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Abstract: QO-58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazolol[1,5-
a]pyrimidin-7-one) has been regarded to be an activator of KV7 channels with analgesic properties.
However, whether and how the presence of this compound can result in any modifications of other
types of membrane ion channels in native cells are not thoroughly investigated. In this study, we
investigated its perturbations on M-type K+ current (IK(M)), Ca2+-activated K+ current (IK(Ca)), large-
conductance Ca2+-activated K+ (BKCa) channels, and erg-mediated K+ current (IK(erg)) identified from
pituitary tumor (GH3) cells. Addition of QO-58 can increase the amplitude of IK(M) and IK(Ca) in a
concentration-dependent fashion, with effective EC50 of 3.1 and 4.2 µM, respectively. This compound
could shift the activation curve of IK(M) toward a leftward direction with being void of changes in
the gating charge. The strength in voltage-dependent hysteresis (Vhys) of IK(M) evoked by upright
triangular ramp pulse (Vramp) was enhanced by adding QO-58. The probabilities of M-type K+

(KM) channels that will be open increased upon the exposure to QO-58, although no modification
in single-channel conductance was seen. Furthermore, GH3-cell exposure to QO-58 effectively
increased the amplitude of IK(Ca) as well as enhanced the activity of BKCa channels. Under inside-out
configuration, QO-58, applied at the cytosolic leaflet of the channel, activated BKCa-channel activity,
and its increase could be attenuated by further addition of verruculogen, but not by linopirdine
(10 µM). The application of QO-58 could lead to a leftward shift in the activation curve of BKCa

channels with neither change in the gating charge nor in single-channel conductance. Moreover,
cell exposure of QO-58 (10 µM) resulted in a minor suppression of IK(erg) amplitude in response to
membrane hyperpolarization. The docking results also revealed that there are possible interactions
of the QO-58 molecule with the KCNQ or KCa1.1 channel. Overall, dual activation of IK(M) and
IK(Ca) caused by the presence of QO-58 eventually may have high impacts on the functional activity
(e.g., anti-nociceptive effect) residing in electrically excitable cells. Care must be exercised when
interpreting data generated with QO-58 as it is not entirely KCNQ/KV7 selective.

Keywords: QO-58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazolol[1,
5-a]pyrimidin-7-one; 5-(2,6-dichloro-5-fluoro-3-pyridinyl)-3-phenyl-2-(trifluoromethyl)-pyrazolo[1,
5-a]pyrimidin-7(4H)-one); M-type K+ current; voltage-dependent hysteresis; M-type K+ channel;
Ca2+-activated K+ current; large-conductance Ca2+-activated K+ channel

1. Introduction

QO-58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazol-
ol[1,5-a]pyrimidin-7-one) has been demonstrated previously to be an opener of KCNQx
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(KV7x) channel [1–4]. It has been reported that this compound could increase the pain
threshold of neuropathic pain in a rat model (i.e., chronic constriction injury of the sci-
atic nerve) [2]. It could also exercise anti-nociceptive action on inflammatory pain in
rodents [5,6]. The ameliorating effects of this compound have been viewed to be closely
linked to its activation of KCNQ (KV7) channels [4,7,8]. However, QO-40 (5-(chloromethyl)-
3-(nathphalen-1-yl)-2-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-7(4H)-one), a compound
structurally similar to QO-58, has been noticeably reported to stimulate the activity of large-
conductance Ca2+-activated K+ (BKCa) channels [9]. Therefore, whether and to what extent
QO-58 is able to modify the amplitude or gating kinetics on different types of membrane
ion currents remain to be not thoroughly explored.

It has been demonstrated that the KCNQ2, KCNQ3, or KCNQ5 encodes the core
subunit of KV7.2, KV7.3, or KV7.5 channel. The enhanced activity of this family of voltage-
gated K+ channels (KCNQx, KV7x, or KM [M-type K+] channels) can generate macroscopic
M-type K+ current (IK(M)), which is biophysically characterized by current activation upon
low-threshold voltage [10,11]. Once being evoked during membrane depolarization, this
type of K+ currents, which is susceptible to block by linopirdine, has been disclosed
to exhibit a slowly activating and deactivating property as well to affect the bursting
patterns in different types of neurons, and endocrine or neuroendocrine cells [12–20].
Moreover, targeting IK(M) has been growingly thought to be an adjunctive regimen for the
management of varying neurological, smooth muscle, or endocrine disorders which are
closely linked to membrane hyperexcitability. These disorders include neuropathic pain
and epilepsy [4,11,19,21–34]. A series of pyrazolopyrimidines or several botanical folk
medicines have been also recently demonstrated to be KCNQ channel modulators [35,36].
KCNQ2/3 has been previously shown to be functionally active in different types of pituitary
cells [15,29,37–39]. As such, whether and how the QO-58 can modulate the magnitude,
gating, and voltage-dependent hysteresis (Vhys) of IK(M) residing in different types of
electrically excitable cells are worthy of being further investigated.

The big-, high-, or large-conductance Ca2+-activated K+ (BKCa or BK) channels (KCa1.1,
KCNMA1, Slo1) belong to a family of voltage-activated K+ channels, and their activity
can be increased by the elevation of intracellular Ca2+, membrane depolarization, or both.
Due to its high conductance, the BKCa channel is hence regarded as a maxi- or large-K+

channel. The activity of these channels is abundantly and functionally distributed in
an array of excitable and non-excitable cells. The regulation of such activity can play
essential roles in various physiological or pathophysiological events, such as membrane
excitability, neurotransmitter release, stimulus-secretion coupling, muscle relaxation, and
pain sensation [40–46]. Moreover, some small molecules, such as BMS-204352, naringenin
and QO-40, have been reported to activate IK(M) as well as to enhance the activity of BKCa
channels in excitable cells [9,47,48].

The erg (ether-à-go-go related gene)-mediated K+ current (IK(erg)), the components for
which are encoded by three different subfamilies of the KCNH gene, is able to generate the
pore-forming α-subunit of erg-mediated K+ (i.e., Kerg or KV11) channels [49]. The IK(erg) is
intrinsically present in different types of excitable cells. It can be engaged in the maintenance
of resting potential and in modifications of the subthreshold excitability [50,51]. Whether
the presence of QO-58 changes the magnitude of this type of K+ current is largely unknown.

Therefore, the overall objective of this study was to explore possible underlying mech-
anism of QO-58 actions on different ionic currents (e.g., IK(M), IK(Ca), and IK(erg)) present
in excitable cells (e.g., pituitary GH3 somatolactotrophs). The investigations obtained
in this study showcase the evidence demonstrating that QO-58 is capable of interacting
with KM or BKCa channels to stimulate the amplitude of IK(M) or IK(Ca), respectively, in a
concentration-dependent manner in these cells. In addition to the activation of M-type K+

(KM, KCNQ or KV7) channels, QO-58-mediated activation of BKCa-channel activity is likely
to converge to act on the functional activities of different types of excitable cells.
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2. Results
2.1. Stimulatory Effect of QO-58 on M-Type K+ Current (IK(M)) Recorded from Pituitary
GH3 Cells

In an initial stage of experiments, we wanted to test if the exposure to QO-58 produced
any adjustments on the magnitude of IK(M) identified in these cells. To amplify IK(M)
amplitude [31,52], we used high-K+ (145 mM), Ca2+-free solution as a bathing medium,
and the recording pipette was filled up with a K+-containing solution. As illustrated in
Figure 1, one minute after addition of QO-58 (1 or 3 µM), the IK(M) magnitude evoked
in response to 1-s depolarizing step from −50 to −10 mV progressively increased. For
example, under cell exposure to 3 µM QO-58, IK(M) amplitude was evidently increased, as
demonstrated by a considerable raise in the amplitude to 201 ± 26 pA (n = 8, p < 0.05) from
a control value of 118 ± 19 pA (n = 8). The QO-58-mediated increase in IK(M) observed
herein was also accompanied by the fastened activation time course of the current, as
demonstrated by a shortening in the value of activation time constant (τact) from 68 ± 8 to
22± 4 ms (n = 8, p < 0.05) during exposure to 3 µM QO-58. After washout of QO-58, current
amplitude returned to 122± 21 pA (n = 8, p < 0.05). Moreover, QO-58-mediated stimulation
of IK(M) was attenuated by further addition of thyrotropin releasing hormone (TRH, 1 µM)
or linopirdine (10 µM), but not by iberiotoxin (200 nM). The results were demonstrated by
a decrease of current amplitude during further exposure to 1 µM TRH or 10 µM linopirdine
to 125 ± 21 pA (n = 8, p < 0.05) or 127 ± 21 pA (n = 8, p < 0.05), respectively. TRH or
linopirdine was reported to suppress IK(M) effectively in pituitary lactotrophs [18,31,49],
while iberiotoxin is known to block large-conductance Ca2+-activated K+ (BKCa) channels.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 19 
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box in the upper part. (B) Concentration-dependent stimulation of QO-58 effect on the amplitude 
of IK(M) (mean ± SEM; n = 8 for each point). Current amplitudes during cell exposure to different QO-
58 concentrations were measured at the end of depolarizing pulse from −50 to −10 mV with a dura-
tion of 1 s. Sigmoid smooth curve indicates best fit to a modified Hill function described in Section 
4. 
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Figure 1. QO-58-induced stimulation of M-type K+ current (IK(M)) recorded from pituitary GH3

cells. In these experiments, we placed cells in high-K+ (145 mM), Ca2+-free solution that contained
1 µM tetrodotoxin (TTX) and 0.5 mM CdCl2 and the electrodes that we used were filled up with a
K+-containing solution. (A) Superimposed current traces obtained in the control period (a), during
cell exposure of 1 µM QO-58 (b) or 3 µM QO-58 (c), and washout of QO-58 (d). The top part indicates
the voltage-clamp protocol applied, while the lower part is an expanded record from purple dash box
in the upper part. (B) Concentration-dependent stimulation of QO-58 effect on the amplitude of IK(M)

(mean ± SEM; n = 8 for each point). Current amplitudes during cell exposure to different QO-58
concentrations were measured at the end of depolarizing pulse from −50 to −10 mV with a duration
of 1 s. Sigmoid smooth curve indicates best fit to a modified Hill function described in Section 4.
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The relationship between the QO-58 concentration and the percentage increase of
IK(M) was ascertained and is hence illustrated in Figure 1B. To evoke IK(M) obtained in the
control period (i.e., absence of QO-58) and during cell exposure to different concentrations
(1–300 µM) of QO-58, each cell was depolarized from −50 to −10 mV with a duration of
1 s. Addition of QO-58 was noticed to increase the amplitude of IK(M) in a concentration-
dependent fashion. As the data became least-squares fitted to a Hill function as stated
in Section 4, the half-maximal concentration (i.e., EC50) required for stimulatory effect of
QO-58 on IK(M) was calculated to be 3.1 µM. The data from this set of experiments reflect that
QO-58 has a stimulatory effect on IK(M) in GH3 cells in a concentration-dependent manner.

2.2. Effect of QO-58 on Average Current Versus Voltage (I-V) Relationship and Steady-State
Activation Curve of IK(M)

We next continued to study if the presence of QO-58 can modify the IK(M) amplitude
measured at different levels of membrane potentials. The average I-V relationship of IK(M)
with or without the QO-58 application is illustrated in Figure 2A. The current amplitude
noticeably arose as the membrane potential became depolarized to −30 mV, and the
magnitude of QO-58-stimulated IK(M) at the level of −10 mV was higher than that at −20
or −30 mV. The relationship of relative IK(M) conductance versus membrane potential
acquired in the control period (i.e., QO-58 was not present) and during cell exposure to
3 µM QO-58 was constructed (Figure 2B). The continuous sigmoidal curve derived from
experimental data sets was optimally fitted with a modified Boltzmann function (described
in Section 4). In control, V1/2 = −18.3 ± 0.7 mV (n = 8), q = 6.2 ± 0.2 e (n = 8), and in the
presence of 3 µM QO-58, V1/2 = −28.5 ± 0.8 mV (n = 8), q = 6.1 ± 0.2 e (n = 8). The results
enabled us to reflect that in addition to increasing IK(M) conductance, the presence of QO-58
could exert a leftward shift (approximately 10 mV) along the voltage axis in the activation
curve of the current, albeit with no change in the gating charge of the activation curve.
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Figure 2. Effect of QO-58 on the current versus voltage (I-V) relationship (A) and the activation curve
(B) of IK(M). The experimental protocol applied is the same as that used in Figure 1. (A) Average I-V
relationship of IK(M) amplitude acquired in the control period (i.e., absence of QO-58, solid black
squares) and during cell exposure to 3 µM QO-58 (open red circles). (B) Steady-state activation
curve of IK(M) in the absence (solid black squares) and presence (open red circles) of 3 µM QO-58
(mean ± SEM; n = 8). Smooth curves drawn were optimally fitted to a modified Boltzmann function
as elaborated in Section 4. Of note, there is a leftward shift along the voltage axis in the quasi-steady-
state activation curve of IK(M) in QO-58 presence, despite being void of changes in the gating charge
of the curve.

2.3. Effect of QO-58 on IK(M) Triggered by Triangular Ramp Pulse (Vramp) with Varying Durations

Earlier reports have shown the capability of IK(M) strength to modulate the patterns
of bursting firing in central neurons [13,15–17,20]. Therefore, we continued to evaluate
how the presence of QO-58 could have any perturbations on IK(M) responding to upright
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triangular Vramp with varying durations. These Vramp waveforms were specifically de-
signed and, during the measurements, thereafter, delivered to the tested cell through
digital-to-analog conversion. In the current experimental scenario, we voltage-clamped
the cell at −50 mV, and the upsloping (forward) limb from −50 to 0 mV followed by the
downsloping (reverse) limb back to−50 mV with varying duration (0.4–3.2 s) was imposed
over it. As demonstrated in Figure 3, the peak amplitude of IK(M) became progressively
declined with increasing the Vramp’s duration (or decreasing the Vramp’s speed); however,
as the Vramp’s slope decreased, the maximal strength of IK(M) triggered by the upsloping
limb of triangular Vramp progressively increased. Moreover, it can be seen that under cell
exposure to 3 µM QO-58, the current magnitude responding to both rising and falling Vramp
was increased (Figure 3A,B). For example, as the during of triangular Vramp was set at 3.2 s
(i.e., slope = 31.25 mV/s), the application of 3 µM QO-58 increased the current amplitude
measured from the upsloping or downsloping limb at the level of −10 mV from 63 ± 4
to 81 ± 5 pA (n = 8, p < 0.05) or from 91 ± 6 to 148 ± 11 pA (n = 8, p < 0.05), respectively.
The experimental observations project that the strength of IK(M) in the upsloping limb
was obviously increased as the duration of triangular Vramp increased, while that in the
downsloping end progressively decreased, and that the presence of QO-58 contributed to
an increase in IK(M) in a time- and state-dependent manner in GH3 cells.

The voltage-dependent hysteresis (Vhys) of ionic currents have been growingly noticed
to exert important impacts on electrical behaviors of action potential firing [29,31,53,54]. As
illustrated in Figure 3A,B, the IK(M) amplitude triggered by the upsloping limb of upright
triangular Vramp was evidently lower than that by the downsloping end, strongly reflecting
that a Vramp-induced Vhys behavior resides in IK(M) observed in GH3 cells. As the duration
of triangular Vramp increased from 0.4 to 3.2 s (i.e., the Vramp’s slope became decreased),
the Vhys degree was reduced. Of notice, by adding QO-58 (3 µM), IK(M) evoked during
the upsloping limb of triangular Vramp arose to a less extent than that measured at the
downsloping ramp. For example, in control period (i.e., absence of QO-58), IK(M) at the level
of−15 mV during the upsloping and downsloping ends of triangular Vramp were 53± 6 pA
(n = 8) and 91 ± 8 pA (n = 8), respectively, the values between which were noticed to differ
significantly (p < 0.05). Moreover, by adding QO-58 (3 µM), the amplitudes of forward
and backward IK(M) at the same level of voltage noticeably increased to 69 ± 7 pA (n = 8,
p < 0.05) and 138 ± 11 pA (n = 8, p < 0.05), respectively. Therefore, the magnitude of QO-58-
mediated current stimulation at the upsloping (forward) and downsloping (backward)
limbs of triangular Vramp differ significantly. The presence of 3 µM QO-58 increased IK(M)
amplitude at −15 mV during the upsloping or downsloping limb of triangular Vramp by
about 16% or 52%, respectively.

We further quantified the degree (i.e., Vhys’s ∆area) of Vramp-induced Vhys of IK(M).
The results demonstrated that the amount of Vhys responding to 3.2 s triangular Vramp was
considerably increased in the presence of QO-58. Figure 3C summarizes the data demon-
strating the effects of QO-58 (1 or 3 µM) on the area encircling the forward and backward
current trajectory of Vramp-evoked IK(M). For example, in addition to its stimulation of
IK(M) amplitude, cell exposure of 3 µM QO-58 resulted in an increase in the Vhys strength
responding to long-lasting triangular Vramp, as illustrated by a considerable increase in
Vhys’s ∆area arising from 508± 26 to 939± 41 mV·pA (n = 8, p < 0.05). Moreover, during the
continued exposure to 3 µM QO-58, subsequent exposure to 10 µM linopirdine appreciably
attenuated the ∆area to 612 ± 33 mV·pA (n = 8, p < 0.05). Linopirdine was reported to be a
blocker of KM channels [18]. It is plausible to assume, therefore, that QO-58 is effective in
stimulating IK(M) residing in GH3 cells in a Vhys-dependent manner.
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Figure 3. Effect of QO-58 on IK(M) in response to an upright isosceles-triangular ramp pulse (Vramp)
observed in GH3 cells. The Vramp with different durations (0.4–3.2 s) (or with ramp speed between
±31.25 and ±250 mV/s) was designed to mimic different depolarizing and repolarizing slopes
in bursting patterns of neuronal firing. (A) Representative IK(M) traces in response to the double-
pulse Vramp in the absence (upper) and presence (lower) of 3 µM QO-58. The voltage protocol
used is indicated in the uppermost part, and voltage waveforms appearing in different colors are
indicated to correspond with current traces evoked by the waveforms. (B) Effect of QO-58 (3 µM) on
voltage-dependent hysteresis (Vhys) (i.e., the relationship of forward and backward current versus
membrane voltage) of IK(M) evoked by triangular Vramp with a duration of 3.2 s. Black or red current
trajectory indicates the absence or presence of 3 µM QO-58, respectively. The direction of IK(M) in
which time passes during the elicitation by 3.2 s triangular Vramp is indicated by dashed arrows.
(C) Summary scatter graph showing the effect of QO-58 on the Vhys’s ∆area (mean ± SEM; n = 8 for
each point). ∆area means the area encircling the forward (upsloping) and backward (downsloping)
limbs of current trajectory evoked by Vramp. * Significantly different from control (p < 0.05), and
** significantly different from 3 µM QO-58 alone group (p < 0.05).

2.4. Effect of QO-58 on M-Type K+ Channel (KM) Channels Measured from GH3 Cells

The QO-58-stimulated whole-cell IK(M) detected above in these cells could arise from
changes occurring in either channel open probability, single-channel amplitude, gating
kinetics, or the number of KM channel. The reasons therefore enabled us to investigate the
single-channel recordings of the channel with or without the presence of QO-58. In this set
of cell-attached current recordings, we placed cells in high-K+, Ca2+-free solution, and the
recording pipette was filled with low-K+ (5.4 mM) solution. As demonstrated in Figure 4A,
when the examined cell was maintained at +20 mV relative to the bath, the activity of single
KM channel was robustly observed [31,55]. Of particular interest, as QO-58 was applied to
the bath, the probabilities of KM-channel openings progressively increased. For example,
the presence of 3 µM QO-58 significantly increased the channel open probability from
0.087 ± 0.021 to 0.238 ± 0.041 (n = 8, p < 0.05); however, there was devoid of changes in
single-channel amplitude (Figure 4B). Moreover, in continued presence of 3 µM QO-58,
linopirdine (10 µM) resulted in an attenuation of QO-58-stimulated channel activity, as
demonstrated in a significant reduction in channel activity to 0.164 ± 0.025 (n = 8, p < 0.05).
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Figure 4. Stimulatory effect of QO-58 on the activity of M-type K+ (KM) channels recorded from
GH3 cells. In this series of cell-attached current recordings, cells were bathed in high-K+, Ca2+-free
solution, and we filled up the recording pipette with low-K+ (5.4 mM) solution. (A) Representative
single KM channels in the control period (upper) and during cell exposure to 1 µM QO-58 (middle) or
3 µM QO-58 (lower). The channel activity in the absence or presence of QO-58 was taken at the level
of +20 mV relative to the bath. The upward deflection indicates the opening event of the channel.
(B) Amplitude histogram taken in the absence (left) and presence (right) of 3 mM QO-58. (C) Average
I-V relationship of single KM channels in the absence (solid black squares) and presence (open red
circles) of 3 µM QO-58 (mean± SEM; n = 8 for each point). Of note, the linear relationship of KM channels
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versus ∆voltage was superimposable between the absence and presence of QO-58; hence, the single-
channel conductance of the channel between the absence and presence of 3 µM QO-58 did not differ.
(D) Summary scatter graph showing effect of QO-58 (1 and 3 µM) and QO-58 (3 µM) plus linopirdine
(Lino, 10 µM) on the probability of KM channels that would be open (mean ± SEM; n = 8 for each
point). Channel activity was measured at +20 mV relative to the bath. * Significantly different from
control (p < 0.05) and ** significantly different from QO-58 (3 µM) alone group (p < 0.05).

2.5. Effect of QO-58 on the Single-Channel Conductance and Activation Curve of KM Channels

We further examined if KM-channel activity measured at different levels of membrane
potentials could be altered by the presence of QO-58. As demonstrated in Figure 4C, the
single channel conductance of KM channels achieved with or without application of QO-58
did not significantly differ (27 ± 3 pS [in control] versus 28 ± 3 pS [in the presence of 3 µM
QO-58]; n = 8, p > 0.05), despite the increased probability of KM-channel openings in its
presence. A summary showing effects of QO-58 and QO-58 plus linopirdine on KM-channel
activity in GH3 cells is also presented in Figure 4D. The results led us to reflect that as
GH3 cells were continually exposed to QO-58 (3 µM), the channel open probability was
significantly attenuated by subsequent addition of linopirdine (10 µM).

2.6. QO-58-Mediated Stimulation of Ca2+-Activated K+ Currents (IK(Ca)) by the Presence
of QO-58

Several small molecules (e.g., BMS-204352, naringenin, and QO-40) that demonstrated
to stimulate KM-channel activity have been reportedly noted to regulate other types of
K+ currents (e.g., IK(Ca)) [9,47,48]. For these reasons, we next explored if QO-58 is able to
modify the amplitude of IK(Ca) residing in GH3 cells. In these experiments we voltage-
clamped the tested cell at a holding potential of 0 mV to prevent the interference by
other type of ionic currents (i.e., voltage-gated Ca2+ currents) [56,57]. As demonstrated
in Figure 5A, one minute after cell exposure to 3 µM QO-58, IK(Ca) amplitudes measured
at different levels of membrane potentials increased. Average I-V relationships of IK(Ca)
with or without the QO-58 (3 µM) presence are illustrated in Figure 5B. The concentration-
dependent stimulation by QO-58 of macroscopic IK(Ca) amplitude was established and is
hence depicted in Figure 5C. According to the Hill equation described in Section 4, the
EC50 value required for QO-58-stimulated effect on IK(Ca) was calculated to be 4.2 µM.

2.7. Stimulatory Effect of QO-58 on the Activity of Large-Conductance Ca2+-Activated K+ (BKCa)
Channels Identified in GH3 Cells

The QO-58-induced raise in whole-cell IK(Ca) described above could be mediated
through either adjustment in channel open probability, single-channel amplitude, gating
kinetics of the BKCa channels, or in any combinations. Therefore, these reasons urged us to
assess the single-channel activities of the channels functionally active in GH3 cells. In this set
of inside-out current recordings, we bathed the tested cells in high-K+ solution containing
0.1 µM Ca2+, and the recording pipette was filled up with K+-containing solution. As
demonstrated in Figure 6A, as the excised patch was voltage-clamped at +60 mV, the activity
of BKCa channels occurring in rapid and independent open-closed transitions was robustly
detected. One minute after bath addition of QO-58, the channel opening probability
was conceivably increased. For example, under inside-out configuration, QO-58 at a
concentration of 1 or 3 µM applied to bath medium led to a respective increase in channel
opening probability to 0.118 ± 0.005 (n = 8, p < 0.05) or 0.174 ± 0.006 (n = 8, p < 0.05) from a
control value of 0.073 ± 0.004 (n = 8). However, single-channel amplitude of BKCa channel
was not noticed to differ significantly between the absence and presence of 3 µM QO-58
(12.8± 2 pA [in control] versus 12.9± 2 pA [in the presence of 3 µM QO-58]; n = 8, p > 0.05).
Under the exposure to 3 µM QO-58, the slow component of mean closed time of the
channel became considerably shortened to 19 ± 3 ms (n = 8, p < 0.05) from a control value
of 32 ± 5 ms (n = 8). Of additional notice, as the excised patch was continually exposed
to 3 µM QO-58, subsequent addition of verruculogen (1 µM) considerably decreased
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channel open probability to 0.074 ± 0.004 (n = 8, p < 0.05), although further application of
linopirdine (10 µM) produced minimal effect on it (0.174 ± 0.006 [in the presence of 3 µM
QO-58 alone] versus 0.173 ± 0.006 [in presence of QO-58 plus linopirdine]; n = 8, p > 0.05)
(Figure 6B). Verruculogen is a tremorgenic mycotoxin known to effectively suppress the
activity of BKCa channels [58,59]. Therefore, the experimental results strongly indicate that
QO-58-activated channel activity is mainly through its activation of BKCa channels, rather
than that of KM channels. They also enable us to project that the activation is attributed
primarily to the shortening of mean closed time of the channel, despite no change in
single-channel amplitude in the presence of QO-58.
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Figure 5. Stimulatory effect of QO-58 on the amplitude of whole-cell (i.e., macroscopic) Ca2+-activated
K+ current (IK(Ca)) measured from GH3 cells. In this series of voltage-clamp current recordings on
these cells, we used normal Tyrode’s solution containing 1.8 mM CaCl2 as a bathing medium, and
the recording pipette used was backfilled with K+-enriched solution. As whole-cell configuration
was established, we evoked IK(Ca) from a holding potential of 0 mV to test potentials in the range of 0
and +70 mV (10-mV in increments) at a rate of 0.1 Hz. (A) Superimposed current traces activated
in response to a series of voltage steps (indicated in the uppermost part). Current traces in the
upper part are controls (i.e., absence of QO-58), those in the middle part were recorded during cell
exposure to 3 µM QO-58, while those in lower part were taken after washout of the QO-58. The
duration of rectangular voltage commands applied was set in the range of 280 and 160 ms (20-ms
decrements), indicating a progressive increase with membrane depolarization (i.e., an outwardly-
rectifying property). (B) Average I-V relationship of IK(Ca) obtained in the control period, during the
exposure to 3 µM QO-58, and after washout of QO-58. Current amplitude was measured at the end of
each depolarizing pulse. Each point represents the mean ± SEM (n = 8). (C) Concentration-response
relationship for QO-58-induced stimulation of IK(Ca) (mean ± SEM; n = 8 for each point). The gray
continuous line drawn is reliably fitted to the Hill equation. The values for EC50 or nH were yielded
to be 4.2 µM or 1.2, respectively.
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We conducted these inside-out current recordings in cells which were bathed in high-K+ solution
containing 0.1 µM Ca2+, and the recording pipette was then filled up with K+-containing solution.
(A) Original BKCa-channel currents obtained in the control period (left, black color) and after bath
application of 3 µM QO-58 (right, red color). The detached patch was voltage-clamped at +60 mV.
The lower part indicates the expanded records from the uppermost part. The opening event of the
channel is indicated by the upward deflection. (B) Summary scatter graph showing effect of QO-58,
QO-58 plus linopirdine (Lino), or QO-58 plus verruculogen (Ver) (mean ± SEM; n = 8 for each point).
Under inside-out configuration, the channel open probability was measured at the level of +60 mV.
* Significantly different from control (p < 0.05) and ** significantly different from QO-58 (3 µM) alone
group (p < 0.05).

We further explored how the presence of QO-58 alters BKCa-channel activity at differ-
ent levels of membrane potentials. As demonstrated in Figure 7A, the linear relationship of
single-channel amplitude versus membrane potential (i.e., single-channel conductance) was
collated under inside-out configuration. As the excised patch was exposed to 3 µM QO-58,
the value of single-channel conductance obtained between the absence and presence of
QO-58 did not differ significantly (213± 8 pS [in control] versus 215± 9 pS [in the presence
of QO-58]; n = 8, p > 0.05). Additionally, the steady-state activation curve of BKCa channels
with or with the QO-58 application is illustrated in Figure 7B. As the smooth lines drawn
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by fitting the data to the Boltzmann equation stated in Section 4, the results demonstrated
that during the exposure to QO-58, there was a leftward shift (approximately 14 mV) along
the voltage axis in the activation curve of the channel with no appreciable modifications
in gating charge. For example, in control, V1/2 = +66 ± 8 mV and q = 4.9 ± 0.2 e (n = 8),
while in the presence of 3 µM QO-58, V1/2 = +52 ± 7 mV and q = 4.8 ± 0.2 e (n = 8). These
results indicated that although neither single-channel conductance nor gating charge of the
channel was changed, the steady-state activation curve of BKCa channels measured under
inside-out excised patch of GH3 cells was shifted toward less depolarized potential, as the
detached patch was exposed to QO-58.
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Figure 7. Effect of QO-58 on single-channel conductance (A) and activation curve (B) of BKCa

channels in GH3 cells. In this series of inside-out current recordings, we voltage-clamped the
excised patched at different levels of membrane potentials, and the recording pipette was filled with
K+-enriched solution. (A) Average I-V relationship of single BKCa-channel currents (i.e., linear
regression between membrane potential and mean single-channel amplitude) obtained in the absence
(black filled squares) and presence (orange open circles) of 3 µM QO-58 (mean ± SEM; n = 8 for each
point). Of note, the linear relationship of BKCa channels between the absence and presence of QO-58
is superimposed, and the value of reversal potential with or without the QO-58 addition was pointed
toward zero mV. (B) Steady-state activation curve of BKCa channels obtained in the control period
(black filled squares) and during exposure to 3 µM QO-58 (orange open circles) (mean ± SEM; n = 8
for each point). Sigmoid lines indicate the best fit to a Boltzmann function as stated in Section 4. Of
note, there is a leftward shift of the activation curve of the channel, although neither single-channel
conductance of the channel nor gating charge of the curve was altered by QO-58 presence.

2.8. Minor Inhibitory Effect of QO-58 on Erg-Mediated K+ Current (IK(erg)) Seen in GH3 Cells

In another set of experiments, we attempted to explore if the presence of QO-58 could
have any influence on another type of whole-cell K+ current (i.e., IK(erg)). The measure-
ments were conducted in these cells bathed in high-K+, Ca2+-free solution containing 1 µM
TTX and 0.5 mM CdCl2, and the pipette that was used was filled up with K+-enriched
solution. The tested cell was voltage-clamped at −10 mV, and a series of command voltage
steps ranging between −100 and 0 mV was thereafter delivered to evoke deactivating
IK(erg) [12,37,52,60–63]. As illustrated in Figure 8, under cell exposure to 10 µM QO-58,
average I-V relationship of IK(erg) became lessened in the voltages ranging between −100
and −50 mV. For example, at the level of −100 mV, the exposure to 10 µM QO-58 sig-
nificantly reduced the peak amplitude of hyperpolarization-activated IK(erg) by 25 ± 2%
from 1055 ± 139 to 791 ± 113 pA (n = 7, p < 0.05). After the compound’s washout, current
amplitude returned to 1012 ± 131 pA (n = 7, p < 0.05). Therefore, it is noticeable that unlike
QO-58 effect on IK(M) or IK(Ca), IK(erg) functionally active in GH3 cells is susceptible to minor
inhibition by the QO-58 presence.
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Figure 8. Minor inhibition of erg-mediated K+ current (IK(erg)) produced by the presence of QO-58 in
GH3 cells. In these experiments, we used high-K+, Ca2+-free solution as bathing medium and the
recording pipette was filled up with K+-containing (145 mM) solution. (A) Superimposed current
traces obtained in the control period (upper) and during cell exposure to 10 µM QO-58 (lower). The
top part indicates the voltage-clamp protocol imposed. (B) Average I-V relationship of peak (black
squares, upper) or sustained (brown circles, lower) component of IK(erg) obtained in the absence
(filled symbols) and presence (open symbols) of 10 µM QO-58 (mean ± SEM; n = 7 for each point).
Peak or sustained IK(erg) obtained with or without the QO-58 addition was measured at the start or
end-point of each hyperpolarizing step with a duration of 1 s. Of note, the presence of 10 µM QO-58
slightly inhibited IK(erg) in these cells.

2.9. Docking Results on Interaction between KCa1.1 Channel and QO-58 or between KCNQ2
and QO-58

In a final set of studies, we investigated how the protein of KCa1.1 (or α-subunit of
BKCa channel) or KCNQ2 could be docked with QO-58 by exploiting PyRx software. The
predicted binding sites of the QO-58 molecule were demonstrated in Figure 9. Of notice,
with being docked to KCa1.1 with a binding energy of −7.1 kcal/mol, QO-58 can form
hydrogen bond with residue Thr 277, while it is able to have hydrophobic contact with
residue Thr 277, Val 302, Phe 305, Ala 306, Ala 309, and Gly 310. Alternatively, as being
docked to KCNQ2 with a binding energy of −6.9 kcal/mol, QO-58 can form hydrophobic
contact with residue Ile 381, Ser 382, Pro 383, Asn 384, Leu 385, and Leu 387. Of notice,
these results thus prompted us to reflect that KCNQ2 and BKCa channels are likely to share
unique motifs or recognition sequences with which QO-58 or other structurally similar
compounds can interact, and that QO-58 can bind to the cytoplasmic residues of KCNQ2 or
KCa1.1 channel, which are adjacent to transmembrane segment of the channel. Therefore,
care needs to be mentioned in attributing the actions of QO-58 or other structurally similar
compounds exclusively to the stimulation of KCNQx- (KV7-) channel activity as reported
previously [4,8,18].
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Figure 9. Docking results of KCa1.1 channel and QO-58 (A) or KCNQ2 and QO-58 (B). Protein
structure of KCa1.1 or KCNQ2 channel was acquired from PDB (PDB ID: 6V3G or 7CR1), respectively,
while chemical structure of QO-58 was from PubChem (Compound CID: 51351551). The structure
of KCa1.1 or KCNQ2 channel was docked by the QO-58 molecule through PyRx (https://pyrx.
sourceforge.io/, accessed on 23 June 2022). The diagram of interactions between KCa1.1 or KCNQ2
channel and the QO-58 molecule was generated by LigPlot+ (https://www.ebi.ac.uk/thornton-srv/
software/LIGPLOT/, accessed on 23 June 2022). Of note, the red arcs with spokes radiating toward
the ligand (i.e., QO-58) in the lower part of each panel denote the hydrophobic contact, while green
dot line indicates the hydrogen bond.

3. Discussion

The noticeable conclusions are drawn from this study as follows. First, the presence of
QO-58 concentration-dependently increased the amplitude of IK(M) and IK(Ca) with EC50
value of 3.1 and 4.2 µM, respectively. Second, under cell exposure to QO-58, the steady-state
activation curve of IK(M) was shifted along voltage axis to a hyperpolarized potential with
no change in the gating charge. Third, the Vhys strength of IK(M) activated by triangular
Vramp measurably increased by the QO-58 presence. Fourth, cell exposure to QO-58 en-
hanced the probability of BKCa-channel openings as well as shifted the activation curve
of the channel at steady state toward the less depolarized potential; however, neither the
gating charge nor single-channel conductance of the channel was affected during its expo-
sure. Fifth, the deactivating IK(erg) activated by membrane hyperpolarization was slightly
suppressed by adding QO-58. Taken together, the interaction of QO-58 with KM or BKCa
channels to stimulate IK(M) or IK(Ca) in excitable cells is expected to occur in a concentration-
and voltage-dependent manner, assuming that similar in vivo findings occur.

In agreement with previous studies [2], the current observations demonstrated that
with optimum EC50 of 3.1 µM, QO-58 was capable of enhancing the magnitude of IK(M)
seen in GH3 cells. Furthermore, the Vhys changes have been regarded to play an essential
characteristic in electrical behaviors of different excitable cells. In the current study, in
accordance with earlier studies [29,31,53,54], the IK(M) intrinsically residing in GH3 cells was
robustly observed to undergo Vramp-induced Vhys, suggesting that the voltage sensitivity
of gating charge movements is dependent on the previous state (or conformation) of the

https://pyrx.sourceforge.io/
https://pyrx.sourceforge.io/
https://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/
https://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/
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KM channel. In other words, as the membrane potential becomes depolarized (i.e., during
initiation of action potential or the upsloping limb of the triangular Vramp), the voltage
dependence of IK(M) activation would switch to less depolarized voltages with a small
current magnitude, thereby have the tendency to decrease cell excitability. However, as
the membrane potential becomes negative (i.e., downward ramp of the double Vramp),
the voltage dependence of KM channels may shift the mode of Vhys to one which occurs
at more negative potentials, thereby leading to an increase in membrane repolarization.
Furthermore, upon triangular Vramp with varying durations, the QO-58 addition noticeably
increased the Vhys’s strength for IK(M) elicitation. Under this scenario, we extended previous
results and further provided the experimental observations, strongly indicating that there
would be a perturbing stimulatory effect of QO-58 on such non-equilibrium property
(i.e., Vhys) in KM (or KV7) channels in electrically excitable cells. However, how QO-58-
induced changes in IK(M)’s Vhys are linked to the behavior of these cells occurring in vivo
remains unclear. Of importance, the main point raised is that the adjustments by QO-58
of IK(M)’s Vhys residing in excitable cells are anticipated to be responsible for altering the
bursting pattern of action potentials in excitable cells [13–17,19,20,30,60].

In the present observations, effective EC50 value needed for QO-58-stimulated IK(Ca)
present in GH3 cells was yielded to be 4.2 µM, a value that is close to that (3.1 µM) for its
activation of IK(M). Under our inside-out current recordings, the addition of QO-58 to bath
medium was able to increase the probability of BKCa-channel openings with being void of
change in single-channel conductance, suggesting that QO-58 may bind to a site located on
the cytoplasmic leaflet of the α-subunit of BKCa channels. The slow component of mean
closed time of the channel decreased by adding this compound. Under its exposure, the
steady-state activation curve of BKCa channels seen in GH3 cells became overly shifted to
less depolarized potential with no appreciable change in the gating charge of the curve. The
QO-58-stimulated BKCa channel activity was also effectively counteracted by subsequent
addition of verruculogen (1 µM), yet not by linopirdine (10 µM). Verruculogen is known
to block BKCa channels effectively [58,59], while linopirdine can suppress KM-channel
activity [18,31,33]. Under such scenario, it is plausible to notice that apart from its effects
on IK(M), QO-58-stimulated IK(Ca) arises primarily through the observed activation of BKCa
channels, although the precise or detailed ionic mechanism of QO-58 actions on the activity
and gating kinetics of BKCa channels remains to be resolved.

According to previous pharmacokinetic studies, peak plasma concentration after the
oral administration with QO58-lysine with a dose of 50, 20, 12.5 mg/kg has been reported to
reach around 50 µg/mL (85 µM), 20 µg/mL (34 µM), or 4 µg/mL (6.8 µM), respectively [5,7].
Moreover, the sensitivity of voltage-clamped cells (e.g., neuroendocrine or endocrine cells)
to QO-58 or other structurally similar compounds (e.g., QO-40) can be expected to depend
not only on the QO-58 concentration applied, but also greatly on different confounding
variables which include the pre-existing level of resting potential and varying bursting
patterns of action potential firing. It is therefore conceivable to reflect that QO-58-mediated
concerted stimulation of KM (KCNQx or KV7x) and BKCa channels seen in GH3 cells is of
pharmacological or therapeutic relevance, presuming that similar in vivo observations are
found [3,8].

4. Materials and Methods
4.1. Chemicals and Solution in This Work

QO-58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazol-
ol[1,5-a]pyrimidin-7-one, 5-(2,6-dichloro-5-fluoro-3-pyridinyl)-3-phenyl-2-(trifluoromethyl)-
pyrazolo[1,5-a]pyrimidin-7(4H)-one, C18H8Cl2F4N4O) was supplied by Tocris (Union
Biomed, Taipei, Taiwan), iberiotoxin and verruculogen (Ver) were by Alomone (Asia
Bioscience, Taipei, Taiwan), while we acquired linopirdine, tetrodotoxin (TTX), and thy-
rotropin releasing hormone (TRH) from Sigma-Aldrich (Merck, Taipei, Taiwan). The stock
solution of QO-58 was kept under −20 ◦C for long-term storage. Unless stated elsewhere,
we obtained culture media (e.g., Ham’s F-12 medium), horse serum, fetal calf serum,
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L-glutamine, and trypsin/EDTA from HyCloneTM (Thermo Fisher, Tainan, Taiwan), and
other chemicals such as CdCl2, aspartic acid, EGTA, and HEPES were of reagent grade.

The ion composition of extracellular solution (i.e., HEPES-buffered normal Tyrode’s
solution) that we used in this work was as follows (in mM): NaCl 136.5, KCl 5.4, CaCl2 1.8,
MgCl2 0.53, glucose 5.5, and HEPES-NaOH buffer 5 (pH 7.4). To record ionic flowing
through macroscopic IK(Ca), IK(M) or IK(erg), the patch electrodes were backfilled with the
following intracellular solution (in mM): K-aspartate 130, KCl 20, MgCl2 1, KH2PO4 1,
Na2ATP 3, Na2GTP 0.1, EGTA 0.1, and HEPES-KOH buffer 5 (pH 7.2). To measure IK(M)
or IK(erg), we used a high-K+-bathing solution containing the following (in mM): KCl 145,
MgCl2 0.53, and HEPES-KOH 5 (pH 7.4). To record the activity of single KM channels, the
pipette solution was composed of the following (in mM): NaCl 136.5, KCl 5.4, MgCl2 0.53,
and HEPES-NaOH buffer 5 (pH 7.4), while to measure single BKCa-channel activity, the
pipette solution contained the following (in mM): KCl 145, MgCl2 0.53, and HEPES-KOH 5
(pH 7.4). All solutions used in this work were prepared in deionized water from a Milli-Q®

water purification system (Merck Millipore, Taipei, Taiwan). For the purpose of being
sterilized, we filtered the pipette solution and culture media with Acrodisc® syringe filter
which contains 0.2-µm Supor® nylon membrane (#4612; Pall Corporation; Genechain,
Kaohsiung, Taiwan).

4.2. Cell Preparations

The GH3 pituitary cell line, which was originally established from a pituitary tumor
carried in a 7-month-old female Wistar-Furth rat, was supplied by the Bioresource Collec-
tion and Research Center (BCRC-60015; Hsinchu, Taiwan). This cell line was derived from
the American Type Culture Collection (ATCC® [CCL-82.1TM]; Manassas, VA, USA). We
maintained GH3 cells in Ham’s F-12 medium supplemented with 2.5% heat-inactivated
fetal calf serum (v/v), 15% horse serum (v/v) and 2 mM L-glutamine [62,64]. Cells were
grown in monolayer culture at 37 ◦C in a humidified environment of CO2/air (1:19). For
sub-culturing made by trypsinization (0.025% trypsin solution [HyCloneTM] containing
0.01 sodium N,N-diethyldithiocarbamade and EDTA), we dissociated cells and then pas-
saged them every 2–3 days. The measurements were undertaken when cell growth under-
went 60–80% confluence (usually 5–6 days).

4.3. Electrophysiological Measurements

Shortly before the experiments, we carefully dissociated cells with a 1% trypsin/EDTA
solution, and an aliquot of the suspension containing cell clumps was rapidly placed
in a recording chamber adherently attached to the working stage of a DM-IL inverted
microscope (Leica; Highrise Instrument, Taichung, Taiwan). The electrodes which were
used to record were fabricated from Kimax-51® capillaries with 1.5–1.8 mm in diameter
(Kimble® 34500-99; Merck, Taipei, Taiwan) by using a PC-10 vertical puller (Narishige;
Taiwan Instrument, Tainan, Taiwan), and their tips were then fire-polished with MF-83
microforge (Narishige). When the electrodes were filled up with different internal solutions
described above, their resistance was measured to range between 3 and 5 MΩ, for the
purpose of making good GΩ-seal formation. We performed patch clamp recordings in
cell-attached, inside-out or whole-cell configuration by using either an RK-400 (Bio-Logic,
Claix, France) or an Axopatch-200B amplifier (Molecular Devices; Bestgen Biotech, New
Taipei City, Taiwan), as elaborated elsewhere [29,31,52,59]. Whole-cell current recordings
were established by rupturing the patch of membrane isolated with GW sealing by the
patch pipette, then bringing the cell interior into contact with the pipette interior.

4.4. Data Recordings and Analyses

The signals were monitored and stored online in a Sony VAIO CS series laptop com-
puter (VGN-CS110E; Tainan, Taiwan), equipped with a low-noise 1440A digitizer (Molec-
ular Devices). During the measurements with analog-to-digital and digital-to-analog
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conversion, the latter device was controlled by pCLAMP 10.6 software (Molecular Devices)
run under Microsoft Windows 7 (Redmond, WA, USA).

To assess the percentage increase of QO-58 on IK(M) or IK(Ca), we measured the ampli-
tudes of IK(M) or IK(Ca) during cell exposure to different QO-58 concentrations (1–300 µM).
The amplitude of IK(M) or IK(Ca) during cell exposure to QO-58 at a concentration of 300 µM
was considered to be 100%, and the current amplitudes after application of different
QO-58 concentrations were expressed relative to this value. The data sets with respect to
concentration-dependent effect of QO-58 on the activation of IK(M) or IK(Ca) were satisfacto-
rily fitted to the Hill equation with a nonlinear least-squares’ algorithm. Thus:

percentage increase (%) =
(Emax × [C]nH )(
ECnH

50 + [C]nH
)

where [C] = the QO-58 concentration applied; EC50 = the QO-58 concentration required
for a 50% stimulation; nH = the Hill coefficient; and Emax = the QO-58-induced maximal
stimulation of IK(M) or IK(Ca).

The steady-state activation curve (i.e., the relationship of the membrane potential
versus the IK(M) conductance) acquired with or without exposure to QO-58 was satisfactorily
approximated by a modified Boltzmann function of the following form:

G
Gmax

=
1

{1 + exp[−(V −V1/2)qF/RT]}

where G = the IK(M) conductance; Gmax = the maximal conductance of IK(M); V1/2 = the
voltage at which half-maximal activation of the current is achieved; q = the apparent
gating charge; F = Faraday’s constant; R = the universal gas constant; and T = the abso-
lute temperature.

The sigmoidal relationship between the membrane potentials and relative open-state
probability of BKCa channels (i.e., the steady-state activation curve) with or without the
QO-58 (3 µM) addition was collated and thereafter fitted by the Boltzmann equation using
the goodness-of-fitness test;

relative open probability =
n

{1 + exp[−(V −V1/2)qF/RT]} (1)

where n = the maximal relative open probability; V = the membrane potential; V1/2 = the
potential for half-maximal activation; q = apparent gating charge; and F, R, and T are
similarly stated above in the activation curve of IK(M).

4.5. Curve-Fitting Approximations and Statistical Analyses

Linear (e.g., single-channel conductance) or nonlinear (e.g., Hill or Boltzmann equation
and single exponential) curves fitted to different experimental data sets were made with
chi-squared goodness-of-fit test using either the Solver add-in bundled with Excel® 2021
(Microsoft, Redmond, WA, USA)) or OriginPro® 2021 (OriginLab, Scientific Formosa,
Kaohsiung, Taiwan). The values are provided as means ± error of the mean (SEM) with the
sizes of experimental observations, which represent the cell number sampled. The Student’s
t-test (paired or unpaired) for two different group, or analyses of variance (ANOVA-1 or
ANOVA-2) followed by post-hoc Fisher’s least-significance difference among more than two
different groups studied for multiple comparisons, were made for the statistical evaluation.
Probability with p < 0.05 was considered statistically significant (as indicated with * or ** in
the figures), unless noted otherwise.
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Abbreviations

BKCa channel large-conductance Ca2+-activated K+ channel
EC50 concentration required for 50% stimulation
I-V current versus voltage
IK(Ca) Ca2+-activated K+ current
IK(erg) erg-mediated K+ current
IK(M) M-type K+ current
KM channel M-type K+ channel
QO-58 5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazolol[1,

5-a]pyrimidin-7-one/5-(2,6-dichloro-5-fluoro-3-pyridinyl)-3-phenyl-2-(trifluorom-
ethyl)-pyrazolo[1,5-a]pyrimidin-7(4H)-one)

SEM standard error of the mean
TRH thyrotropin releasing hormone
TTX tetrodotoxin
τact activation time constant
Vhys voltage-dependent hysteresis
Vramp ramp voltage
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