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Cathelicidins are short cationic peptides that are part of the innate immune system. At

first, these peptides were studied mostly for their direct antimicrobial killing capacity, but

nowadays they are more and more appreciated for their immunomodulatory functions. In

this review, we will provide a comprehensive overview of the various effects cathelicidins

have on the detection of damage- and microbe-associated molecular patterns, with

a special focus on their effects on Toll-like receptor (TLR) activation. We review the

available literature based on TLR ligand types, which can roughly be divided into lipidic

ligands, such as LPS and lipoproteins, and nucleic-acid ligands, such as RNA and

DNA. For both ligand types, we describe how direct cathelicidin-ligand interactions

influence TLR activation, by for instance altering ligand stability, cellular uptake and

receptor interaction. In addition, we will review the more indirect mechanisms by which

cathelicidins affect downstream TLR-signaling. To place all this information in a broader

context, we discuss how these cathelicidin-mediated effects can have an impact on

how the host responds to infectious organisms as well as how these effects play a

role in the exacerbation of inflammation in auto-immune diseases. Finally, we discuss

how these immunomodulatory activities can be exploited in vaccine development and

cancer therapies.

Keywords: macrophages, dendritic cells, antimicrobial peptides, cathelicidins, LL-37, Toll-like receptors, MAMPs,

DAMPs

INTRODUCTION

The discovery of penicillin in 1928 by Alexander Fleming was a major breakthrough in medicine.
Ever since, the use of antibiotics savedmillions of lives around the world, curing infections that were
previously life threatening (1). However, due to the continuous expansion of antibiotic resistance
among clinically relevant bacterial species, novel antimicrobials are urgently required to counter
infections by these pathogens (2). One promising alternative to conventional antibiotics is the use
of host defense peptides (HDPs), which refers to a large family of peptides with varying functions,
including direct antimicrobial activity against a wide variety of bacterial, fungal and viral pathogens.
Of special interest is the more recent description of the immunomodulatory functions of these
peptides, which provides additional opportunities for potential clinical applications (3).

One group of HDPs that has been extensively studied in the context of their immunomodulatory
activity is the cathelicidin family. This peptide family can be found in nearly all vertebrate species
and has been shown to have a major impact on host responses toward various highly conserved
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microbe-associated molecular patterns (MAMPs). MAMPs
activate the innate immune system through pattern recognition
receptors (PRRs), of which Toll-like receptors (TLRs)
are the most well-known receptor family. TLRs can be
roughly divided into two subgroups; extracellular TLRs
and intracellular TLRs, that recognize microbial membrane
components and extracellular proteins or nucleic acids,
respectively (4).

In this review, we aim to summarize the current knowledge
on the mechanisms by which cathelicidins affect TLR activation
and downstream signaling as well as how this impacts immune
responses during both infections and sterile inflammation,
including auto-immune responses.

CATHELICIDINS

Cathelicidins belong to the family of HDPs with each cathelicidin
being encoded by a single gene, consisting of four exons.
Cathelicidins are translated as a pre-pro-peptide, consisting of
a signal peptide on the N-terminus that directs the peptide to
secretory granules, followed by the highly conserved cathelin
domain and ending in the active mature peptide at the C-
terminus (5). Cathelicidins, such as the human cathelicidin LL-
37, are commonly secreted by neutrophils in their biologically
inactive pro-peptide form and require cleavage by extracellular
enzymes such as elastase or proteinase-3 to release the
biologically active C-terminal peptide (6). In the human skin,
proteases such as kallikrein-5 have also been shown to cleave
the LL-37 pro-peptide (hCAP18) once it is secreted by epithelial
cells and keratinocytes. This leads not only to release of
the active LL-37 peptide, but also to many different smaller
fragments, such as LL-23, LL-29, and KS-27 (7). The mature
cathelicidin peptides are highly variable in both amino-acid
sequence and size, which leads to considerable differences in their
3D structure. They can contain to α-helices, β-hairpins, extended
structures or form cyclic peptides. Some cathelicidins are rich
in specific tryptophan, proline or arginine residues, while others
are arranged in short tandem repeats (8–10). Since the mature
peptides are highly diverse, not all cathelicidins will have similar
activities which is important to keep inmind when studying these
peptides. Importantly, despite these highly diverse structures,
most peptides have a characteristic amphipathic nature and a net
positive charge (8, 11).

Cathelicidins are expressed in nearly all vertebrates. In
some species, only one cathelicidin has been identified, like
human (LL-37), mouse (CRAMP) and dog (K9CATH). Other
species, like chicken, horse, pig and cattle, express multiple
cathelicidins (10). The main source of LL-37 in humans are
neutrophils, which store the inactive pro-peptide in their
secretory granules (12) and secrete them upon activation (13, 14).
However, other cell types, including lymphocytes, macrophages,
epithelial cells and keratinocytes, can also produce cathelicidins
(15–17). Under homeostatic conditions, cathelicidins reach
in vivo concentrations of around 0.2–0.5µM in the plasma
(12, 18), 0.2–2.0µM in the lung mucosa (18), 0.01–1.1µM
in sweat (19), 0–4.4µM in ascites fluid and 4–6µM in

saliva (18). Many cathelicidins are strongly upregulated during
infection due to TLR activation by MAMPs, such as LPS,
LTA and flagellin (20, 21). In addition, cathelicidins can
be upregulated when tissues are damaged or by exposure
to specific compounds, such as vitamin D3, butyrate and
PGE2 (22–25). Under extreme conditions, for example in
psoriatic lesions, more than 300µM cathelicidin can be
detected (26).

While best known for their direct antimicrobial activity
against a broad spectrum of bacteria (27–29), viruses (30–
32), fungi (33, 34), and parasites (35, 36), it is now well-
established that these peptides also have the potential tomodulate
immune responses in various ways. This includes regulation
of neutrophil and monocyte chemotaxis (37–39), induction
of chemokine expression (27, 40), skewing of macrophage
polarization (41), influencing phagocytosis (27, 42–44), and
regulation of both extracellular and intracellular TLR activation
(27, 40, 45–49). Due to this plethora of effects, it is perhaps
not surprising that the reduced expression or total lack of
cathelicidins is correlated with increased risk of infection (50, 51)
but also has an impact on the development of autoimmune
diseases (52–55).

CATHELICIDINS INHIBIT THE ACTIVATION
OF LIPID-SENSING TLRs

Lipid-Sensing TLRs
Extracellular TLRs are important in the detection of bacteria-
derived lipid-containing molecules. Detection of such lipids is
often the first step in the initiation of an immune response
against many bacterial pathogens. Bacterial lipid-containing
molecules that can activate TLRs include lipopolysaccharides
(LPS) from the Gram-negative bacterial outer membrane
(TLR4), lipoteichoic acids (LTA) from the Gram-positive
bacterial cell wall and diverse di- and tri-acylated bacterial
lipoproteins (TLR1/2/6). During activation, TLRs form homo-
or heterodimers that are the basis of the TLR receptor complex.
However, various co-receptors, such as MD-2 and CD14 have
been shown to improve ligand detection by TLRs. Upon
stimulation, TLR4 forms a receptor complex consisting of a TLR4
homodimer and two MD-2 proteins (4, 56, 57). The expression
of the CD14 co-receptor can further enhance LPS detection and
cellular responses. The soluble LPS-binding protein (LBP) can
further act as a chaperone by extracting LPS from the bacterial
membrane or bacterial-derived outer membrane vesicles and
delivering it to the TLR4 receptor complex. TLR2 on the
other hand forms heterodimers with either TLR1 or TLR6
(58, 59). These TLR2 heterodimers are responsible for the
recognition of a variety of MAMPs, including LTA, di- and tri-
acylated bacterial lipoproteins such as the highly common Braun
lipoprotein in E. coli, lipoarabinomannan from mycobacteria,
zymosan from fungi and hemagglutinin from measles viruses. In
addition, synthetic lipoproteins based on these natural ligands,
such as the di-acylated Pam2CSK4 (TLR2/6) and tri-acylated
Pam3CSK4 (TLR1/2), are commonly used as TLR2 ligands for
in vitro studies. Similar to TLR4 activation, expression of CD14
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FIGURE 1 | Cathelicidins inhibit the activation of lipid-sensing TLRs and modulate the response of other extracellular receptors. Activation of TLR4 by LPS, TLR1/2,

or-2/6 heterodimers by LTA, and TLR5 by bacterial flagellin leads to activation of the intracellular domain. Through the adaptor MyD88 and subsequent downstream

signaling through MAPKs, NFkB, and AP-1 are released and translocated to the nucleus, leading to transcription of inflammatory cytokines. LPS can also activate

TLR4 located in endosomal compartments, which leads to activation through adaptors TRIF and TRAM. Additionally, P2X7 receptor responds to extracellular ATP,

which leads to inflammasome formation. In general, cathelicidins inhibit lipid-induced TLR-activation and thereby the downstream inflammatory response by

neutralizing lipid MAMPs. LPS-cathelicidin complexes can be taken up, after which the cathelicidins are degraded to allow LPS-induced TLR4 stimulation. Finally,

cathelicidins can signal through the P2X7 receptor by which the peptides can stimulate inflammasome formation and autophagy. Black lines: normal signaling; red

lines: effects exerted by cathelicidins.

further increases the detection efficiency of TLR1/2/6 receptor
complexes (56). Both TLR4 and TLR1/2/6 signal via the MyD88-
dependent pathway, which ultimately leads to activation of NF-
κB and AP-1 and thereby to the secretion of pro-inflammatory
cytokines (56, 60). Importantly, TLR4 can also be present in
endosomal compartments where activation can lead to TRIF-
mediated signaling pathways, leading to the production of
anti-inflammatory cytokines like IL-10 and type I interferons,
predominantly IFN-β (61) (Figure 1).

Cathelicidins Inhibit LPS-Induced TLR4
Activation
Due to the fact that cathelicidins were initially described for
their antimicrobial and membrane disruptive activity, many
studies have focused on elucidating how cathelicidins interact
with bacterial membranes or specific membrane components,
such as LPS and LTA. Through these studies, it has become clear
that cathelicidins are attracted to the bacterial membrane via
electrostatic interactions between the negatively charged lipids
in the bacterial outer membrane and the positively charged
peptide (62). Indeed, loss of negatively charged phosphate-groups
in the LPS core-region, for example due to mutations in LPS-
controlling genes such as PhoP/PhoQ or PmrB/PmrA, reduces the

susceptibility of Gram-negative bacteria to host defence peptides,
like cathelicidins (63). While LPS-cathelicidin interaction may
be important for eliciting antimicrobial activity, it was first
shown in 1994 by Hirata et al. (64), that the 18 kDa rabbit
cationic protein (CAP18) also exerts LPS-neutralizing activity,
which drastically inhibits the inflammatory responses toward
LPS both in vitro and in vivo (65–67). Later studies showed
that this LPS-cathelicidin interaction resulted in reduced TLR4
activation and was not limited to hexa-acylated E. coli LPS (68–
72), but was also observed in the context of penta-acylated P.
aeruginosa LPS and the tetra-acylated P. gingivalis LPS (68, 70,
73). For several cathelicidins, including the human LL-37, it
has now been shown that direct complex formation between
LPS and cathelicidins plays an important role in preventing
the binding of LPS to the TLR4 receptor complex, thereby
reducing immune activation (66, 74–79). More detailed studies
on LL-37 showed that binding of E. coli LPS occurs in a two-
step process, with strong ionic interactions being followed by
lower affinity interactions that are more dependent on entropic
forces, such as interaction between hydrophobic regions of
LPS and LL-37 (79, 80). That LPS neutralization is at least
partially dependent on this ionic interaction is underlined by
the fact that citrullinated LL-37 loses its ability to reduce the
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LPS-induced activation of macrophages (81, 82). Importantly,
cathelicidins can influence LPS-induced TLR4 activation at
different stages. Chicken cathelicidin-2 (CATH-2) and LL-37
have been shown to directly penetrate the bacterial membrane
and bind to membrane lipids during the bacterial killing process
(79, 80). Furthermore, several cathelicidins are able to bind LPS
which was already bound to LBP or are capable of reducing
the LPS concentration on the host cell surface (67, 76, 83, 84),
suggesting competition with cell surface receptors (Figure 1).
Important to note is that the mature cathelicidin peptides are
highly diverse, which explains why some cathelicidins exert
a strong inhibitory effect, while others do not seem to affect
TLR4 activation by LPS at all (27). Similarly, cleavage of
cathelicidins, which can alter the overall peptide charge or
structure, can influence the LPS binding as well. For example,
LL-23, a cleaved biological variant of LL-37 containing 23 amino
acids, is unable to neutralize LPS (85), whereas the 31 amino
acid long LL-31 is still able to inhibit the LPS-induced TLR4
activation (68).

While the interaction between cathelicidins and LPS is
important for the regulation of TLR4 activation, several studies
have suggested more indirect TLR4 regulation by cathelicidins.
LL-37 pre-incubation, for instance, still leads to a reduction of
the LPS-induced immune response in vitro, albeit to a lesser
extent compared to LPS-LL-37 co-incubation (71). Furthermore,
in human monocytes, LPS-mediated p50/p105 as well as TNF
induced protein 2 expression were strongly inhibited by LL-
37, in contrast to the much milder effects of LL-37 on for
instance RELB, CCL4 and CXCL1 (71, 72). Similarly, LPS
stimulation of bone marrow-derived macrophages from CRAMP
knockout mice results in enhanced IL-10 production compared
to stimulation of wildtype macrophages. However, no difference
in TNF or MIP-2 production was observed between wildtype
and CRAMP knockout cells (86). This selective influence
on TLR4 activation could be the result of regulating the
expression or functions of signaling molecules downstream of
TLR4. The murine cathelicidin CRAMP for instance, reduced
MyD88 synthesis and impaired the interaction between MyD88
and IRAK in murine macrophages upon LPS stimulation. In
addition, CRAMP inhibited the phosphorylation of p38 and ERK
downstream in this cascade, leading to a strong reduction of
TNF production (86). Similarly, LL-37 was shown to inhibit
the LPS-induced translocation of the NF-κB subunits p50 and
p65, also resulting in a strong reduction of TNF (71, 87) and
reduces the LPS-induced upregulation of TREM-1 by MyD88
(88). However, as these studies co-incubated cells with LPS
and cathelicidins, it is difficult to assess to what extent these
effects are just the result of reduced TLR4 activation due to
the blocking of receptor activation. Nevertheless, it has been
suggested that LL-37 can interact with intracellular GAPDH, an
important enzyme in the glycolysis pathway, which subsequently
promotes MAPK activation and chemokine expression (71).
Such effects on MAPK activation can also have an impact
on LPS-induced signaling pathways, which also use MAPK as
intermediate signaling molecules. However, more research is
needed to clarify to what extent these indirect regulatory effects

of cathelicidins influence activation of TLR4 as well as other
TLRs (Figure 1).

While most studies have clearly shown an inhibitory effect
of cathelicidins on LPS-induced immune activation, there are
also indications that in specific cases the interaction between
LPS and cathelicidins can lead to enhanced cellular activation.
This effect was first shown by Shaykhiev et al. (89), where LL-
37-LPS complexes were shown to be taken up more efficiently
in vitro by human bronchial epithelial cells, which subsequently
led to enhanced intracellular TLR4 activation and increased IL-
6 production (89). Similarly, a human adenocarcinoma colonic
epithelial cell line also responded with an enhanced inflammatory
response toward LPS-LL-37 complexes compared to LPS by
itself (24) (Figure 1). Nevertheless, increasing the cellular uptake
of LPS does not always lead to an enhanced response. For
instance, cathelicidin-mediated uptake of LPS was also observed
in cultured human liver sinusoidal endothelial cells; however,
this did not lead to an altered immune activation in these
cells (90).

Cathelicidins Inhibit LTA-Induced
Activation of TLR1/2/6
Whereas the effects of cathelicidins on LPS-induced TLR4
activation are very well-studied, the influence of cathelicidins
on lipid-induced TLR1/2/6 activation is less well-known.
Nevertheless, several cathelicidins were shown to inhibit LTA- or
Pam3CSK4-induced TLR1/2 activation and Pam2CSK4-induced
TLR2/6 activation. This includes LL-37-mediated inhibition of
TNF and IL-6 release in LTA-stimulated PBMCs and dendritic
cells, as well as inhibition of LTA-induced TNF release in
macrophages by several cathelicidins from different species (27,
72, 91). However, similar to the inhibition of LPS-induced
activation, not all cathelicidins are able to reduce TLR1/2/6-
activation or might be less effective (27, 68, 72, 75). Like LPS-
neutralization, the mechanism by which cathelicidins inhibit
TLR2 has also been associated with direct interaction between
cathelicidins and the TLR2 ligands. Using isothermal titration
calorimetry as well as competition assays, both chicken CATH-
2 and human LL-37 were shown to bind LTA and Pam3CSK4
directly (77, 79, 92), albeit with a lower affinity compared to
their binding to LPS (77, 78). In addition, citrullinated LL-37
loses its ability to inhibit LTA-induced activation of macrophages
(81), indicating that interaction with LTA, similar as with
LPS, is dependent on ionic interactions. Despite the observed
interaction between LL-37 and LTA, LL-37 is not able to inhibit
TLR2 activation on all cell types. In human primary bronchial
cells, co-incubation of LL-37 enhanced the Pam3CSK4-induced
expression of IL-8 and IL-6, while no effect of LL-37 was observed
in relation to LTA-induced keratinocyte activation (93). This
indicates that the function of cathelicidins might differ in the
context of different cell types. In addition, as TLR2 and TLR4
signaling pathways share many downstream signaling molecules,
it is likely that the indirect effects of cathelicidins on downstream
TLR signaling pathways related to TLR4 activation will also play
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a role in the cathelicidin-mediated regulation of TLR2 activation,
although no proof has been provided for this yet (Figure 1).

CATHELICIDINS ENHANCE THE
ACTIVATION OF NUCLEIC ACID-SENSING
TLRs

Nucleic Acid-Sensing TLRs
Foreign nucleic acids from invading viruses, as well as several
bacteria, are sensed by several intracellular PRRs. These include
several DNA- and RNA-receptors in the cytoplasm, as well as
specific TLRs (TLR3, -7, -8, and-9) expressed in endolysosomal
compartments (94). Depending on the localization of a pathogen
as well as the stage of infection, receptors at these different
cellular compartments can be activated. For instance, viruses
are obligate intracellular parasites, meaning they rely completely
on host cells for their replication and survival and replicate
their genome within the host cytoplasm. Alternatively, viral
nucleic acids can be found extracellularly as well in apoptotic
particles, which can be engulfed by host cells and thereby
end up in TLR-containing endolysosomes (95). In contrast to
extracellular TLRs, which can rapidly respond to ligands in the
extracellular environment, several barriers exist for the activation
of intracellular TLRs by nucleic acids. Firstly, due to the many
nucleases present in the extracellular environment, most free
extracellular nucleic-acids are degraded before cells have the
opportunity to respond (96, 97). Secondly, because the nucleic
acid sensing TLRs are located intracellularly, cells have to actively
endocytose the DNA or RNA for it to reach its complementary
TLR receptor (98, 99).

TLR9 recognizes unmethylated CpG-containing DNA
motifs in bacterial genomic DNA and viral double stranded
DNA (dsDNA). The unmethylated CpG-containing DNA
motifs in bacterial DNA are mimicked by synthetic CpG
oligodeoxynucleotides (ODN), which are widely used in
experimental systems (94, 100, 101). TLR21 is the avian
equivalent of TLR9, which also recognizes CpG-ODN (102).
TLR7 and -8 are highly homologous to each other due to gene
duplication and recognize viral single stranded RNA (ssRNA),
RNA from bacteria such as group B Streptococci and possibly
siRNAs as well. The synthetic agonists for TLR7 and -8 are
antiviral nucleoside analogs such as R848 and imiquimod.
TLR3 recognizes viral double-stranded RNA (dsRNA), which is
mimicked by the synthetic analog polyinosinic-polycytidylic acid
[poly(I:C)]. TLR3 might also respond to some ssRNA viruses,
most likely during the replication phase when they copy their
RNA (56, 94, 100, 101, 103).

Like most extracellular TLRs, TLR7, -8, and -9 signal through
the MyD88-dependent signaling pathway, resulting in the
secretion of proinflammatory cytokines. In addition, activation
of the highly expressed TLR7 and -9 in plasmacytoid DCs (pDCs)
results in high levels of type-I interferons, like IFN-α, which
is important during anti-viral responses. TLR3 on the other
hand activates the TRIF-TRAF pathway in aMyD88 independent
manner, which leads to IFN-β secretion (94, 101, 103).

Cathelicidins Promote Nucleic Acid
Stability and Endocytosis
Cathelicidins have been found to play an important role in
improving the detection of nucleic acids by cells. First of all,
the positively charged cathelicidins can directly interact with
the negatively charged DNA or RNA through ionic interactions,
which protects it from degradation by DNAses and RNAses
that are abundantly present in the extracellular environment
(48, 49, 98, 104, 105). Through this interaction, cathelicidins can
stabilize DNA and RNA released from damaged or dying cells
as well as DNA released by bacteria, for instance during the
process of biofilm formation. Once nucleic acids are bound by
cathelicidins and protected from degradation, cathelicidins can
assist in improving the uptake of DNA by different cell types,
such as macrophages, dendritic cells and B cells (48, 49, 106, 107).
While this increase in uptake could theoretically be the result of
increased DNA stability, increased uptake has also been observed
in the context of short DNA oligos with a phosphorothioate
backbone, which are resistant to DNAse degradation due to a
sulfur group replacing an oxygen group on the DNA-backbone
(48, 107). Furthermore, it has been shown that the positively
charged peptide can act as a bridge between the nucleic acids and
proteoglycans on the cell surface, which appears to be involved in
the lipid-raft-mediated uptake of these cathelicidin-nucleic acid
complexes (105) (Figure 2A).

The ability of cathelicidins to increase DNA stability
and enhance DNA internalization is also important during
NETosis, the process by which neutrophils undergo cell death
by expelling their DNA into a neutrophil extracellular trap
(NET) to trap invading microbes. LL-37-DNA complexes for
instance, are formed within NETs produced by neutrophils
that are infected by mycobacteria. These LL-37-covered NETs,
still containing mycobacteria, are more efficiently internalized
by macrophages, which allows the macrophages to kill the
mycobacteria in lysosomal compartments in an LL-37-dependent
manner (108). Cathelicidins are also commonly found within
NETs under other circumstances (104, 108, 109), where they
can both contribute to the antimicrobial activity of the NET,
as well as prevent the NETs from being degraded by bacterial
nucleases (104).

Cathelicidins Influence TLR Responses To
Nucleic Acids Depending on the Cell Type
Plasmacytoid Dendritic Cells (pDCs)
pDCs play an important role in many inflammatory processes,
which include wound healing, antiviral and antibacterial
responses, but also autoinflammatory responses (49, 110–113).
Within all these processes, their main role is the production of
high quantities of IFN-α, which is produced upon activation
of the endosomally located TLR7 by ssRNA or TLR9 by DNA
(113). pDCs were the first cell type in which LL-37 was shown
to enhance DNA-induced IFN-α responses in a TLR9-dependent
manner (49). Shortly after, a similar finding was done in the
context of ssRNA-LL-37-complexes, which enhanced IFN-α
production in pDCs in a TLR7-dependent manner (98). While
both these processes depend on the stabilization of nucleic
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FIGURE 2 | Cathelicidins influence the response to nucleic acids depending on the cell type. Extracellular nucleotides are an inflammatory signal through various

pathways. Phagocytosis or endocytosis of DNA and/or RNA is required for their delivery to endosomal compartments leads to activation of TLR3 by dsRNA, TLR7/8

by ssRNA, and TLR9 by bacterial or self-DNA. Activation of the TLR response leads to activation of the NFkB and/or IRF transcription factors, an subsequently to

inflammatory cytokine production. Extracellular DNAses and RNAses degrade the nucleotides, which prevents uptake by phagocytic cells and reduces TLR activation

in the endosomal compartements. Cathelicidins can bind to extracellular DNA/RNA to stabilize it and prevent it from degradation by DNAses or RNAses. The uptake

of DNA/RNA-cathelicidin complexes is enhanced and this complex formation enhances TLR9 and possibly TLR7 activation in pDCs (A). The uptake of

DNA-cathelicidin complexes by macrophages (B) or RNA-cathelicidin-complexes by bronchial epithelial cells (C) is enhanced as well, but the cathelicidin is degraded

in order to DNA or RNA to activate their respective TLRs. In keratinocytes, the dsRNA-cathelicidin complex is transported to the endosome and enhances the TLR3

stimulation (D). Black lines: normal signaling or route; red lines: effects exerted by cathelicidins.

acids by LL-37 to allow endocytosis, it was recently shown that
the structural organization of DNA-LL-37-complexes is another
important step in TLR9 activation. Schmidt et al. showed that
DNA, when bound to LL-37, forms columnar complexes where
the spacing between the DNA strands is related to the structure
of the LL-37 molecules. This spacing created by LL-37 is crucial,
as it approximates the width of the TLR9 ectodomain (114, 115).
This ensures that the TLR9 molecules bound to the DNA do not
interfere with each other, as the LL-37-mediated spacing leaves
enough room for binding of other TLR9 molecules to parallel
DNA strands. Furthermore, it was shown that the outside of
the TLR9 ectodomain, which is not in contact with the DNA
bound in the binding pocket, can interact with an adjacent DNA
strand, which improves the binding affinity of the whole DNA-
complex (114). Overall, the compactness of the DNA-induced by
the binding with LL-37 provides an optimal spatial arrangement
for the DNA to bind a high number of TLR9 receptors, which
boosts the downstream signaling and IFN-α release (Figure 2B).
However, similar to the indirect effects of cathelicidins on TLR4
activation, LL-37 could also play a more indirect role in TLR
activation in pDCs. In these cells, autophagy is needed to deliver
viral TLR7 ligands to compartments containing TLRs in order to
induce an antiviral response (116). While LL-37 has not yet been
shown to directly activate autophagy in pDCs, it has been shown
to boost autophagy in other phagocytic cell types. Vitamin D3 for
instance, a potent LL-37 inducer, triggered autophagy in human
macrophages in an LL-37-dependent manner by downregulation
of the PI3K/Akt/mTOR pathway (117–119), which improved the
intracellular killing ofMycobacterium tuberculosis (119).

Macrophages, Conventional Dendritic Cells and B

Cells
Besides pDCs, other cell types, such as macrophages (120, 121),
conventional DCs (cDCs) (122, 123) and B cells (124–126),

express nucleic acid recognizing TLRs. However, in contrast
to pDCs, these cells do not produce IFN-α upon nucleic
acid sensing, but mostly signal through MyD88-dependent
proinflammatory signaling pathways, mainly involving MAPK
and NF-κB (126, 127). B cells show an increased TLR9 activation
upon stimulation with DNA-LL-37-complexes, which results in
enhanced surface expression of activation markers CD40 and
CD86, as well as increased production of IL-6 and IgG (107, 128).
In human cDCs, which express TLR8 but not TLR9, ssRNA-
LL-37 complexes increase the surface expression of CD80 and
CD86 activation markers as well as production of IL-6 and TNF.
Interestingly, IFN-α, derived from pDCs activated by ssRNA-
LL-37-complexes, can further enhance the activation of cDCs by
these same complexes (98).

Similar to B cells, macrophages express TLR9 in endosomal
compartments and induce a proinflammatory response that
includes TNF production upon DNA detection. However, where

LL-37 was shown to improve responses in B cells, it has
a very limited ability to enhance activation of macrophages
toward DNA when tested in murine RAW264.7 macrophages.
Alternatively, cathelicidins from several other species, including

equine CATH-2, chicken CATH-2 and porcine PR-39, but
not murine CRAMP, were able to enhance TNF responses
in these cells (27). Importantly, while TLR9 activation in

pDCs was shown to be dependent on the sustained complex
formation between DNA and LL-37 (114), chicken macrophage
activation by chicken CATH-2-DNA complexes depends on
the actual release of cathelicidin from the DNA within the
endosomal compartment (48). This release was the result of
peptide degradation due to endosomal proteases and was a
requirement for TLR21 activation. Interestingly, while exogenous
CRAMP appears unable to enhance DNA-induced macrophage
responses, endogenous CRAMP expression improves DNA-
induced macrophage activation by upregulating TNF, IL-6 and
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IL-12p40 production, likely due to direct interaction between
DNA, CRAMP and the endosomal TLR9 (129) (Figure 2C).
While macrophage responses toward RNA-LL-37 complexes
are less well-studied, some studies show that stimulation of
RAW264.7 cells or alveolar macrophages with RNA-LL-37
complexes results in reduced IL-6 expression, which indicates
that this complex formation actually has an inhibitory effect on
the activation of TLR3 in these cells (130–132).

Keratinocytes and Epithelial Cells
Keratinocytes are crucial in the protection against skin infections
and are a major source of LL-37 during both infections as well
as wound-healing processes (133–136). The secretion of LL-
37 by these cells strongly contributes to direct antimicrobial
activity in the skin and enhances bacterial internalization by the
keratinocytes (133). Besides acting as an antimicrobial factor, LL-
37 can also influence nucleic acid detection by keratinocytes in
several ways. First of all, whereas keratinocytes normally only
express low levels of TLR9, LL-37 strongly induces the expression
of this TLR in a dose-dependent manner, thereby increasing
the capacity of keratinocytes to respond to endocytosed DNA
(137–139). Secondly, expression of LL-37 during infection or
skin damage gives LL-37 the opportunity to interact with host-
DNA or -RNA released from the damaged tissue and influence
the cellular uptake of these nucleic acids. Interestingly, while
keratinocytes have an increased DNA uptake when DNA is
complexed with LL-37, this DNA does not end up in endosomes,
but in the cytoplasm. This alternative localization could be the
reason why TLR9 cannot be activated by LL-37-DNA-complexes
in keratinocytes, while consecutive stimulation with LL-37 and
DNA does lead to a strong type I IFN response, possibly due
to the increased expression of TLR9 induced by LL-37 (139).
Nevertheless, while LL-37 promotes cytoplasmic uptake of DNA
and many cytoplasmic nucleic acid receptors exist, such as the
inflammasome-activating DNA receptor AIM2, the cytoplasmic
localization of LL-37-DNA-complexes does not lead to activation
of AIM2 nor does it activate the inflammasome-mediated release
of IL-1β. The lack of AIM2 activation could potentially be caused
by steric hindrance by LL-37, which might prevent the binding
of self-DNA to AIM2 (140, 141) and thereby could play a role
in the prevention of autoimmunity. While the studies mentioned
here have mostly focused on the interaction between LL-37 and
host-DNA, the upregulation of TLR9 expression could of course
also influence the detection of bacterial DNA released passively
by dying bacteria or actively during the programmed cell death
during bacterial biofilm formation (142, 143). In contrast to LL-
37-DNA complexes, complexes of LL-37 with dsRNA are in fact
capable of reaching endosomal compartments in both human
epidermal keratinocytes and human bronchial epithelial cells,
which results in the activation of TLR3 (130, 131, 144, 145).
TLR3 activation by RNA-LL-37-complexes depends on different
processes in both cell types. In keratinocytes, complex formation
between LL-37 and the dsRNA provides an RNA structure
where the intercalating LL-37 provides optimal spacing between
RNA molecules to bind a higher number of TLR3 molecules
per RNA molecule, enhancing IFN-β and IL-6 production,
with a similar mechanism as LL-37-DNA-mediated activation of

TLR9 in pDCs. Human bronchial epithelial cells on the other
hand require the dissociation of LL-37 from the LL-37-RNA-
complex to activate TLR3, which is caused by a decrease in
pH and protease activation in endolysosomal compartments.
Degradation of LL-37 then allows the RNA to bind to the TLR3
receptor, which is reminiscent of the mechanism by which TLR21
is activated by CATH-2-DNA complexes in chickenmacrophages
(130, 131) (Figure 2D). Together, all these studies demonstrate
both the complexity by which cathelicidins can influence nucleic
acid-sensing as well as the different requirements that TLR
activation by RNA/DNA-cathelicidin-complexes has depending
on the cell type and species investigated.

LIMITED EFFECTS OF CATHELICIDINS ON
TLR5 ACTIVATION

While the effects of cathelicidins on the previously described
TLRs are well-studied, the influence of cathelicidins on TLR5
activation remains less well-understood. TLR5 detects the
conserved flagellin protein present in the flagella of Gram-
negative bacteria and its activation leads to pro-inflammatory
cytokine production via MyD88- and NF-κB-signaling pathways
(56). Some studies have shown that LL-37 enhances the
flagellin-induced IL-8 secretion by adult human keratinocytes
(93, 146), which was depended on P2X7 receptor signaling
and Scr/Akt pathway activation (146). In human bronchial
epithelial cells, co-incubation of LL-37 and flagellin resulted in
an increased IL-8 and IL-6 secretion (93), regulated via the
PI3K/p38 pathway (147). On the other hand, LL-37 had no or
a slightly inhibitory effect on the flagellin activation in human
dendritic cells (91), macrophages (81), PBMCs (68, 87), or
TLR5-tranfected HEK cells (77) (Figure 1). This shows that the
influence of cathelicidins on TLR5 is highly dependent on the
cell type, although more research is required to understand the
mechanisms underlying these differences.

CATHELICIDINS ACTIVATE THE
INFLAMMASOME VIA P2X7

Another innate immune mechanism involved in sensing
microbe- or damage-related signals involves the inflammasome.
The formation of the inflammasome complex can be triggered by
a diverse set of environmental stimuli, including ATP, cytokines
and TLR ligands, and might be affected by cathelicidins as well.
Inflammasome activation and signaling results in the conversion
of pro-IL-1β and pro-IL-18 into mature IL-1β and IL-18. ATP
is one of most common ligands studied in this respect, triggering
the inflammasome formation via the P2X7 receptor, leading to the
activation of caspase-1 and thereby the cleavage of pro-IL-1β to
active IL-1β (148). However, this P2X7-mediated inflammasome
activation can also be induced by other ligands, such as LL-37.
This has for instance been shown by LL-37 treatment of LPS-
activated monocytes or stimulation of macrophages with both
LL-37 and P. aeruginosa, which in both cases leads to P2X7-
dependent IL-1β release (149, 150). In addition, NET-associated
LL-37 has been found to activate caspase-1 in a P2X7 receptor
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dependent fashion in macrophages, leading to IL-1β and IL-
18 release (151), which provides yet another function for LL-37
in NETs.

THE INFLUENCE OF CATHELICIDINS ON
TLR ACTIVATION IN HEALTH AND
DISEASE

Cathelicidin-Mediated TLR Regulation
Balances the Inflammatory Response to
Bacterial Infection
Cathelicidin-Mediated TLR Regulation in vitro
Cathelicidins are capable of reducing the inflammatory response
of the immune system by inhibiting LPS- or LTA-induced
TLR activation. This reduction is dependent on the direct
interaction between cathelicidins and these lipid-containing
molecules. Until recently, these effects were mostly studied
in the context of purified TLR ligands and little was known
about how cathelicidins affect TLR signaling in the context
of a complete bacterium. However, some recent studies
are now shedding some light on how cathelicidins balance
inflammation in the context of whole bacterial cells. For
instance, human adenocarcinoma colonic epithelial cells
produce higher amounts of LL-37 upon activation, which
prevents internalization of the enteric pathogenic Gram-negative
bacterium S. typhimurium. Alternatively, knockdown of LL-
37 increases Salmonella invasion in enterocytes and allows
for more efficient immune evasion by these bacteria due to
lower TLR4 expression and a reduced IL-1β response (152).
While reducing the invasion and internalization of Salmonella
in colonic epithelial cells, LL-37 enhances the clearance
of Mycobacterium avium subsp. paratuberculosis (MAP), a
bacterium causing chronic diarrheic intestinal infections in
domestic and wild ruminants, by increasing bacterial uptake
in murine macrophages. In addition, macrophage treatment
with LL-37 suppresses TLR2 upregulation and thereby the
production of tissue-damaging inflammatory cytokines released
during MAP infection (153), as well as during A. fumigatus
infection (154).

Besides the ability of cathelicidins to regulate TLR expression
they can also influence bacterial-induced TLR activation through
direct interaction with these bacteria. Importantly, the ability
of cathelicidins to regulate bacterial-induced TLR activation
directly is highly dependent on bacterial viability. For instance,
when cathelicidins such as human LL-37, chicken CATH-2
or porcine PMAP-36 are co-incubated with heat-inactivated
E. coli or P. aeruginosa, they strongly reduce macrophage
responses against these bacteria by blocking TLR2 and TLR4
activation through direct interaction with the lipoproteins
and LPS normally activating these TLRs. However, when
these cathelicidins are co-incubated with live E. coli or P.
aeruginosa, no inhibition is observed as long as these peptides
remain below bactericidal concentrations. Importantly, when
instead bactericidal concentrations are used, inhibition of
macrophage activation can be observed again. Alternatively,
using cathelicidins that lack antimicrobial activity, but possess

LPS-neutralizing activity, such as the canine K9CATH, it was
shown that these peptides can in fact reduce macrophage
activation in the context of killed bacteria, but not in the
context of viable bacteria (73, 77, 92). This viability-dependent
regulation of TLR activation provides an elegant way for the
host to respond to bacterial molecules only when needed. At
the start of an infection, activation of the immune system leads
to the production and release of cathelicidins and cytokines
from both macrophages and neutrophils at the site of infection.
These cathelicidins will target and fight the bacteria to reduce
the bacterial burden at the site of infection. During this
phase, cathelicidins will only be able to neutralize the LPS-
and lipoprotein-induced inflammatory responses against already
killed bacteria, while still allowing a response against any
remaining viable bacteria. This leads to a balancing act, where
a reduction or increase of viable bacteria, i.e., a reduced or
increased threat, also leads to a corresponding reduced or
enhanced inflammatory response. Therefore, this cathelicidin-
mediated regulation based on bacterial viability could be an
important factor in maintaining a proportional inflammatory
response based on the present bacterial threat and thereby
limiting excessive inflammation which can lead to unwanted
tissue damage (Figure 3).

Cathelicidin-Mediated TLR Modulation in vivo
While the strong antimicrobial potential of cathelicidins has
driven the in vivo testing of these peptides, many studies
have also investigated how these peptides influence immune
activation during infection. A common tool for testing the
effects of cathelicidins on infection and inflammation in vivo
is the clnp-null mouse model, which lacks the expression of
the only murine cathelicidin CRAMP. Using this model, it
has been shown that mice lacking cathelicidin expression were
more prone to necrotic skin infection caused by Group A
Streptococcus (155), P. aeruginosa infection of the cornea (50),
S. aureus-induced endophthalmitis (156), cecal-ligation and
puncture-induced sepsis (157), dextran sulfate sodium (DSS)-
induced colitis (158), K. pneumoniae-induced lung infection
(159), caerulein-induced experimental acute pancreatitis (160)
and meningitis-induced by intracerebral injection S. pneumoniae
(161, 162). In general, these CRAMP-deficient mice suffered
from a higher bacterial load, increased proinflammatory cytokine
production and increased tissue damage. In addition, two studies
also reported an increased influx of neutrophils in clnp-null
mice (50, 162). These findings indicate the importance of
cathelicidins not only in reducing the pathogenic burden during
infections, but also their importance in limiting inflammation.
Similarly, alternative models relying on exogenous treatment
with cathelicidins, or transgenic overexpression of LL-37, show
comparable results. For instance, intravenous administration of
LL-37 in a cecal-ligation and puncture-induced sepsis mouse
model improved the survival of these mice and reduced the
bacterial load in the blood and peritoneum. In addition, LL-
37 reduced the levels of several proinflammatory cytokines in
the peritoneal fluids as well as in the serum, despite causing an
increase in NET formation by neutrophils (163, 164). In a similar
fashion, intratracheal treatment of A. fumigatus-instilled mice
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FIGURE 3 | Cathelicidins balance the immune response to bacteria. Live bacteria activate various TLRs through their MAMPs, leading to NFkB and AP-1 activation

and inflammatory signaling. Bacteria killed by for example UV, heat or gentamycin still activate these TLRs. Addition of cathelicidins to viable bacteria does not inhibit

TLR activation; however, cathelicidin-killed bacteria or addition of cathelicidins to non-viable bacteria strongly inhibits TLR activation. This silent killing reduces the

inflammatory response and thereby the subsequent inflammatory tissue damage when the bacteria are already killed and are no longer a threat. Black lines: normal

signaling; red lines: effects exerted by cathelicidins.

with exogenous LL-37, as well as transgenic overexpression of
LL-37, causes enhanced fungal clearance, reduced lung damage
and less proinflammatory cytokine production (154). Taken
together, all these studies show a potent antimicrobial and anti-
inflammatory role for cathelicidins during both bacterial and
fungal infections. However, despite the cathelicidin-related anti-
inflammatory effect seen in many of these studies, it remains
difficult to distinguish if these anti-inflammatory effects can
be partially caused by direct TLR inhibition or by alternative
immunomodulation or that the effects can be explained by
a lower bacterial burden due to the antimicrobial activity of
these cathelicidins.

In an effort to separate these effects, several studies
have now used different types of inactivated bacteria to
investigate the direct anti-inflammatory role of cathelicidins
in vivo. For instance, inflammatory responses induced by
intratracheal administration of heat-inactivated P. aeruginosa

or S. aureus isolates in mice can be inhibited by co-
administration or post-administration of chicken CATH-2

(73, 165). In addition, intratracheal administration of chicken

CATH-2-killed P. aeruginosa induces less neutrophil influx
and inflammatory cytokine production compared to either
administration of heat-killed or gentamicin-killed P. aeruginosa
(73). These findings indicate that it is likely that the reduction
in inflammatory markers observed upon treatment of a bacterial
infection with cathelicidins, is not only the result of a
reduced bacterial burden due to antimicrobial activity but is
indeed also affected by direct inhibition of immune activation
by cathelicidins.

Nucleic Acid-Cathelicidin Complexes Can
Lead to Autoimmune Disease
Cathelicidins have been extensively described for various
protective functions that are beneficial for host survival.
These functions include their direct antimicrobial activity
against Gram-positive and Gram-negative bacteria (27, 74, 166),
inhibition of viral replication (132) or direct antiviral activity
(167), promotion of wound healing (110) as well as their ability to
modulate immune responses (15, 37, 71), which has been shown
to protect against excessive inflammation (77). However, their
ability to improve nucleic acid detection may also lead to the
onset of various autoimmune diseases.

The pathways leading to excessive inflammation in
autoimmune diseases are often complex and involve numerous
cell types. For SLE, psoriasis and diabetes, these processes
most likely start with some type of tissue damage that initiates
TLR signaling and autoimmune inflammation (49, 54, 168).
In diabetes, cell death of the insulin producing β-cells of the
pancreas initiates a cascade that leads to more cell death and
subsequently more inflammation (54). In SLE and psoriasis,
anti-DNA and -RNA antibodies can be found that most likely
are the result of DNA released upon tissue damage and play an
important role in the exacerbation of these diseases (168, 169). In
2007, Lande et al. were first to link these processes to cathelicidins
by describing how LL-37 enhances DNA-induced inflammation
in psoriatic skin lesions (49). In these lesions, the release of DNA
and RNA from damaged tissue binds LL-37 (49, 98), which is
expressed at extremely high concentrations (up to 300µM) by
either keratinocytes or neutrophils under these conditions (26).
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These complexes then stimulate pDC-derived IFN-α production
that subsequently drives the activation of cDCs and T cells, which
in turn exacerbate the tissue damage (98). In addition, enhanced
activation of B cells by DNA-LL-37 complexes also increases
the production of anti-DNA antibodies (128). In diabetes, the
complex formation of these anti-DNA antibodies with DNA
and CRAMP triggers pDC activation, which again leads to high
IFN-α production. These high levels of IFN-α in turn increase
T cell activation and thereby autoreactivity against pancreatic β-
cells (54). Other complexes that can increase auto-inflammation
include RNA-LL-37 complexes. These trigger TLR8-mediated
cytokine production and can induce neutrophil NETosis in
psoriatic skin (170). Similarly, anti-RNA immunocomplexes
were shown to activate neutrophil NETosis in SLE, which
results in the release of additional NET-derived DNA into the
extracellular environment (168). Importantly, as these NETs are
coated with both LL-37 and anti-DNA antibodies, they can serve
as new ligands for pDC activation and thus IFN-α production,
which leads to a further exacerbation of the inflammatory
response (169).

Cathelicidins as Adjuvant for Vaccination
Vaccination strategies aim to induce a modest immune response
against one or more specific pathogens, in order for a host
to be able to respond with a humoral response toward such
pathogens when they are encountered later in life. To induce
such a specific immune response, vaccination therapies require
one or more antigens in the form of whole live, inactivated
or attenuated viruses or bacteria, or alternatively, specific
microbial components, such as outer membrane vesicles or
specific viral or bacterial proteins. However, as not all antigens
can stimulate the immune system sufficiently to build an
immune memory, adjuvants, including several TLR agonists,
are commonly used to improve the strength of the immune
response during vaccination. Since cathelicidins can modulate
these TLR responses, their possible role as adjuvant during
vaccinations has been investigated in various studies. For
instance, intranasal vaccination with attenuated pseudorabies
virus (PRV), complexed with CpG-DNA and a bactenecin-
derived innate defense regulator (IDR) peptide, resulted in an
enhanced protection of piglets (171). Similarly, the combination
of an IDR peptide and CpG-DNA as adjuvants for a pertussis
toxoid vaccine improved in vitro DC maturation, cytokine
production and expression of surface activation markers, while
also enhancing in vivo antigen presentation and specific IgG1 and
IgG2a antibody titers (172, 173). While the mechanisms behind
these improved responses are hard to discern, improvement
of DNA-induced TLR9 responses by these peptides could very
well play a role in this. On the other hand, cathelicidins have
also been shown to improve vaccination responses toward
various viral pathogens in the absence of CpG-DNA as an
adjuvant. Intramuscular or intranasal administration of piglets
with inactivated porcine reproductive and respiratory syndrome
virus (PRRSV) microparticles complexed with an IDR peptide
or LL-37 enhanced the response toward the antigens in vitro;
however, in vivo only little improvement in vaccination efficacy
was observed (132). In addition, intranasal vaccination of mice

using a nanoparticle-based vaccine for an H1N1-ovalbumin
influenza virus, also benefits from IDR peptides as adjuvant,
which together with c-di-AMP, induced a strong humoral and
cellular immune response (174). Furthermore, subcutaneous
vaccination of mice with the HPV E7 epitope of human
papillomavirus (HPV) using CRAMP as adjuvant, reduced
HPV-induced tumor growth (175). Finally, besides their effect
on anti-viral vaccinations, IDR peptides were also shown to
improve vaccination efficiency against other types of pathogens.
This includes intravenous administration of an IDR peptide as
an adjunctive therapy for an oral administered anti-malarial
therapy, which strongly enhanced the protection against late-
stage malarial infection in mice (176). Alternatively, using an
IDR peptide as adjuvant resulted in a balanced increase in IgG1
and IgG2a antibody titers upon subcutaneous vaccination of
beef calves, using a mix of Mycoplasma bovis subunits and IDR
peptide. However, in this last study it is unclear whether this is
due to the addition of the IDR peptide, since a control without
IDR peptide is missing (177). Together, these results indicate
the potential usefulness of cathelicidins and other similar host
defense peptides in vaccination therapies; however, more detailed
studies will be required to discriminate the contribution of
direct immunomodulatory activities from the TLR-modulatory
activities of these peptides in such vaccination therapies.

Cathelicidins as Anticancer Therapy
Besides their role in inflammation, both cathelicidins and TLRs
play an important role in the development and progression
of cancer. TLR2 activation for instance, has been suggested
as a possible therapeutic target, with local administration of
a TLR2/6 agonist resulting in reduced tumor growth and
prolonged survival in a pancreatic carcinomamousemodel (178).
Alternatively, TLR9 activation by CpG-ODN has been shown
to reduce metastasis and improve survival in pancreatic cancer
(179) and neuroblastomamousemodels (180). As LL-37 has been
shown to improve DNA-induced TLR9 activation, it might not
be surprising that co-administration of CpG-ODN and LL-37
enhanced survival in a mouse ovarian-tumor model compared
to CpG-ODN alone and that the LL-37-CpG-ODN combination
enhanced the activation and proliferation of NK-cells, but not of
T cells or macrophages, in the peritoneal cavity (181). On the
other hand, inhibition of LPS-induced TLR4 activation reduces
the migration and invasion capacity of the SW480 cancer cell
line (182) and reduces pancreatic tumorigenesis in mice (183).
While not specifically tested with cathelicidins, peptides such
as LL-37 could also provide efficient inhibition of TLR4 and
could thereby be of therapeutic value in tumors which have
strongly enhanced TLR4 expression, for example numerous
ovarian epithelial cancers (184). Furthermore, cathelicidins can
also have beneficial anti-cancer effects in the absence of specific
TLR ligands. In gastric or colon tumors, where the expression of
LL-37 is reduced (185), treatment with LL-37 activates caspase-
independent apoptosis and reduces tumor progression (186).
Additionally, the application of CRAMP as adjuvant for HPV
vaccination reduces tumor growth, albeit no direct anti-tumor
effects of CRAMP were observed when used to treat HPV-
induced tumors (175).
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Nevertheless, overexpression of LL-37 has also been linked
to increased tumor growth, enhanced invasiveness and bad
prognosis in malignant melanomas and ovarian, lung, prostate
and breast cancers, by stimulating the growth receptors of
the EGFR and ERB-family (187). In addition, increased TLR
expression in ovarian and pancreatic cancers is associated with
poor clinical outcome (188, 189). Together, this shows that
cathelicidins, either directly or through modulation of TLR
activation, can be useful in the development of novel anti-
cancer therapies, but that the potential negative effects of these
peptides should not be overlooked. In this respect, modification
of synthetic cathelicidin-like peptides could provide a solution
to these issues, by structurally improving the peptide to increase
desirable effects while at the same time limiting unwanted
side effects.

CONCLUSION AND OUTLOOK

The fact that cathelicidins are a highly conserved part of
the innate immune system in vertebrates, together with their
apparent multifunctional nature, has led to a large interest
in these peptides across various disciplines, including e.g.,
microbiology, immunology, oncology and dermatology. This
multidisciplinary approach has uncovered a wide variety of
effects that these peptides can exert. However, the potency
of these different effects can vary strongly. Among their
immunoregulatory functions, the regulation of TLR activation
can be counted among their more potent functions, with
cathelicidins being able to strongly reduce LPS- or LTA- induced
TLR activation and almost completely inhibiting TLR-mediated
inflammatory responses when they kill bacteria. On the other
hand, DNA can be transformed from a quickly degradable
extracellular factor into a very potent inflammatory signal in
the context of various auto-immune diseases. While direct
interaction between cathelicidins and TLR ligands in most
of these cases plays an important role in regulating TLR
activation, more research is required to uncover the more

complex direct effects of cathelicidins on signaling pathways
such as the induction of autophagy. Autophagy can play a

role in an enormous set of different intracellular pathways.
Activation of autophagy by cathelicidins could also have a major
impact on TLR signaling besides those effects mentioned in this
review. Importantly, while cathelicidins are conserved among
vertebrates, the amino acid composition and 3D structure of the
mature peptides vary a lot. This means that one should be careful
to extrapolate findings between different cathelicidins without
supporting laboratory evidence.

Finally, the literature discussed in this review shows that
cathelicidins could have strong prophylactic and therapeutic
value aside from their antimicrobial activities. This includes
dampening inflammation when treating infections to prevent
sepsis as well as improving vaccine responses through an
improved immune response against target antigens. In
addition, it has been shown using structurally modified
cathelicidins that certain functions can be enhanced or,
alternatively, be limited. Thus, cathelicidin derivatives can be
designed with specific therapeutic properties while limiting
any unwanted side effects. Overall, it may be concluded that,
despite the fact that cathelicidins have been discovered
nearly 30 years ago, the elucidation of new properties
and functions in recent years continues to provide more
insight in the physiological roles and potential applications
of cathelicidins.
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