In Figure 5B, the central 200 bp sequences of all promoter distal 

H3K27ac regions (defined as > 3kb from promoter start sites using RefSeq annotations in 

getDistalPeaks.pl in HOMER) were input for de novo motif analysis using HOMER’s 

“findMotifsGenome.pl” program. GC-matched 200 bp background sequences are sampled 

from the genome and used as background for enrichment analysis. Differential H3K27ac 

regions in cholesterol loading relative to control were defined using 

“getDifferentialPeaks.pl” with the 24 h cholesterol loaded sample as the foreground and the 

24 h control as the background. Motif finding was calculated using the central 100 base pair 

sequences for cholesterol-up-regulated regions as the foreground and control-up-regulated 

sequences as the background. Histograms of motif frequency were calculated in 

annotatePeaks.pl using the -m and -hist options, which output the frequency (y-axes) relative 

to the center of the NFR (0 bp on x-axes).

Comparison of in vivo scRNA-seq Data to In Vitro Bulk RNA-seq and In Vitro Microarray 
Data

Meta-analyzed murine scRNA-seq data and in vitro cholesterol treated murine VSMC bulk 

RNA-seq data were compared along with five other publicly available datasets (described in 

Supplementary Table S1). Gene expression values for each cell cluster were produced using 

the AverageExpression function in Seurat (which exponentiates log data, therefore output is 

depth normalized in non-log space); gene symbols were again filtered to included symbols at 

the intersection of three publications’ data (see explanation above in “Marker Discovery/

Differential Gene Expression”). Following this, mean expression values for replicate 

experiments were calculated; two replicates from the in vitro RNA-seq data were not 

included (control 48 h replicate 1, as noted above, and control 0 h replicate 1) because of 

their failure to cluster with other replicates of the same condition. Hierarchical clustering of 

each experimental observation or cell cluster was then performed using the 

scipy.clustering.hierarchy function linkage (with method = “complete” and a user defined 

distance metric) in python(v3.8.5). Spearman correlation was used as the distance metric (1 

minus Spearman correlation co-efficient); we reasoned that a non-parametric correlation 

metric should be robust to differences in distributions between the datasets. Sample 

clustering was performed using the top 2000 most variable genes in the meta-analyzed 

mouse in vivo data (this number was pre-specified before our analysis based on the default 

argument of Seurat’s FindVariableFeatures). Only genes/orthologs measured across all 

platforms were used for pairwise distance calculations, which involved excluding some of 

the 2000 most variable genes. For bulk RNA-seq VSMC samples, expression values were 

normalized using RPKM. oxLDL and M1/M2 macrophage bulk RNA-seq data were 

analyzed using reported expression values (TPM and featureCounts, respectively). Human/

mouse orthologs were determined using gene symbol sharing. Dendrogram figures were 

generated using the scipy.clustering.hierarchy dendrogram function, and heatmaps plots 

were generated using pandas.DataFrame.corr (method = “spearman”) and the seaborn 

(version 0.11.1) clustermap function.
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RESULTS

Meta-Analysis of VSMC Lineage Traced scRNA-seq Datasets

To gain insight into the diversity of VSMC-derived cell types in murine arterial plaques, and 

to evaluate their relationships to an in vitro system, we analyzed public data from four recent 

publications that utilized VSMC lineage tracing in mouse models of atherosclerosis 

[12,14,17,35] (Table 1). Criteria for inclusion included the availability of scRNA-seq 

(scRNA-seq) data that were generated from arteries over a time course of high fat feeding in 

Apoe−/− or Ldlr−/− (also called Apoe and Ldlr knock out (KO)) mice whose VSMCs were 

lineage traced through tamoxifen induction of Cre-ERt downstream of the Myh11 promoter 

that ultimately causes a fluorescent protein to be permanently expressed in lineage positive 

cells [36]. To generate a normalized and integrated dataset for meta-analysis, we employed 

Harmony [13] on over two dozen different experimental conditions including FACS-sorted 

VSMC lineage traced cells, lineage negative cells, and unsorted cells (Supplementary Table 

S1). This resulted in a dataset of >70,000 cells after quality control filtering (METHODS). 

Clustering of cells in Seurat [10] resulted in 24 different clusters. We visualized the 

integrated data using uniform manifold approximation and projection [16] (UMAP) for 

dimensionality reduction (Figure 1A). Cells in the UMAP were colored as VSMC lineage 

positive, negative, or unsorted based on the relevant experiments from the included datasets 

(Figure 1B). We annotated the clusters using cell type markers available defined in previous 

reports, using CIPR [19], and using a recent meta-analysis of leukocytes in atherosclerosis 

[14,18]. This led to the following cluster designations: 3 SMC clusters, 1 SEM cluster (stem-

cell, endothelial cell, monocyte) that has been proposed to represent an intermediate VSMC 

phenotypic switching state [14], 1 fibro-chondrocyte (FC) cluster, 4 fibroblast (fibro.) 

clusters, 3 endothelial (endo.) cell clusters, 2 T-cell clusters (one IL17+ and one CD8+), 1 B-

cell cluster, 3 macrophage clusters, 2 monocyte/dendritic (mono/DC) cell clusters, 1 

neutrophil (neutro.) cluster, and 3 other clusters of various cells (neurons, striated muscle, 

and mesothelial, which was annotated based on its expression of Msln and Upk3b [37]) 

(Figure 1A). We find that the greatest proportion of VSMC lineage-positive cells reside in 

the SMC, SEM, and FC clusters with notable representation in the macrophage clusters as 

well.

We plotted the expression of several marker genes in Figure 1C, including myosin heavy 

chain (Myh11), whose promoter sequence is used to drive the VSMC lineage tracing. As 

previously shown, Myh11 expression is most prevalent in the VSMC clusters with 

decreasing expression into the SEM locale where Vcam1 is characteristically expressed. 

Expression of Acta2 (smooth muscle cell alpha-actin) shows a similar pattern as Myh11. 

Macrophage-related markers Lgals3 and Cd68 are most highly expressed in the 

macrophages, though Lgals3 is also expressed in the FCs and SEMs. Additional markers are 

expressed in various combinations of cell types with FCs and Fibros, including Spp1 (FC 

and Macs), Serpinf1 (Fibros), Dcn (Fibros and FCs), Clec3b (Fibros) and Fn1 (SEMs, FCs, 

Fibros, and Macs). While few of these transcripts define absolute boundaries between 

clusters, their distributions remain useful for interpreting cell state and fate. More 

quantitative representations are shown in Figure 1D for these and additional transcripts. 

Marker genes for cell clusters are recorded in Supplementary Table S2.
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Next, we submitted the top 100 differentiating transcripts per cluster (versus all other cells, 

sorted by ascending P-value) to the pathway analysis enrichment program Metascape [38]. 

The 20 enriched terms are shown in Figure 1D. As expected, immune cell clusters were 

highly enriched in immune-related ontologies such as ‘inflammatory response’ and 

‘regulation of cytokine production’. Non-immune cell cluster enrichments included ‘blood 

vessel morphogenesis’ (SMCs/FCs/Endos/Fibros), and ‘extracellular matrix proteoglycans’ 

(FCs). Interestingly, the macrophage cluster Mac2 was highly enriched for the ‘cell division’ 

ontology, indicating this population to be highly proliferative.

Transcriptome-Based Cell Type Characterization Is Variable across Five Studies

Given the presence of VSMC lineage positive cells across multiple clusters in our meta-

analysis, we next sought to identify patterns of transcriptionally defined populations of 

VSMC positive and VSMC negative cells in atherosclerotic lesions over time and across 

studies. Five datasets (Table 1) in our meta-analysis were fit for this analysis, including two 

from Pan. et al. [14]: one with Apoe−/− mice fed a HFD (high fat diet; synonymous WD, or 

western diet herein) for 8, 16, and 22 weeks, and another with Ldlr−/− mice for 0, 8, 16, and 

26 weeks on an HFD. The third was reported by Wirka et al. [17] using Apoe−/− mice with 

HFD for 0, 8, and 16 weeks. The fourth and fifth datasets did not evaluate VSMC lineage 

negative cells, and were excluded from this analysis. Clusters were combined for each cell 

type (i.e., SMC1, SMC2, and SMC3 became SMC) and proportions were computed for both 

VSMC lineage positive and lineage negative cells (Figure 2A).

The primary observation from these data was the considerable variability across studies, 

which was further confirmed when looking at each sample individually (Supplementary 

Figure S1; origin of samples in Supplementary Table S1). In particular, proportions of 

VSMCs and macrophages were most variable with relatively more VSMCs, and fewer 

macrophages, observed in Wirka and Kim datasets relative to Pan and Alencar.

We sought to determine whether auto-fluorescence could explain the high prevalence of 

lineage positive macrophages in the data from Pan et al., so we downloaded their raw 

sequencing data and mapped it to a custom mm10 genome with the ZsGreen1-WPRE 

sequence from the Cre-inducible Ai6 reporter [15]. We find that expression of ZsGreen 

transcripts are highly variable between cell type clusters; we also find that ZsGreen 

transcript is consistently higher in lineage-positive sorted cells compared to lineage-negative 

cells of the same cluster (Supplementary Figure S2). This result suggests that lineage 

positivity of sorted macrophages is unlikely to be the result of auto-fluorescence.

Despite these differences, we found that the proportion of ‘contractile’-like VSMCs 

consistently decreases with weeks on HFD, whereas proportions of SEMs and macrophages 

increase. Together, the high degree of variability in cell proportions for atherosclerotic 

scRNA-seq data raises questions as to the sources of this variation.

Analysis of only VSMC Lineage Positive Cells Discloses a Trajectory Linking VSMCs to 
Macrophages

Over 40 thousand VSMC lineage positive cells were present in this meta-analysis, which we 

reasoned would allow us to make inferences about the re-differentiation trajectories of 
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VSMCs in atherosclerosis. Therefore, we submitted only VSMC lineage positive cells to 

Seurat’s dimensionality reduction and visualization (Figure 2B). We found that the 

SMC/SEM/FC/Fibro clusters remained adjacent to one another, whereas cells in 

macrophage clusters Mac1 and Mac3 were now adjacent to cells in Mac2 that stretched 

toward the SMC/SEM/FC/Fibro clusters along UMAP axis 1 (Figure 2B). We applied 

pseudotime analysis in Monocle3 [21–23], which resulted in many trajectories originating in 

the SMC1 cluster. Interestingly, one trajectory included a link connecting the Fibro1 cluster 

to Mac2 and concluding in Mac1 (Figure 2C). Notably, several trajectories were drawn 

among non-macrophage clusters with many traversing the SEM population. This result is 

consistent with the proposed model that SEMs are a de-differentiated VSMC state from 

which other VSMC-derived cell types arise [14]. Interestingly, we find that the Mac2 cells 

are enriched in pro-proliferative transcripts, including Plk1, Birc5, and Ccna2 (Figure 1D 

and Supplementary Figure S3). This may represent a transitory proliferative VSMC 

phenotype that occurs upon trans-differentiation to a macrophage-like state. We sought to 

further investigate the hypothesis that VSMCs transdifferentiate into macrophages first 

through an SEM phenotype and then through a fibroblast-like phenotype followed by a 

proliferative macrophage-like state. For each cell in the Mac2 cluster, we visualized the 

twenty nearest neighbors to that cell in high dimensional space (the Harmony embedding). 

We find that many nearest neighbors of Mac2 fall in the other macrophage clusters 

(consistent with our hypothesis), and many nearest neighbors of Mac2 are scattered across 

the SMC, SEM, FC, and Fibro clusters, which is inconsistent with our hypothesis; 

specifically, it demonstrates that the trajectory through a fibroblast-like state is likely an 

oversimplification resulting from the dimensionality reduction. Thus, we conclude that while 

Mac2 may represent a phenotypic intermediate between VSMCs and VSMC-derived 

macrophages, it is unclear what other intermediate states a VSMC must progress through to 

re-differentiate into a macrophage.

Re-Clustering of Immune Cells Shows Cellular Subtypes and Differential Expression 
between Lineage Positive and Lineage Negative Macrophages

We next reasoned that re-clustering and re-visualizing non-SMC/SEM/FC/Fibro/EC cells 

could provide better resolution of immune cell states. The UMAP from this analysis, from 

13.4 thousand cells in Figure 3A consisted of 18 cell clusters with the following annotations 

derived from marker genes reported by the recent meta-analysis of leukocytes in murine 

atherosclerosis [18]: 6 Trem2+ Foamy Macrophage clusters (FoamyMac1-6), 1 resident 

macrophage cluster, 1 inflammatory macrophage cluster, 1 macrophage/monocyte mixed 

cluster, 3 monocyte and dendritic cell mixed clusters (mono/DC1-3), 1 neutrophil cluster, 1 

CD8+ T cell cluster, 1 IL17+ T cell cluster, 1 B cell cluster, and 2 other stromal clusters 

(Figure 3A). Marker genes for the re-clustered immune cells are displayed in Supplementary 

Table S3. The comparison of VSMC lineage positive to negative cells in this UMAP 

supported that VSMC positive immune-like cells are most similar transcriptionally to 

macrophages because they align with those clusters (Figure 3B). Using reported markers 

from a recent meta-analysis of leukocytes in atherosclerosis, we annotated each immune 

population [18]. Discriminating markers from this analysis are shown in Figure 3C. We 

found VSMC lineage positive cells were most prevalent in foamy macrophage clusters 

(between 23–68% of cells in 5 of 6 foamy macrophage clusters; Figure 3C,D). We also 
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found VSMC lineage positive cells composed more than 50% of inflammatory 

macrophages, cells in the mono/CD cluster, and greater than 30% of resident macrophages. 

Next, to ascertain which transcripts were most specific to VSMC lineage positive versus 

negative cells in these clusters, we identified the top 50 most up-regulated genes (Figure 3E; 

top heatmap colors are log2 fold changes of lineage pos versus lineage neg). We next 

queried which in vivo clusters these genes are abundantly expressed in and found that they 

are generally highly expressed in one of a variety of cell types within the atherosclerotic 

plaque, including SMCs, SEMS, FC and macrophages (Figure 3E, bottom). Notably, Acta2 

is more highly expressed among lineage positive macrophages than among lineage negative 

macrophages. Considerable variability in lineage positive cells per cluster is observed across 

individual samples and studies (Supplementary Figure S4), making absolute quantification 

of lineage positive cells challenging.

Widespread Transcriptional Changes Are Induced by VSMCs Cholesterol Loading In Vitro

To model gene expression changes consequent to high cholesterol exposure as occurs in 

atherosclerotic lesions, we exposed murine VSMCs isolated from aortic segments of 

C57BL6/J mice to 20 ug/mL cyclodextrin-cholesterol complexes or control (0.2% BSA) for 

0, 24, and 48 h in vitro (METHODS, “Cell culture and cholesterol loading in vitro”) RNA 

sequencing (RNA-seq) was performed on biological triplicates yielding an average of 21.46 

million mapped reads per sample following the removal of one sample for low read count 

(<1 million, control 48 rep1) (Supplementary Table S4). To explore the unbiased global 

expression changes, we performed Principal Coordinates (PC) Analysis and observed tight 

concordance between replicates of the same condition (Figure 4A). The 1st PC corresponded 

with duration of cholesterol loading and the 2nd PC diverged with time. Differential 

expression analysis identified 4143 differentially expressed genes across the dataset at a 

False Discovery Rate (FDR) [39] of 5%. Together, these findings demonstrate that exposure 

of VSMCs to a cholesterol-rich environment reorganizes their transcriptional program.

To better understand the biological pathways regulated by cholesterol in VSMCs, we utilized 

the hierarchical relationship among differential gene profiles to identify distinct patterns of 

gene expression. This resulted in 4 regulatory profiles, or clusters (Figure 4B,C; 

Supplementary Figure 5SA). Cluster 1 transcripts (n = 684) summarizes a profile of 

stepwise down-regulation by cholesterol loading compared to control (Figure 4C). Pathway 

analysis found this gene set to be significantly enriched for kinetochore metaphase signaling 

pathway genes, as well as genes involved in the G2/M DNA damage cell cycle checkpoint 

(Figure 4D; green bars). Cluster 2 transcripts (n = 264) fit a pattern whereby time in control 

media up-regulates expression and exposure time to cholesterol down-regulates expression 

(Figure 4C). This gene set is highly enriched in members of the super-pathway of 

cholesterol biosynthesis that is known to be inhibited by high extracellular cholesterol levels 

[40,41]. Expression for genes in this pathway is visualized by heatmap in Figure 4E, and 

with respect to their location in the metabolic pathway in Supplementary Figure 5SB. 

Notably, cholesterol loading down regulated nearly every enzyme in the cholesterol 

biosynthetic pathway in vitro. The behavior of transcripts in cluster 3 (n = 225) is described 

by progressive down-regulation in control media; however, this set is not enriched in any 

pathways tested. Lastly, transcripts in cluster 4 (n = 529) exhibit progressive up-regulation 

Conklin et al. Page 12

Immunometabolism. Author manuscript; available in PMC 2021 June 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by cholesterol over time relative to controls (Figure 4C). This gene set is enriched in the 

Unfolded Protein Response (UPR) pathway. Expression profiles across conditions of UPR 

genes are shown by heatmap in Figure 4F and in network format in Supplementary Figure 

5SC. Notably, several Transcription Factors (TFs) in the UPR are up-regulated by 

cholesterol including members of all three branches of the UPR: Atf4, Atf6, and Xbp1 

(Figure 4F).

Cholesterol Loading of VSMCs In Vitro Modestly Reorganizes the Active Epigenetic 
Landscape

To gain insight into how cholesterol reorganizes the epigenetic landscape in mVSMCs we 

performed Chromatin Immuno-Precipitation with high-throughput sequencing (ChIP-seq) 

for histone H3 acetylation on lysine 27 (H3K27ac), which is a post-translational 

modification present on nucleosomes surrounding active regulatory elements, including 

promoters and enhancers [42]. An average of 19.9 million mapped sequence tags were 

analyzed for the 24 h and 48 h control and cholesterol conditions in the same experimental 

in vitro model as for transcriptomics (Supplementary Table 4S). Analysis of the top 5000 

most variable H3K27ac-marked loci are shown in Figure 5A, where we generally did not 

observe large changes in the amount of this epigenetic mark between control and cholesterol 

conditions. We therefore submitted the union of these datasets (n = 28,514; 200 bp 

sequences) to de novo motif finding analysis to return the TF motifs that are utilized in this 

cultured VSMC model. The top ten most enriched motifs are shown in Figure 5B, topped by 

the AP-1 and TEAD motifs. Notably, the frequency of these motifs in their genomic context 

were greatest near the center of the nucleosome-free regions as defined by H3K27ac ChIP-

seq, consistent with their cognate TFs binding to these peak centers (Figure 5C,D). Notably, 

TEAD and KLF motif frequencies were similar in control and cholesterol-treated conditions, 

suggesting proteins of these TF families bind DNA in both conditions.

Although we observed little re-distribution of H3K27ac signal upon cholesterol exposure, 

813 regions, representing 1.6% of all H3K27ac regions identified after cholesterol exposure, 

were differentially enriched for two motifs when compared to control (Figure 5E). These 

motifs were for Fosl2 (a member of the AP-1 family), and ATF4 (a member of the ATF/

CREB family). Albeit modest, frequencies for each of these motifs were greater in H3K27ac 

regions defined with cholesterol-loading compared to control (Figure 5F–G). Extracellular 

matrix and actin-based processes were enriched pathways for the genes nearest to H3K27ac 

regions containing ATF4 and Fosl2 motifs (Supplementary Table 5S). These data are 

consistent with induction of the UPR by cholesterol, where ATF4 expression is upregulated 

and active [43] (Figure 4F). We also found that Fosl2 RNA is up-regulated by cholesterol 

relative to control in our transcriptomic data (10 to 14 rpkm at 24 h. and 9 to 14 rpkm at 48 

h; 2-tailed t-test P < 0.05), consistent with its role in regulating the VSMC transcriptional 

response to cholesterol.
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Cholesterol Loading of VSMCs In Vitro Fails to Recapitulate Cell State Transitions 
Observed in Atherosclerosis whereas oxLDL Macrophages Show Similar Transcriptomes 
to In Vivo States

A major motivation to transcriptionally characterize VSMCs in vitro under untreated and 

cholesterol-treated conditions was to compare these transcriptomic signatures to VSMC 

lineage positive cells from atherosclerotic lesions in vivo. In this way, we could determine 

whether the in vitro system was a useful model with which to study changes that occur in 

atherosclerosis. Our approach was to compare the average expression profiles of major cell 

states observed in murine atherosclerotic lesions (Figure 1) to expression profiles measured 

in vitro VSMCs ± cholesterol using Spearman correlation (using the top 2000 most variably 

expressed genes from the in vivo scRNA-seq data). Clustering of these pairwise 

relationships showed that all in vitro VSMC conditions were more similar to one another 

than to any in vivo mouse cell clusters (Figure 6; in vitro in orange; in vivo in green side 

bar). These data suggest that up to 48 h cholesterol loading in vitro is not sufficient to 

reproduce cell state transitions observed in vivo; yet, we questioned whether or not longer 

cholesterol exposure or differences in platforms measuring expression (i.e., bulk vs scRNA-

seq) were responsible for differences to in vivo. We therefore retrieved a public 72 h. 

cholesterol loaded VSMC dataset [44] as well as collected scRNA-seq data in the mouse 

VSMC MOVAS cell line ± cholesterol for 48 and 72 h. Interestingly, we observed 13 cell 

clusters from the scRNA-seq in vitro experiment, suggesting notable heterogeneity exists in 

vitro, especially in the proliferative and fibrotic and inflammatory states (Supplementary 

Figure S6). Nonetheless, neither the bulk nor the scRNA in vitro cell profiles clustered with 

in vivo cell states from lesions (Figure 6; 72 h. bulk in blue and MOVAS scRNA-seq in 

yellow side bars).

Next, we sought to understand if any in vitro cell model would cluster with in vivo cell 

profiles, and so we retrieved two datasets of mouse thioglycolate-elicited peritoneal 

macrophages that were exposed in vitro to oxidized LDL (oxLDL), or to lipopolysaccharide 

and Interferon gamma (to mimic M1 polarization), or to Interleukin 4 (to mimic M2 

polarization) [39]. The macrophages treated with oxLDL are denoted in Figure 6 by red side 

bar, and M1 and M2 macrophages are denoted by purple. We found that the oxLDL treated 

macrophage profiles closely clustered with the Mac1 and Mono/DC1/2 in vivo clusters from 

mouse lesions, suggesting this model closely resembles in vivo macrophage biology in 

lesions. Lastly, we utilized this comparison approach to test how well human and mouse in 

vivo cell clusters from scRNA-seq data resembled one another. For this, we retrieved 

scRNA-seq data from human carotid lesion endarterectomy samples [14], performed 

clustering, and sample annotations similar to the mouse data (Supplementary Figure S7). 

Clustering of the resulting cell state profiles showed close relationships between human and 

mouse in vivo data (Figure 6; mouse in green, human in pink). We found that human 

VSMCs clustered closest to mouse SMCs, Fibros, and SEMs, human and mouse Endos 

clustered together, and immune cells from each species clustered together as well. One 

interesting finding from this analysis is that although they do not cluster together, there is 

correlation between the in vivo mouse Mac3 cluster and the in vivo mouse Fibro4, SEM, and 

FC clusters (Figure 6), which supports that these cells might be related by lineage in vivo.
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This comparison of average expression profiles among several in vitro and in vivo datasets 

demonstrates that cholesterol treatment of VSMCs in vitro fails to recapitulate the full extent 

of cell state transitions observed in murine models of atherosclerosis. We sought to test this 

conclusion using a second analysis of differentially expressed genes that were defined either 

in vitro or in vivo and compared profiles across datasets. As shown in Supplementary Figure 

S8 (left), the genes from the four clusters identified in our analysis of in vitro VSMCs ± 

cholesterol in Figure 4 were not similarly regulated across in vivo mouse cell clusters nor in 

the scRNA-seq in vitro data. Similarly, gene sets that are differentially expressed between in 

vivo mouse clusters are not regulated by cholesterol in vitro by analysis of either bulk or 

scRNA-seq (Supplementary Figure S8, right). Taken together, results from our analyses 

demonstrate that in vitro cholesterol loading in VSMCs fails to model the VSMC plasticity 

that is observed in vivo.

DISCUSSION

With over 70,000 single cell transcriptomes incorporated, this analysis serves as the largest 

interrogation of VSMC lineage positive cells in atherosclerosis to date. The relatively large 

number of cells enabled fine-grained clustering of VSMC lineage positive cells, which as a 

whole underscore the well-appreciated notion that VSMCs are highly plastic in their 

vascular phenotypes. VSMC lineage-positive cells in atherosclerotic plaques were observed 

to comprise significant proportions of contractile VSMCs, de-differentiated VSMCs (termed 

SEMs), fibroblasts, FC, macrophages, and smaller proportions of endothelial and other cell 

types. While our meta-analysis supported that VSMCs may take on each of these phenotypic 

states, notable heterogeneity across studies was observed that obscures precise quantification 

and raises questions as to the sources of variation. In addition, we found that the expressions 

of many genes were altered by in vitro cholesterol loading with less profound alterations in 

the histone acetylation profile. Comparison of these signatures with expression changes 

across in vivo VSMC lineage populations revealed significant discrepancies between in vivo 

and in vitro, demonstrating an outstanding need for developing cell culture models of VSMC 

modulation that better capitulate the phenotypic plasticity of VSMCs in atherosclerotic 

lesions. These points are further discussed below.

The large number of lineage positive VSMCs in SEM, FC, and fibroblast populations in this 

meta-analysis provides perhaps the clearest delineation between contractile VSMCs, FCs 

and fibroblasts to date (Figure 1A; Supplementary Figure S8). Therefore, transcripts that 

distinguish these cell states may serve as valuable phenotypic markers for future studies 

(Supplementary Table S2). Data presented here supports the hypothesis that VSMCs can 

transition to either fibroblast-like or FC-like cells but are more likely to transition to FC-like 

cells than fibroblast-like cells (Figure 2A). The pseudotime analysis performed here in 

Figure 2C supports the notion that VSMCs can traverse several different trajectories in 

atherosclerotic lesions with many of these transitioning through the SEM state, which has 

been proposed to represent a de-differentiated stem-like cell state [14].

We also found in our meta-analysis of lineage traced VSMCs in murine atherosclerotic 

plaques that as many as 66% of foamy macrophages across all studies examined were 

VSMC lineage positive (Figure 3), which is consistent with a recent report [9]. Trajectory 
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analysis also revealed one trajectory that traversed from VSMCs to a fibroblast-like state to 

the Mac2 population and termination in the macrophage state. This result is provocative 

insofar as it implies a cell state conversion through a proliferative macrophage-like state 

(Mac2) and final differentiation into macrophage-like cells. Such a process mirrors 

experimental observations in Rainbow mice that randomly recombine combinations of 

florescent markers only in the VSMC lineage [45]. In that study, clones of proliferating and 

migrating VSMCs become ‘synthetic’ and take on foamy appearances in the sub-endothelial 

locale. The proliferative and macrophage-like signature in Mac2 could also resemble stem-

like monocyte cells reported by Lin et al. in lesions in both atherosclerosis progression and 

regression, with their ultimate phenotypic state likely determined by the microenvironment 

[46]. We also found that the Mac3 in vivo population has similarities to SEMs and FCs, 

suggesting that there might be a developmental similarity between them (Figure 6).

An important consideration surrounding the possibility that VSMCs differentiate into 

macrophages is the marked difference in VSMC-lineage positive macrophage-like cells 

across studies (Figure 2A, Supplementary Figures S1 and S4). In particular, Wirka et al. [17] 

and Kim et al. [35] do not report nearly as many VSMC-lineage positive macrophage-like 

cells as Pan et al. [14] or Alencar et al. [12]. We speculate that technical differences may be 

the source of this difference, such as mode and/or dose of tamoxifen administration, leaky 

Cre expression, cell dissociation protocols (with possible biased recoveries), sorting 

parameters including gating strategies, and downstream processing of samples through data 

quality control. Because we observe higher ZsGreen transcript among lineage positive 

macrophages than among lineage negative macrophages in the Pan et al. data, we suggest 

that auto-fluorescence is not a sufficient explanation for the high number of apparently 

SMC-derived macrophages observed. Macrophages and/or lipid-laden cells are most 

variable across studies, which is consistent with such cells being among the most fragile and 

thus difficult to isolate intact in order to interrogate them using these methods [18]. Studies 

that overcome these limitations and sources of variability will be of great value to 

definitively laying this important question to rest.

One of the motivations for this meta-analysis was to enable a comprehensive glimpse into 

the expression changes that occur to VSMCs in vivo to enable comparison to models of 

VSMC modulation in vitro. For VSMCs loaded with cholesterol in vitro, we observed robust 

alterations in transcript regulation with notable induction of the UPR and repression of 

cholesterol biosynthetic pathway genes (Figure 4). Each of these pathways have been 

described to be regulated by cholesterol loading, with most work on the UPR in 

atherosclerosis occurring in macrophages. There, cholesterol loading was shown to induce 

the UPR in vitro and in vivo leading to macrophage apoptosis [47]. For VSMCs, a recent 

report used marker genes as evidence that the UPR is similarly activated in VSMCs in 

atherosclerotic lesions as occurs upon cholesterol loading in vitro [48]. The authors further 

conclude that activation of the UPR, as elicited by cholesterol, is the direct mechanism of 

phenotypic modulation; however, our study indicates that the UPR is induced by cholesterol 

in vitro, but that this induction is insufficient to reproduce the phenotypic states observed in 

vivo, as perhaps best illustrated by the heat map in Figure 6.
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Because of the convenience of assessing chromatin organization in vitro, we also wished to 

extend our analysis beyond transcriptome profiling. Based on previous experience studying 

changes in the histone acetylation changes to pro-atherogenic stimuli in endothelial cells 

[49] and macrophages [50], we interrogated the cholesterol-loaded and control VSMC 

epigenomes. Despite the >4000 differentially expressed genes across the dataset, we found 

that the epigenomes were surprisingly similar. Still, we found evidence that VSMCs utilize 

AP-1, TEAD, and KLF motifs for regulating gene expression with enrichment of motif 

frequencies for Fosl2 and Atf4 in cholesterol-induced elements (Figure 5).

Finally, our comparison of expression changes across the in vivo populations and in vitro 

samples revealed considerable dissimilarity in the VSMC cell states, with each data type 

clustering in their own branches of the dendrogram (Figure 6). More targeted analysis from 

both the in vitro-defined differential genes and the in vivo-defined differential genes 

underscored general discordance between datasets (Supplementary Figure S8), which 

remained dissimilar for longer (72 h) cholesterol treatments. Because it is the rare VSMC in 

the arterial media that gives rise by clonal expansion to the cells of VSMC origin in the 

intima [45], we thought bulk RNA-seq on the cholesterol-loaded VSMC may have obscured 

changes in a small subpopulation of cells relevant to the in vivo setting. Thus, we collected 

and analyzed a scRNA-seq dataset from a mouse VSMC cell line loaded with cholesterol or 

treated with buffer. Interestingly, we did observe multiple cell populations for cholesterol 

loaded VSMCs in culture (Supplementary Figure S6), and although none were very similar 

to in vivo transcriptomes, this finding underscores that phenotypic transitions may exist for 

some cells in culture and that single cell approaches may be necessary to capture the 

molecular basis for this heterogeneity.

Although we were able to resolve multiple cell populations using scRNA-seq, that we still 

were not able to qualitatively recapitulate the in vivo findings, particularly the transitional 

state, may reflect that either the cholesterol-loading methods (cyclodextrin complexes) was 

unphysiologic or that three-dimensional co-culture systems with other cell types are needed 

to mimic the complex environment in an atherosclerotic plaque. That macrophages loaded 

with oxLDL did invade an in vivo macrophage branch of the dendrogram (Figure 6) 

supports the notion that some in vitro models are more appropriate for modeling in vivo than 

others. Interestingly, M1 and M2 polarized macrophages in culture were less similar to in 

vivo gene signatures than oxLDL macrophages, indicating that pure M1/M2 responses are 

not as important as the effect of oxLDL for modeling the transcriptional state of 

atherosclerotic macrophages. We also note that oxLDL treatment of VSMCs has not, to our 

knowledge, been investigated using scRNA-seq; we suggest that such an experiment may 

shed light on microenvironmental cues for VSMC phenotypic plasticity.

Lastly, we tested and confirmed that signatures of cell populations from human 

atherosclerotic lesions resembled those discovered in mouse (Figure 6). Taken together, 

these data suggest that in vitro models of VSMC phenotypic transitions, which are valuable 

for mechanistic interrogations, need refinement, but also that continued studies of mouse 

models are likely to yield clinically relevant findings. Greater clarity into the 

microenvironmental signals and cell-cell interactions that govern phenotypic switching 

should propel this area of research.
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CONCLUSIONS

Based on the meta-analysis of multiple mouse studies with lineage marked VSMC and 

comparisons to data from human plaques and VSMC in culture, we offer the following 

conclusions: (1) There is broad agreement over the plasticity of VSMC in atherosclerosis, 

with a convergent finding that there is a set of cells called SEM, which has been proposed to 

represent an intermediate VSMC phenotypic switching state [14] that serves as a platform to 

lead to a variety of ultimate fates; (2) transcriptome-based cell type characterization is 

variable across the studies. In particular, while there was clear evidence for macrophage-like 

cells originating from VSMC in the aggregated data, there was a wide quantitative range 

between studies. In addition, based on trajectory analysis, there was a path from contractile 

VSMC to macrophage-like cells by way of a proliferative cell cluster, but it remains 

incomplete what are the intermediate states a VSMC must progress through; (3) The mouse 

and human data have many similarities, supporting the continued use of mouse models to 

draw inferences about VSMC fates in human atherosclerosis; and, (4) though cholesterol-

loading of VSMC in vitro resulted in thousands of DEGs, the analyses of either bulk RNA-

seq or scRNA-seq data did not reveal striking resemblances to the meta-analysis of the in 

vivo data. Thus, more progress in model development will be needed before the clinical 

relevance of results from in vitro systems can be assumed.
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ABBREVIATIONS
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UMAP uniform manifold approximation and projection

FACS fluorescence-activated cell sorting
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Figure 1. Meta-analysis of scRNA-seq on VSMC-lineage traced atherosclerotic lesions across 4 
studies.
(A) UMAP of single cells from 33 scRNA-seq samples across 4 studies are colored by 

cluster. (B) Cells are colored as VSMC-lineage positive (blue), as VSMC-lineage negative 

(red), or as unsorted cells (grey). (C) Marker expression for relevant cell types and UMAP 

locales. (D) On the left, clusters (y-axis) are paired to the negative log10 p-value from 

pathway enrichment analysis (x-axis). On the right, markers for VSMC (Myh11-Cspg4), 

endothelial cell (Vwf-Ly6a), myeloid cells/macrophages (Lgals3-Cd68), T-cells (Cd3e and 
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Lat), fibroblasts (Serpinf1-Dcn1), B-cells (Igkc and Ighm), and fibrochondrocytes (Spp1-

Ibsp) are shown by percentage of cluster cells (dot radius) and average expression (dot 

color).
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Figure 2. Proportions of VSMC-lineage traced and untraced cell populations vary by study and 
time on pro-atherogenic diet.
(A) Relative proportions of VSMC-lineage sorted negative (left) and positive (right) cells 

are shown by publication and time on pro-atherogenic diet. Note that Alencar et al. 

microdissected BCA lesions whereas others dissected lesioned portions of arteries. (B) 

SMC-lineage positive cells only were re-visualized by UMAP and colored according to 

cluster annotations in Figure 1. (C) Pseudotime analysis in Monocle3 results are shown for 

lineage positive cells according to UMAP in B.
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Figure 3. Further analysis of immune cells reveals 18 clusters with VSMC lineage positive cells 
most closely resembling macrophage subsets.
(A) UMAP reduction and clustering of only immune clusters from Figure 1 found 18 

clusters that were annotated by leukocyte markers in Zernecke et al. (B) SMC lineage 

positive cells are shown in blue, lineage negative in red, and unsorted cells in grey. (C) 

Dotplot depiction of key immune cell marker genes. (D) Proportion of lineage positive cells 

(x-axis) by immune cell cluster (y-axis) are shown. (E) The top heatmap shows the log2 fold 

change of VSMC lineage positive over lineage negative expression of transcripts (x-axis) in 
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the different immune cluster (y-axis) for the 50 most up-regulated genes in lineage positive 

cells. The bottom heatmap shows the relative expression of these same genes (x-axis) for 

mouse atherosclerotic lesions (unit = Z-scores for each transcript across clusters).
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Figure 4. Primary cultured mVSMCs exhibit widespread transcriptional changes upon 
cholesterol loading.
(A) Principal Coordinates (PCo) Analysis of mVSMC RNA-seq samples ± cholesterol at 0 

h, 24 h, and 48 h timepoints. (B) Transcript expression values per condition are shown by 

heatmap as normalized per row with cluster designation along left side bar. (C) Mean 

expression of transcripts per gene set over time. (D) Most enriched pathways are shown 

from Ingenuity Pathway Analysis. None were significant for cluster 3. (E) Cluster 2 
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Cholesterol Biosynthetic Pathway transcript expression across conditions. (F) Cluster 4 

Unfolded Protein Response transcript expression across conditions.
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Figure 5. 48 h of mVSMCs cholesterol loading in vitro has a subtle effect on histone acetylation.
(A) The top 5000 most variable H3K27ac gene-distal regions (>3 kb from TSS) across 

experimental conditions. (B) De novo motif analysis of combined H3K27ac+ regions are 

shown with predicted factor family TFs, enrichment p-value, and percent occurrence in the 

data (fgnd) compared to random GC-match genome (bgnd). (C) Frequency of the TEAD 

motif (y-axis) is plotted relative to the center of H3K27ac+ nucleosome free peak centers (x-

axis). (D) The enriched KLF motif is shown as in C. (E) Fosl2/AP-1 and ATF4 motifs are 

more enriched at H3K27ac+ regions in cholesterol loaded VSMCs relative to the negative 

(neg) control. (F) The Fosl2 motif is more frequent in cholesterol H3K27ac+ peak centers 

relative to neg. (G) The ATF4 motif is more frequent in cholesterol H3K27ac+ peak centers 

relative to neg.
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Figure 6. In vitro models of VSMCs and macrophages, with or without pro-atherosclerotic 
stimuli, fail to segregate with their presumed in vivo counterparts.
Pairwise Spearman correlation (given the 2000 most variable genes in the mouse scRNA-seq 

data) across in vitro and in vivo datasets and/or single cell clusters from mouse and human 

atherosclerotic lesions are shown.
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Table 1.

Studies of SMC-lineage tracing and scRNA-seq in murine atherosclerosis analyzed into our meta-analysis.

Publication Model Duration of diet 
(weeks) Artery section(s) PMID GSE

Alencar et al. Circulation 2020 [12] ApoE−/− 18 microdissected BCA (lesions); 
aorta healthy control 32674599 GSE150644

Pan et al. Circulation 2020 [14] ApoE−/− 0, 8, 16, 22 ascending aorta, BCA, thoracic 
aorta 32962412 GSE155513

Pan et al. Circulation 2020 [14] LDLR−/− 0, 8, 16, 26 ascending aorta, BCA, thoracic 
aorta 32962412 GSE155513

Wirka et al. Nature Medicine 2019 
[17] ApoE−/− 0, 8, 16 aortic root, ascending aorta 31359001 GSE131780

Kim et al. Circulation 2020 [35] ApoE−/− 16 aortic root, ascending aorta 32441123 GSE150768
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