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Developing numerical methods to solve polydispersed flows using a Population Balance Equation 
(PBE) is an active research topic with wide engineering applications. The Extended Quadrature 
Method of Moments (EQMOM) approximates the number density as a positive mixture of Kernel 
Density Functions (KDFs) that allows physical source terms in the PBEs to compute continuous or 
point-wise form according to the moments. The moment-inversion procedure used in EQMOM has 
limitations such as the inability to calculate certain roots even if it is defined, absence of consistent 
result when multiple roots exist or when the roots are nearly equal. To address these limitations, 
the study proposes a modification of the moment-inversion procedure to solve the PBE based 
on the proposed Halley-Ridder (H-R) method. Although there is no significant improvement in 
the extent of variability relative to the mean of the tested shape parameter 𝜎 values, an increase 
in the number of floating point operations (FLOPS) is observed which the proposed algorithm 
responds in limitations mentioned above. The total number of FLOPS for all the kernels used for 
the approximation increased by around 30%. This is an improvement towards the development 
of a more reliable and robust moment-inversion procedure.

1. Introduction

Population Balance Model (PBM) is ubiquitous in industrial applications where multiple phases are involved. For instance, PBM 
is applied in the modeling of gas–liquid [1], gas-solid [2] and gas-solid-liquid [3] phases with applications in aerosol technology [4], 
petrochemical technology [5], crystallization technology [6] and fermentation technology[7] to name a few. Population balance is a 
transport equation that is used to track the dynamics of the evolving particulate phase Number Density Function (NDF) with a given 
set of internal coordinates (e.g. size, area, shape or chemical composition) in the physical as well as the phase space. The density 
function depends on time 𝑡, spatial position 𝑥 and internal coordinates 𝜉. A typical Population Balance Equation (PBE) includes 
growth terms on individual particles, source terms for the formation of new particles, and aggregation and breakage terms involving 
multiple particles. In this study, only one internal coordinate representing size in terms of particle radius or volume (𝜉 ≡ 𝑟 or 𝑣) is 
considered.
To solve the PBE, there are different solution approaches in literature, such as lattice Boltzmann method [7,8], sectional method 
[9,10] and homotopy method [10,11]. A critical review that provides a comprehensive analysis of the state of the art in numerical 
approaches with emphasis in algorithmic details and their applications for solving PBEs can be found in Singh et al.[12]. Most of the 
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numerical approaches mentioned in [12] have limitations such as high computational cost. A popular solution approach is using the 
method of moments, which is both robust and reliable for solving PBEs. A class of such methods solves the moments, for example the 
quadrature-based methods have been used. However, when discrete values of NDF are needed, they are not directly obtained from 
the moments such as in Quadrature Method of Moments (QMOM). To overcome this, the Extended Quadrature Method of Moments 
(EQMOM) was proposed by Yuan et al. [13]. EQMOM approximates the NDF from its moments as a positive mixture of Kernel Density 
Function (KDF) of the same parametric family. The reconstruction can be done for a very realisable moment set, except reproducing 
the last moment. In the moment-inversion procedure of Yuan et al. [13], both Ridder’s method [14] and bounded Secant method 
were employed to update shape parameter of approximation in [13]. Nguyen et al. [15] improved the moment-inversion procedure 
which gives a response for cases in which the moments are weakly realisable. Pigou et al. [16] improved the numerical aspects of 
EQMOM significantly by reducing the computational cost of this method’s core iterative procedure, however with some exceptions. 
They constructed the procedure using Ridder’s method which uses two values to shrink the interval according to the sign of functions. 
In Pigou et al. [16], the initial interval was determined by observation of recurring coefficients. However, as a detailed mathematical 
proof of these observations have not been given in their study there is a possibility that the root can be out of the initial interval 
i.e., they cannot calculate the root (i) out of the initial interval, (ii) when the roots of the function are nearly equal, and (iii) when 
there is a gap where the convergence criteria is not defined. Although these cases (i), (ii) and (iii) are not frequently encountered in 
moment sets, it is necessary to propose a more robust algorithm that responds to all possible scenarios.

The need for a fast and numerically efficient algorithm to solve the ill-conditioned moment problem through a robust moment-
inversion procedure becomes prominent when external features like turbulent flow properties [17], dilute gas-particle flows [18]
and reacting-mixing species [19] play an important role for any chemical process under investigation. The present study focuses on 
the improvement of the moment-inversion procedure for three special cases which do not yield satisfactory results and are examined 
in detail. To overcome the first two shortcomings, the procedure given in Pigou et al. [16] is modified. The modified procedure 
combines the most desirable properties of Halley’s method [20] which finds the root of one variable function that has continuous 
second derivative and whose convergence is not guaranteed with Ridder’s method which finds the root of a continuous function and 
whose convergence is guaranteed. In this study, Halley’s method is used by substituting Newton’s forward difference method instead 
of the derivatives. To reach the root being out of the interval and not to skip the small interval where the sign of the function changes, 
Halley’s approach point is calculated by using Ridder’s approach point. The combination of these two methods is proposed as the 
Halley-Ridder (H-R) method in this study. In this method, the initial interval is taken as [0, 1]. The method responds for cases (i) and 
(ii) but does not respond for case (iii). This is because the convergence criteria depends not only on the sign of functions but also on 
the limitation of the functions to the one for the Hausdorff problem. It is difficult to cross the gap where the convergence criteria is 
not defined and reach the root after this gap. Therefore, when no root is found in the initial interval [0, 1], the additional condition 
of searching the root for the interval [1, 𝜎2] is added to the procedure, where 𝜎2 is the analytic solution of the function for 𝑖 = 2, 
which is obtained by Chebyshev algorithm. In this study, the H-R method is applied to a lot of moment sets taken from literature. 
The root is out of the initial interval [0, 1] for some of the tested moment vectors and this was calculated without encountering any 
problem. More than one root exist for some of the tested moment vectors and the lowest root among them was calculated by the 
H-R method. So small changes in raw moments will cause minor changes in the resulting shape parameter values. Furthermore, due 
to the additional condition mentioned earlier, the root can be calculated for case (iii) which indicates a greater applicability of the 
proposed method.

2. Population Balance Equation (PBE)

Population balance is a continuity equation based on Number Density Function (NDF). This function is defined depending on 
the properties of the evolution of the particle population under observation. Considering the coordinates of the property vector 
𝜉 ≡ (𝜉1, 𝜉2, … , 𝜉𝑛) which specify the state of the particle, the NDF 𝜂(𝜉; 𝑥, 𝑡) is defined as

𝜂(𝜉1, 𝜉2,… , 𝜉𝑛;𝑥, 𝑡)𝑑𝜉1, 𝑑𝜉2,… , 𝑑𝜉𝑛 = 𝜂(𝜉;𝑥, 𝑡)𝑑𝜉

and represents the number of particles with a value of the property vector between 𝜉 and 𝜉 + 𝑑𝜉. The function 𝜂(𝜉, 𝑡) can have only 
one internal coordinate such as particle radius or volume, or multiple internal coordinates such as particle volume and particle shape. 
In this study, a number density function (NDF) is defined in terms of particle radius or volume (𝜉1 ≡ 𝑟 or 𝑣) and the homogeneous 
population balance equation (PBE) is represented as

𝜕𝜂(𝑡, 𝜉)
𝜕𝑡

+ 𝜕

𝜕𝜉
[𝑔(𝑡, 𝜉)𝜂(𝑡, 𝜉)] = 𝐵𝑎𝑔𝑔(𝑡, 𝜉) −𝐷𝑎𝑔𝑔(𝑡, 𝜉) +𝐵𝑏𝑟(𝑡, 𝜉) −𝐷𝑏𝑟(𝑡, 𝜉). (1)

The aggregation terms are given by

𝐵𝑎𝑔𝑔(𝑡, 𝜉) =
1
2

𝜉

∫
𝜉𝑚𝑖𝑛

𝛽(𝑡, 𝜉 − 𝜉′, 𝜉′)𝜂(𝑡, 𝜉 − 𝜉′)𝜂(𝑡, 𝜉′)𝑑𝜉′ (2)

and

𝐷𝑎𝑔𝑔𝑡, 𝜉) =

𝜉𝑚𝑎𝑥

𝛽(𝑡, 𝜉, 𝜉′)𝜂(𝑡, 𝜉)𝜂(𝑡, 𝜉′)𝑑𝜉′, (3)
2

∫
𝜉𝑚𝑖𝑛
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where 𝛽(𝑡, 𝜉, 𝜉′) is the aggregation kernel. The breakage terms can be given as

𝐵𝑏𝑟(𝑡, 𝜉) =

𝜉𝑚𝑎𝑥

∫
𝜉

𝜃(𝑡, 𝜉, 𝜉′)𝑏(𝜉, 𝜉′)𝜂(𝑡, 𝜉, 𝜉′)𝑑𝜉′ (4)

and

𝐷𝑏𝑟 = 𝜃(𝑡, 𝜉, 𝜉′)𝜂(𝑡, 𝜉, 𝜉′), (5)

where 𝜃(𝑡, 𝜉, 𝜉′) is breakage kernel and 𝑏(𝜉, 𝜉′) is the daughter particle distribution function.

3. Background theory

3.1. Quadrature Method of Moments (QMOM)

Let 𝜇(𝜉) defined on a domain space Ω𝜉 be a non-decreasing function and 𝑑𝜇(𝜉) induced by 𝜇(𝜉) be a positive metric of this domain 
space. This metric is related to the number density 𝜂(𝜉) such that 𝑑𝜇(𝜉) = 𝜂(𝜉)𝑑𝜉. Let m𝑁 be the vector:

m𝑁 =

⎡⎢⎢⎢⎢⎣

𝑚0
𝑚1
⋮

𝑚𝑁

⎤⎥⎥⎥⎥⎦
, 𝑚𝑘 = ∫

Ω𝜉

𝜉𝑘𝜂(𝜉)𝑑𝜉, (6)

whose elements are the first 𝑁 + 1 integer moments of this metric. Three domain spaces are considered: (i) Ω𝜉 = (−∞, +∞), (ii) 
Ω𝜉 = (0, +∞) and (iii) Ω𝜉 = (0, 1). For each of these domain spaces, all possible positive metrics defined on Ω𝜉 can induce a set of 
vectors of finite moments m𝑁 (6) within the associated realisable moment space M𝑁 (Ω𝜉 ).

The transport equation for 𝑘th order moment is obtained by multiplying the PBE (1), where 𝐵𝑎𝑔𝑔 , 𝐷𝑎𝑔𝑔 , 𝐵𝑏𝑟 and 𝐷𝑏𝑟 are given in 
(2),(3),(4) and (5) respectively, by 𝜉𝑘 and integrating over Ω𝜉 and can be given as

𝑚𝑘

𝑑𝑡
= −𝑔(𝑡, 𝜉)𝜂(𝑡, 𝜉)|𝜉𝑚𝑎𝑥

𝜉𝑚𝑖𝑛
+

𝜉𝑚𝑎𝑥

∫
𝜉𝑚𝑖𝑛

𝑘𝜉𝑘−1𝑔(𝑡, 𝜉)𝜂(𝑡, 𝜉)𝑑𝜉 +

𝜉𝑚𝑎𝑥

∫
𝜉𝑚𝑖𝑛

𝜉𝑘[𝐵𝑎𝑔𝑔(𝑡, 𝜉) −𝐷𝑎𝑔𝑔(𝑡, 𝜉)]𝑑𝜉 +

𝜉𝑚𝑎𝑥

∫
𝜉𝑚𝑖𝑛

𝜉𝑘[𝐵𝑏𝑟(𝑡, 𝜉) −𝐷𝑏𝑟(𝑡, 𝜉)]+

𝜉𝑚𝑎𝑥

∫
𝜉𝑚𝑖𝑛

𝜉𝑘𝑄(𝑡, 𝜉)𝜂(𝑡, 𝜉)𝑑𝜉.

(7)

EQMOM is based on QMOM proposed by McGraw [21] which approximates the integral properties of a NDF using only the first few 
moments of the distribution. Using a Gauss quadrature rule defined as

∫
Ω𝜉

𝑓 (𝜉)𝑑𝜇(𝜉) =
𝑃∑
𝑖=1

𝑤𝑖𝑓 (𝜉𝑖), (8)

where 𝑤𝑃 = [𝑤1, 𝑤2, ..., 𝑤𝑃 ]𝑇 are weights, 𝜉𝑃 = [𝜉1, ..., 𝜉𝑃 ]𝑇 are nodes, and it holds true if 𝑓 (𝜉) = 𝜉𝑘, ∀𝑘 ∈ 0,1, ...,2𝑃 − 1 where 𝑃 ∈ ℕ. 
Otherwise, this quadrature rule will calculate the integral approximately. The vectors 𝜉𝑃 and 𝑤𝑃 are computed by tridiagonal Jacobi 
matrix, which is given by

𝐽𝑛(𝑑𝜇) =

⎡⎢⎢⎢⎢⎣

𝑎0
√

𝑏1 0√
𝑏1 𝑎1 ⋱

⋱ ⋱
√

𝑏𝑃−1
0

√
𝑏𝑃−1 𝑎𝑃−1

⎤⎥⎥⎥⎥⎦
, (9)

where a𝑃−1 = [𝑎0, 𝑎1, … , 𝑎𝑃−1]𝑇 and b𝑃−1 = [𝑏1, 𝑏2, … , 𝑏𝑃−1]𝑇 recurring coefficients can be computed by the Quotient-Difference [22], 
the Product-Difference [23] or the Chebyshev [24] algorithms, such that nodes of 𝜉𝑃 are eigenvalues of the matrix (9) and the nodes 
of 𝑤𝑃 are 𝑤𝑖 =𝑚0𝑣

2
1,𝑖 (𝑣1,𝑖 is the first component of the normalized eigenvector corresponding to the eigenvalue 𝜉𝑖 .

In other words, the Gaussian quadrature computed with QMOM approximates 𝜂(𝜉) as

𝜂(𝜉) =
𝑃∑
𝑖=1

𝑤𝑖𝛿(𝜉, 𝜉𝑖), (10)
3

which is a weighted sum of Dirac delta distribution defined by sifting property.
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3.2. Extended Quadrature Method of Moments (EQMOM)

For most applications, non-moment integral properties or discrete evaluation of a distribution needs to be calculated. So 𝜂(𝜉)
needs to be continuous distribution which is not available in QMOM (see (10)). To tackle this problem, there are various approaches 
suggested in literature [21,25,26]. One of them is the EQMOM which uses a basis of non-negative Kernel Density Functions (KDFs) 
in place of Dirac delta functions.

EQMOM approximates 𝜂(𝜉) as a positive combination of KDFs that allow to compute unclosed source terms

�̃�(𝜉) =
𝑃∑
𝑖=1

𝑤𝑖𝛿𝜎 (𝜉, 𝜉𝑖), (11)

where 𝑤𝑖 is the weight of the 𝑖-th node, 𝛿𝜎 is the chosen KDF to perform the approximation where 𝜎 is the shape parameter of the 
approximation and 𝜉𝑖 is the location variable of 𝑖-th node. Standard normalized distribution functions are chosen as the kernels (e.g. 
Gaussian, Log-normal, Laplace, Weibull, etc.). For consistency, 𝛿𝜎 is chosen as

lim
𝜎→0

𝛿𝜎 (𝜉, 𝜉𝑖) = 𝛿(𝜉, 𝜉𝑖),

such that 𝜎 is sufficiently small. Thanks to this, EQMOM is numerically stable when a moment set m𝑁 is on the boundary of realisable 
moment space. Moreover, integral properties of the NDF can be computed by EQMOM with high accuracy. Approximation of integral 
terms can be given as

∫
Ω𝜉

𝑓 (𝜉)𝜂(𝜉)𝑑𝜉) ≈
𝑃∑
𝑖=1

𝑤𝑖

[
∫
Ω𝜉

𝑓 (𝜉)𝛿𝜎 (𝜉, 𝜉𝑖)𝑑𝜉)
]
. (12)

There are multiple available variations of EQMOM in literature such as the Gauss EQMOM [27,28], Log-Normal EQMOM [29], and 
Beta and Gamma EQMOM [13]. Also, the integral given in (12) can be calculated approximately by a quadrature rule.

3.2.1. Log-normal Kernel Density Function (KDF)

Gauss-Wigert quadratures [30] is implemented for the preservation of moments for a Log-normal EQMOM reconstruction:

∞

∫
0

𝑓 (𝜉)𝜂(𝜉)𝑑𝜉 ≈
𝑃∑
𝑖=1

𝑤𝑖

𝑄∑
𝑗=1

𝜔
(𝜎)
𝑗

𝑓 (𝜉𝑖𝜆
(𝜎)
𝑗

) (13)

with w𝑃 , 𝜉𝑃 and 𝜎 being the reconstruction parameters calculated from m2𝑃 . 𝜆(𝜎)
𝑄

are eigenvalues of the Jacobi matrix 𝐽𝑄 whose 
elements 𝑎𝑘 and 𝑏𝑘 are calculated by 𝑎𝑘 = ((𝑧2 + 1)𝑧2𝑘 − 1)𝑧2𝑘−1 and 𝑏𝑘 = (𝑧2𝑘 − 1)𝑧6𝑘−4 with 𝑧 = 𝑒𝑥𝑝(𝜎2∕2). 𝜔𝑄 is given by 𝜔𝑗 = 𝑃0𝑣

2
1,𝑗

(𝑃0 = 1) with 𝑣1,𝑗 being the first component of the normalized eigenvector corresponding to the eigenvalue 𝜆𝑗 .

3.2.2. Gamma Kernel Density Function (KDF)

Gauss-Laguerre quadrature [30] is implemented for preserving the moments for a Gamma EQMOM reconstruction:

∞

∫
0

𝑓 (𝜉)𝜂(𝜉)𝑑𝜉 ≈
𝑃∑
𝑖=1

𝑤𝑖

Γ(
𝜉𝑖

𝜎
)

𝑄∑
𝑗=1

𝜔
𝛼𝑖

𝑗
𝑓 (𝜎𝜆

(𝛼𝑖)
𝑗

), (14)

with w, 𝜉𝑃 and 𝜎 being the reconstruction parameters calculated from 𝑚2𝑃 . 𝜆(𝛼𝑖)
𝑄

are eigenvalues of the Jacobi matrix 𝐽𝑄 (9) whose 

elements are 𝑎0 = 1 + 𝛼0, 𝑎𝑘 = 2 + 𝑎𝑘−1 and 𝑏𝑘 = 𝑘(𝑘 + 𝛼𝑘) with 𝛼𝑘 =
𝜉𝑘

𝜎
− 1. 𝜔(𝛼𝑖)

𝑄
is given by 𝜔𝑗 = 𝑃0𝑣

2
1,𝑗 (𝑃0 = Γ(1 + 𝛼𝑗 )) with 𝑣1,𝑗 being 

the first component of the normalized eigenvector corresponding to the eigenvalue 𝜆(𝛼𝑖)
𝑗

with 𝛼𝑖 =
𝜉𝑖

𝜎
− 1.

The computation of the weights 𝑤𝑃 = [𝑤1, 𝑤2, ..., 𝑤𝑃 ]𝑇 , the nodes 𝜉𝑃 = [𝜉1, ..., 𝜉𝑃 ]𝑇 and the shape parameter 𝜎 values from the mo-
ment set m2𝑃 are calculated by the moment-inversion procedure. The moment-inversion procedures used in literature are mentioned 
briefly in section 4.1.

4. Moment-inversion procedure

Various numerical strategies [21,13] have been proposed to reduce the dimensionality of the PBE. In standard moment methods, 
this balance equation is multiplied by a function 𝜉𝑘 and integrated over Ω𝜉 . This approach causes a closure problem where moment 
transport equations are written in terms of the number of moments higher than the number of transport equations[31]. This problem 
can be overcome by obtaining the unknown moments in terms of known moments using the transported moment set or reconstructing 
4

the NDF from the transported moments from which the unclosed terms can be evaluated.
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4.1. Procedures based on moment realisability

For the metric 𝑑𝜇(𝜉) = 𝜂(𝜉)𝑑𝜉 given by (6) assumes m𝑁 be the vector of the first 𝑁 + 1 integer moments vector of the metric 
𝑑𝜇(𝜉) = 𝜂(𝜉)𝑑𝜉, with 𝑁 = 2𝑃 as an even integer.

The moment-inversion procedure aims to determine the parameters 𝜎, 𝑤𝑃 = [𝑤1, … , 𝑤𝑃 ]𝑇 and 𝜉𝑃 = [𝜉1, … , 𝜉𝑃 ]𝑇 such that m𝑁 =
m̃𝑁 with

m̃𝑁 =

⎡⎢⎢⎢⎢⎣

�̃�0
�̃�1
⋮

�̃�𝑁

⎤⎥⎥⎥⎥⎦
, �̃�𝑘 = ∫

Ω𝜉

𝜉𝑘�̃�(𝜉)𝑑𝜉, (15)

where �̃�(𝜉) is given in (11). For any value of the shape parameter 𝜎, Yuan et al. [13] proposed a procedure that requires calculation 
of the parameters 𝑤𝑃 and 𝜉𝑃 such that m𝑁−1 = m̃𝑁−1, where m̃𝑁−1 is given in (15). This simplifies the moment-inversion problem to 
a scalar non-linear equation by searching for a root function 𝐷𝑁 (𝜎) =𝑚𝑁 − �̃�𝑁 (𝜎). For the KDFs used in EQMOM, using the approach 
developed by Yuan et al. [13] and improved by Nguyen et al. [15], the following linear system can be written as:

m̃𝑛 =𝐴𝑛(𝜎).m∗
𝑛
, (16)

where 𝐴𝑛(𝜎) is a lower-triangular (𝑛 +1) × (𝑛 +1) matrix. The elements of this matrix depend on chosen KDF and 𝜎. The moments m∗
𝑛

defines as:

m∗
𝑛
=

⎡⎢⎢⎢⎢⎣

𝑚∗
0

𝑚∗
1
⋮
𝑚∗

𝑛

⎤⎥⎥⎥⎥⎦
, 𝑚∗

𝑘
=

𝑃∑
𝑖=1

𝑤𝑖𝜉
𝑘
𝑖
,

refer to the reconstructed moments of the approximation. A brief mechanism of the various EQMOM moment-inversion procedures 
proposed by (a) Yuan et al. [13], (b) Nguyen et al. [15] and (c) Pigou et al. [16] is summarized below:

(a) 𝐴−1
2𝑃−1(𝜎) 

⎡⎢⎢⎣
𝑚0
⋮

𝑚2𝑃−1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

𝑚∗
0(𝜎)
⋮

𝑚∗
2𝑃−1(𝜎)

⎤⎥⎥⎦
Calculate a∗

𝑃−1(𝜎) = [𝑎∗0(𝜎), 𝑎
∗
1(𝜎), … , 𝑎∗

𝑃−1(𝜎)]
𝑇 and b∗

𝑃−1(𝜎) = [𝑏∗1(𝜎), 𝑏
∗
2(𝜎), … , 𝑏∗

𝑃−1(𝜎)]
𝑇 recurring coefficients [21].

Find 𝜉𝑃 (𝜎) and 𝑊𝑃 (𝜎) vectors by calculating the eigenvalues and eigenvectors of the Jacobi matrix 𝐽𝑃−1(𝑑𝜇) formed with the recurring 
coefficients.
�̂�2𝑃 (𝜎) =

∑𝑃

𝑖=1 𝑤
∗
𝑖
(𝜎)(𝜉∗

𝑖
)2𝑃 (𝜎)

�̃�2𝑃 (𝜎) =𝐴2𝑃 (𝜎) 

⎡⎢⎢⎢⎢⎣

𝑚∗
0(𝜎)
⋮

𝑚∗
2𝑃−1(𝜎)
�̂�2𝑃 (𝜎)

⎤⎥⎥⎥⎥⎦
, (see (16))

𝐷2𝑃 (𝜎) =𝑚2𝑃 − �̃�2𝑃 (𝜎)

(b) 𝐴−1
2𝑃 (𝜎) 

⎡⎢⎢⎣
𝑚0
⋮

𝑚2𝑃−1

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

𝑚∗
0(𝜎)
⋮

𝑚∗
2𝑃−1(𝜎)
𝑚∗
2𝑃 (𝜎)

⎤⎥⎥⎥⎥⎦
Calculate a∗

𝑃−1(𝜎) = [𝑎∗0(𝜎), 𝑎
∗
1(𝜎), … , 𝑎∗

𝑃−1(𝜎)]
𝑇 and b∗

𝑃−1(𝜎) = [𝑏∗1(𝜎), 𝑏
∗
2(𝜎), … , 𝑏∗

𝑃−1(𝜎)]
𝑇 recurring coefficients.

Find 𝜉𝑃 (𝜎) and 𝑊𝑃 (𝜎) vectors by calculating the eigenvalues and eigenvectors of the Jacobi matrix 𝐽𝑃−1(𝑑𝜇) formed with the recurring 
coefficients.
�̂�2𝑃 (𝜎) =

∑𝑃

𝑖=1 𝑤
∗
𝑖
(𝜎)(𝜉∗

𝑖
)2𝑃 (𝜎)

𝐷∗
2𝑃 (𝜎) =𝑚∗

2𝑃 (𝜎) − �̃�2𝑃 (𝜎)

(c) 𝐴−1
2𝑃 (𝜎) 

⎡⎢⎢⎣
𝑚0
⋮

𝑚2𝑃−1

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

𝑚∗
0(𝜎)
⋮

𝑚∗
2𝑃−1(𝜎)
𝑚∗
2𝑃 (𝜎)

⎤⎥⎥⎥⎥⎦
Calculate a∗

𝑃−1(𝜎) = [𝑎∗0(𝜎), 𝑎
∗
1(𝜎), … , 𝑎∗

𝑃−1(𝜎)]
𝑇 and b∗

𝑃
(𝜎) = [𝑏∗1(𝜎), 𝑏

∗
2(𝜎), … , 𝑏∗

𝑃
(𝜎)]𝑇 recurring coefficients (Ω𝜉 = ℝ, the Hamburger 

problem).
The Stieljes problem: If Ω𝜉 = (0, +∞), the realisability of a moment set m∗

𝑁
= [𝑚∗

0(𝜎), … , 𝑚∗
2𝑃−1(𝜎), 𝑚

∗
2𝑃 (𝜎)] on Ω𝜉 = (0, ∞) is strictly 

equivalent to the positivity of the Hankel determinants 𝐻2𝑃+𝑑 defined as

𝐻2𝑃+𝑑 =
|||| 𝑚∗

𝑑
(𝜎) … 𝑚∗

𝑃+𝑑
(𝜎)

⋮ ⋱ ⋮

|||| (17)
5

|||𝑚∗
𝑃+𝑑

(𝜎) … 𝑚∗
2𝑃+𝑑

(𝜎)
|||
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with 𝑑 ∈ {0, 1} and 𝑃 ∈ℕ, 2𝑃 + 𝑑 ≤𝑁 .
The condition for the positivity of Hankel determinants (17) can be written in terms of the positivity of 𝜁𝑘 defined by

𝜁∗
𝑘
(𝜎) =

𝐻𝑘−3𝐻𝑘

𝐻𝑘−2𝐻𝑘−1
, 𝐻𝑗 = 1 if 𝑗 < 0. (18)

By using Eq.(18), the three-term recurring coefficients of the monic polynomials 𝑎∗
𝑘

and 𝑏∗
𝑘

coefficients can be written

𝑏∗
𝑘
(𝜎) = 𝜁∗2𝑘(𝜎)𝜁

∗
2𝑘−1(𝜎), 𝑎∗

𝑘
(𝜎) = 𝜁∗2𝑘+1(𝜎) + 𝜁∗2𝑘(𝜎) (19)

with 𝑎∗0(𝜎) = 𝜁∗1 (𝜎) and the Jacobi matrix can be calculated. The recurring coefficients are calculated using Hankel determinants. Once 
the recurring coefficients 𝑎∗

𝑛
and 𝑏∗

𝑛
are known, the zeros of the orthogonal functions can be easily computed from the eigenvalues and 

eigenvectors of the Jacobi matrix. However, the ill-conditionality of Hankel matrices makes the formulas (19) not practically useful as 
an algorithm for calculating these coefficients. In particular, the function that computes the recurring coefficients from moments by 
using Eq.(19) and Eq.18 can be severely ill-conditioned [32,30] which means that the coefficients 𝑎∗

𝑛
and 𝑏∗

𝑛
are extremely sensitive 

to small changes in the moments.
The Hausdorff problem: If Ω𝜉 = (0, 1), compute

𝜏∗2𝑃 (𝜎) = [𝜏∗0 (𝜎), 𝜏
∗
1 (𝜎), … , 𝜏∗2𝑃 (𝜎)]

𝑇 . Here, 𝜏∗2𝑃 vector elements can calculated from through the relation [33]

𝜏∗
𝑘
(𝜎) =

𝜁∗
𝑘
(𝜎)

1 − 𝜏∗
𝑘−1(𝜎)

with 𝜁∗
𝑘
(𝜎) defined in Eq.(19) and 𝜏∗1 (𝜎) =𝑚∗

1(𝜎).
Here, the shape parameter 𝜎 is determined by enforcing an additional transported moment 𝑚2𝑃 to accord with the reconstructed 

NDF. So, in (a) and (b), the roots of the 𝐷2𝑃 (𝜎) and 𝐷∗
2𝑃 (𝜎) objective functions, if any, must be calculated, if not, their minimum 

values must be found. Due to the nonlinear dependence of 𝐷2𝑃 (𝜎) and 𝐷∗
2𝑃 on 𝜎, it is inconvenient to find analytical expressions for 

the derivative 𝐷′
2𝑃 (𝜎) and (𝐷∗

2𝑃 )
′. Thus to update 𝜎, both the Ridder’s method and a bounded secant method have been employed. 

If the Ridder’s method can not find a root, the golden-section search method [14] is used to minimize the objective function. In (c) 
depending on Ω𝜉 , the 𝜎 root, which is used for reconstructing NDF, is calculated with the help of sign change of b∗

𝑃−1(𝜎), 𝜁∗2𝑃 (𝜎) or 
𝜏∗2𝑃 (𝜎) vectors and by updating 𝜎 values with the Ridder’s method and using [0, 𝜎1], where 𝜎1 is the analytical solution of 𝑏∗1(𝜎), 𝜁

∗
2 (𝜎)

or 𝜏∗2 (𝜎) depending on Ω𝜉 . The above-mentioned procedures respond positively if there is one or more 𝜎 roots and at least one of the 
root falls within the given initial interval. In addition, if no 𝜎 falls within the initial interval or if there is no root, the optimum 𝜎 is 
calculated by golden-section search method which makes minimization in the initial interval.

4.2. Proposed moment-inversion procedure

While calculating the root of a function with iterative root-finding methods, the false position approach i.e. the search for the 
change of a function sign is typically used. However, when the difference between the roots of a function is small, it is difficult to 
approach this narrow range in which the function changes sign while searching the root of a function with only one root-finding 
algorithm. The Halley’s approach point is thus calculated using the Ridder’s approach point thereby improving the overall moment-
inversion procedure.
In this section, while developing the moment-inversion procedure based on Halley-Ridder (H-R) method, the following cases have 
been examined in detail by assessing the evolution of convergence criteria:

1. a root falls within the given initial interval (shown with Hamburger, Stieltjes and Hausdorff moment problems).
2. multiple or very close roots fall within the given initial interval (shown with Hausdorff moment problem).
3. none of the roots fall within the given initial interval (shown with Hausdorff moment problem).
4. no root (shown with Stieltjes and Hausdorff moment problems).

Among these cases, for (3) and (4) the moment-inversion procedures mentioned in Section 4.1 do not respond. For (2), the procedures 
do not respond in finding the smallest root. The aim of this study, therefore, is to propose a method that will respond to all the cases 
(1-4). In the following section, the situations encountered for Hamburger, Stieltjes and Hausdorff problems using the proposed 
moment-inversion procedure are shown in detail.
There are essentially three different types of finite intervals: two end-points, one endpoint and no end-points [34]. In the latter case, 
the interval is ℝ while in the first two cases they are (0, 1) and [0, ∞) respectively. The moment problems on (0, 1), [0, ∞) and 
(−∞, +∞) are called the Hausdorff moment problem, the Stieltjes moment problem, and the Hamburger moment problem.

4.3. Hamburger moment problem

A necessary and sufficient condition that should exist is at least one non-decreasing function 𝑑𝜇(𝜉) = 𝜂(𝜉)𝑑𝜉 such that

𝜇 =

∞

𝜉𝑘𝑑𝜇(𝜉)
6

𝑘 ∫
−∞
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Fig. 1. Evolution of 𝑏∗
𝑘
(𝜎) where 𝑘 = 1, 2, 3, for Gaussian (a, b) and Laplace (c, d) kernels. The three initial moment sets are 𝑚(1)

6 = [1 1 2 5 14 42 133]𝑇 and 
𝑚

(2)
6 = [1 2 7 17 58 149 493]𝑇 as given in Pigou et al. [16].

for 𝑘 = 0, 1, 2, …, with all the integrals converging, the sequence {𝜇𝑘}∞0 is a positive definite [34].

4.3.1. Application of Halley-Ridder (H-R) method to the Hamburger problem

As stated in case (c) from Section 4.1, the metric 𝑑𝜇(𝜉) = 𝜂(𝜉)𝑑𝜉 is realisable on Ω𝜉 = (−∞, +∞) if and only if 𝑎𝑘 ∈ℝ and 𝑏𝑘 > 0, ∀𝑘 ∈
ℕ. A value of 𝜎 is searched such that the associated reconstructed moments 𝑚∗

2𝑃−1(𝜎) are strictly realisable, and the moments 𝑚∗
2𝑃 (𝜎)

are weakly realisable. Then if a∗
𝑃−1(𝜎) = [𝑎∗0(𝜎), 𝑎

∗
1(𝜎), … , 𝑎∗

𝑃−1(𝜎)]
𝑇 and b∗

𝑃−1(𝜎) = [𝑏∗1(𝜎), 𝑏
∗
2(𝜎), … , 𝑏∗

𝑃−1(𝜎)]
𝑇 recurring coefficients are 

calculated by the Chebyshev algorithm, the condition of realisability can be given by b∗
𝑃
(𝜎) as 𝑏∗

𝑘
(𝜎) > 0, ∀𝑘 ∈ 1,2,… , 𝑃 − 1 and 

𝑏∗
𝑃
(𝜎) = 0. The evolution of 𝑏∗

𝑘
(𝜎) (𝑘 = 1, 2, 3) is shown in Fig. 1 for the Gaussian and Laplace kernels. The initial moments sets, 𝑚(1)

6
and 𝑚(2)

6 are taken from literature [16]. Several randomly selected moment sets are taken for testing purpose and an undefined root 
was never observed. According to these moment sets, the root 𝜎𝑘 being the root of 𝑏𝑘(𝜎) lies within the interval [0, 𝜎𝑘−1]. It must 
be noted here that a mathematical proof of these observations has not been provided by Pigou et al. [16]. Therefore, there is a 
possibility that the root 𝜎𝑘, being the root of 𝑏∗

𝑘
(𝜎), can be outside the interval [0, 𝜎𝑘−1]. Considering this possibility, a more robust 

procedure is needed. It can be given as an iterative approach as follows:

1. [0, 1] = [𝜎(0)
𝑙

, 𝜎(0)
𝑟 ] is the initial interval, then update these bounds.

2. Compute b𝑃 (0); check the realisability of 𝑚2𝑃 =𝑚∗
2𝑃 and check the positivity of the elements in the vector b𝑃 (0).

3. Iterate over k
• Compute b𝑃 (𝜎

(𝑘−1)
𝑟 ) and check if b𝑃 (𝜎

(𝑘−1)
𝑟 ) has at least one negative element.

• if b𝑃 (𝜎
(𝑘−1)
𝑟 ) has at least one negative element.

– (a) Choose 𝜎𝑡.
– (b) Compute b𝑃 (𝜎𝑡)
– (c) if all elements of b𝑃 (𝜎𝑡) are positive, assign 𝜎𝑙

𝑙
= 𝜎𝑡 and 𝜎(𝑘)

𝑟 = 𝜎
(𝑘−1)
𝑟 .

– (d) otherwise, assign 𝜎𝑙
𝑙
= 𝜎

(𝑘−1)
𝑟 and 𝜎(𝑘)

𝑟 = 𝜎𝑡.

• if all elements of b𝑃 (𝜎
(𝑘−1)
𝑟 ) are positive

– (a1) Choose 𝜎𝑡

– (b1) Compute b𝑃 (𝜎𝑡) and check if b𝑃 (𝜎𝑡) has at least one negative element.
– (c1) if b𝑃 (𝜎𝑡) has at least one negative element, apply (a), (b), (c) and (d) steps
– else

* if 𝑏∗
𝑃
(𝜎𝑡) < 𝑏∗

𝑃
(𝜎(𝑘−1)

𝑟 ), assign 𝜎(𝑘)
𝑟 = 𝜎𝑡.

∗ (𝑘−1) ∗ (𝑙)
7

* if 𝑏
𝑃
(𝜎

𝑙
) > 𝑏

𝑃
(𝜎𝑡), assign 𝜎𝑟 = 𝜎𝑡
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In Pigou et al. [16], the choice of 𝜎𝑡 in steps 3(a) and 3(a1) are made by locating the root 𝜎𝑗 of 𝑏∗
𝑗
(𝜎) with 𝑗 as the index of the 

first negative element of b∗
𝑃
(𝜎(𝑘)

𝑟 ). 𝜎𝑡 is selected by using Ridder’s method [14], which tests two 𝜎 values per iteration. At this stage, 
Halley-Ridder (H-R) method is proposed which tests three 𝜎 values per iteration for step 3(a), and makes minimization by using a 
hybridization approach to move out of the initial interval. The procedure is given as follows:

• Compute b𝑃 (0); check the realisability of 𝑚2𝑃 =𝑚∗
2𝑃 and check the positivity of the elements in the vector b𝑃 (0).

• [𝜎(0)
𝑙

, 𝜎(0)
𝑟 ] = [0, 1] (initial interval)

• Iterate over 𝑘
– Identify 𝑗, if defined

* 𝜎𝑡1
=

𝜎
(𝑘−1)
𝑙

− 𝜎
(𝑘−1)
𝑟

2

* 𝜎𝑡2
= 𝜎𝑡1

+ (𝜎𝑡1
− 𝜎

(𝑘−1)
𝑙

)
𝑏∗
𝑗
(𝜎𝑡1

)√
𝑏∗
𝑗
(𝜎𝑡1

)2 − 𝑏∗
𝑗
(𝜎(𝑘−1)

𝑙
) ∗ 𝑏∗

𝑗
(𝜎(𝑘−1)

𝑟 )

* 𝑋 =
𝑏∗
𝑗
(𝜎(𝑘−1)

𝑟 ) − 𝑏∗
𝑗
(𝜎𝑡2

)

𝜎
(𝑘−1)
𝑟 − 𝜎𝑡2

* 𝑌 =
𝑏∗
𝑗
(𝜎𝑡2

) − 𝑏∗
𝑗
(𝜎(𝑘−1)

𝑙
)

𝜎𝑡2
− 𝜎

(𝑘−1)
𝑙

* 𝑍 = 𝑋 − 𝑌

𝜎
(𝑘−1)
𝑟 − 𝜎

(𝑘−1)
𝑙

* 𝜎𝑡3
= 𝜎

(𝑘−1)
𝑟 −

2𝑏∗
𝑗
(𝜎(𝑘−1)

𝑟 )𝑋

2𝑋2 − 𝑏∗
𝑗
(𝜎(𝑘−1)

𝑟 )𝑍

* Set 𝜎(𝑘)
𝑙

as the maximum value among 𝜎(𝑘−1)
𝑙

, 𝜎𝑡1
, 𝜎𝑡2

and 𝜎𝑡3
such that all elements of the vector b∗

𝑃
are positive.

* Set 𝜎(𝑘)
𝑟 as the minimum value among 𝜎(𝑘−1)

𝑟 , 𝜎𝑡1
, 𝜎𝑡2

and 𝜎𝑡3
such that at least one element of the vector b∗

𝑃
is negative.

– else

* 𝜎𝑡1
=

𝜎
(𝑘−1)
𝑙

− 𝜎
(𝑘−1)
𝑟

2

* 𝜎𝑡2
= 𝜎

(𝑘−1)
𝑟 + 𝜎𝑡1

+ (𝜎𝑡1
− 𝜎

(𝑘−1)
𝑙

)
𝑏∗
𝑃
(𝜎𝑡1

)√
∣ 𝑏∗

𝑃
(𝜎𝑡1

)2 − 𝑏∗
𝑃
(𝜎(𝑘−1)

𝑙
) ∗ 𝑏∗

𝑃
(𝜎(𝑘−1)

𝑟 ) ∣

* 𝑋 =
𝑏∗
𝑃
(𝜎(𝑘−1)

𝑟 ) − 𝑏∗
𝑃
(𝜎𝑡2

)

𝜎
(𝑘−1)
𝑟 − 𝜎𝑡2

* 𝑌 =
𝑏∗
𝑃
(𝜎𝑡2

) − 𝑏∗
𝑃
(𝜎(𝑘−1)

𝑙
)

𝜎𝑡2
− 𝜎

(𝑘−1)
𝑙

* 𝑍 = 𝑋 − 𝑌

𝜎
(𝑘−1)
𝑟 − 𝜎

(𝑘−1)
𝑙

* 𝜎𝑡3
=∣ 2𝜎(𝑘−1)

𝑟 −
2𝑏∗

𝑃
(𝜎(𝑘−1)

𝑟 )𝑋

2𝑋2 − 𝑏∗
𝑃
(𝜎(𝑘−1)

𝑟 )𝑍
∣

* Identify 𝑗

* if the negative element defined for both b∗
𝑃
(𝜎(𝑘−1)

𝑡2
) and b∗

𝑃
(𝜎(𝑘−1)

𝑡3
), assign 𝜎𝑘+1

𝑙
= 𝜎

(𝑘−1)
𝑟 . If 𝜎(𝑘−1)

𝑡2
> 𝜎

(𝑘−1)
𝑡3

then assign 𝜎(𝑘+1)
𝑟 =

𝜎
(𝑘−1)
𝑡3

else 𝜎(𝑘+1)
𝑟 = 𝜎

(𝑘−1)
𝑡2

.

* Only if the negative element of b∗
𝑃
(𝜎(𝑘−1)

𝑡2
), assign 𝜎𝑘+1

𝑙
= 𝜎

(𝑘−1)
𝑟 and 𝜎(𝑘+1)

𝑟 = 𝜎
(𝑘−1)
𝑡2

.

* Only if the negative element of b∗
𝑃
(𝜎(𝑘−1)

𝑡3
), assign 𝜎𝑘+1

𝑙
= 𝜎

(𝑘−1)
𝑟 and 𝜎(𝑘+1)

𝑟 = 𝜎
(𝑘−1)
𝑡3

.

* if no 𝑗 is defined

· Calculate 𝑏∗
𝑃
(𝜎(𝑘−1)

𝑙
), 𝑏∗

𝑃
(𝜎(𝑘−1)

𝑟 ), 𝑏∗
𝑃
(𝜎𝑡1

), 𝑏∗
𝑃
(𝜎𝑡2

) and 𝑏∗
𝑃
(𝜎𝑡3

).
· Assign those 𝜎(𝑘−1)

𝑙
, 𝜎(𝑘−1)

𝑟 , 𝜎𝑡1
, 𝜎𝑡2

and 𝜎𝑡3
that correspond to the two smallest 𝑏∗

𝑃
values in absolute value as 𝜎(𝑘−1)

𝑙
and 

𝜎
(𝑘−1)
𝑟 .

For simplicity, [0, 1] is taken as the initial interval. The computation is stopped if 𝜎(𝑘)
𝑟 −𝜎

(𝑘)
𝑙

< 𝜖 or 𝑏∗
𝑃
(𝜎𝑘

𝑙
) < 𝜖𝑏∗

𝑃
(0), with 𝜖 as a relative 

tolerance. Then the weights 𝑤𝑃 and nodes 𝜉𝑃 of the reconstruction are computed using a Gauss quadrature based on recurring 
8

coefficients a∗(𝜎(𝑘)
𝑙

) and b∗(𝜎(𝑘)
𝑙

).
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Fig. 2. Evolution of 𝜁∗
𝑘
(𝜎), where 𝑘 = 2, 3, 4, 5, 6 for Weibull kernel. The initial moment sets are 𝑚

(𝑎)
6 = [1 1.5 12 131 1520 18033 2.16𝑒5]𝑇 , 𝑚

(𝑏)
6 =

[1 5.5 78 1285 22225 4.05𝑒5 7.88𝑒6]𝑇 and 𝑚(𝑐)
6 = [1 1 2 5 14 42 133]𝑇 as given in Pigou et al. [16].

4.4. Stieltjes moment problem

A necessary and sufficient condition that there should exist at least one non-decreasing function 𝑑𝜇(𝜉) = 𝜂(𝜉)𝑑𝜉 such that

𝜇𝑘 =

∞

∫
0

𝜉𝑘𝑑𝜇(𝜉)

for 𝑘 = 0, 1, 2, …, with all the integrals converging, is that the sequence {𝜇𝑘}∞0 is positive definite [34].

4.4.1. Application of Halley-Ridder (H-R) method to the Stieltjes problem

As stated in case (c) from Section 4.1, one of the realisability criteria to calculate the parameters of the quadrature is looking for 
𝜎 such that 𝜁∗

𝑘
(𝜎) > 0, ∀𝑘 ∈ 1,2,… ,𝑁 − 1 and 𝜁∗

𝑁
(𝜎) = 0. Several randomly selected moment sets are taken for testing purpose. Fig. 2

shows the evolution of 𝜁∗
𝑘
(𝜎), 𝑘 = 2, 3, 4, 5, 6 for three moment sets taken from Pigou et al. [16] when used for the Weibull kernel. 

Fig. 2a shows all the roots 𝜎𝑘, 𝑘 ∈ 2,3,… ,𝑁 are defined, Fig. 2b shows the root 𝜎𝑁 exist while some roots 𝜎𝑘, 𝑘 ∈ 3,4,… ,𝑁 − 1, are 
not defined and Fig. 2c shows the root 𝜎𝑁 is not defined.

In the first and second situations, the EQMOM approximation is well defined, because 𝜎𝑁 exists. In the third situation, the root 
𝜎𝑁 does not exist in the range, where 𝜁∗

𝑘
(𝜎), 𝑘 ∈ 2,3,… ,𝑁 − 1 are positive. So instead of root finding algorithm, minimization is 

required here.
Similarly, the method for reconstruction of kernels defined in Ω𝜉 = (0, +∞) can be given in Section 4.3.1 by making a little 

adjustment:

• Compute 𝜁∗
𝑁
(0); check the realisability of 𝑚2𝑃 =𝑚∗

2𝑃 and check the positivity of the elements in the vector 𝜁∗
𝑁
(0).

• [𝜎(0)
𝑙

, 𝜎(0)
𝑟 ] = [0, 1] (initial interval)

• Iterate over 𝑘
– Identify 𝑗, if defined

* 𝜎𝑡1
=

𝜎
(𝑘−1)
𝑙

− 𝜎
(𝑘−1)
𝑟

2

* 𝜎𝑡2
= 𝜎𝑡1

+ (𝜎𝑡1
− 𝜎

(𝑘−1)
𝑙

)
𝜁∗
𝑗
(𝜎𝑡1

)√
𝜁∗
𝑗
(𝜎𝑡1

)2 − 𝜁∗
𝑗
(𝜎(𝑘−1)

𝑙
) ∗ 𝜁∗

𝑗
(𝜎(𝑘−1)

𝑟 )

𝑋 =
𝜁∗
𝑗
(𝜎(𝑘−1)

𝑟 ) − 𝜁∗
𝑗
(𝜎𝑡2

)

9

*
𝜎
(𝑘−1)
𝑟 − 𝜎𝑡2
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* 𝑌 =
𝜁∗
𝑗
(𝜎𝑡2

) − 𝜁∗
𝑗
(𝜎(𝑘−1)

𝑙
)

𝜎𝑡2
− 𝜎

(𝑘−1)
𝑙

* 𝑍 = 𝑋 − 𝑌

𝜎
(𝑘−1)
𝑟 − 𝜎

(𝑘−1)
𝑙

* 𝜎𝑡3
= 𝜎

(𝑘−1)
𝑟 −

2𝜁∗
𝑗
(𝜎𝑘−1)

𝑟 )𝑋

2𝑋2 − 𝜁∗
𝑗
(𝜎(𝑘−1)

𝑟 )𝑍

* Set 𝜎(𝑘)
𝑙

as the maximum value among 𝜎(𝑘−1)
𝑙

, 𝜎𝑡1
, 𝜎𝑡2

and 𝜎𝑡3
such that all the elements of the vector 𝜁∗

𝑁
are positive.

* Set 𝜎(𝑘)
𝑟 as the minimum value among 𝜎(𝑘−1)

𝑟 , 𝜎𝑡1
, 𝜎𝑡2

and 𝜎𝑡3
such that at least one of element of the vector 𝜁∗

𝑁
is negative.

– else

* 𝜎𝑡1
=

𝜎
(𝑘−1)
𝑙

− 𝜎
(𝑘−1)
𝑟

2

* 𝜎𝑡2
= 𝜎

(𝑘−1)
𝑟 + 𝜎𝑡1

+ (𝜎𝑡1
− 𝜎

(𝑘−1)
𝑙

)
𝜁∗2𝑃 (𝜎𝑡1

)√
∣ 𝜁∗2𝑃 (𝜎𝑡1

)2 − 𝜁∗2𝑃 (𝜎
(𝑘−1)
𝑙

) ∗ 𝜁∗2𝑃 (𝜎
(𝑘−1)
𝑟 ) ∣

* 𝑋 =
𝜁∗2𝑃 (𝜎

(𝑘−1)
𝑟 ) − 𝜁∗2𝑃 (𝜎𝑡2

)

𝜎
(𝑘−1)
𝑟 − 𝜎𝑡2

* 𝑌 =
𝜁∗2𝑃 (𝜎𝑡2

) − 𝜁∗2𝑃 (𝜎
(𝑘−1)
𝑙

)

𝜎𝑡2
− 𝜎

(𝑘−1)
𝑙

* 𝑍 = 𝑋 − 𝑌

𝜎
(𝑘−1)
𝑟 − 𝜎

(𝑘−1)
𝑙

* 𝜎𝑡3
=∣ 2𝜎(𝑘−1)

𝑟 −
2𝜁∗2𝑃 (𝜎

(𝑘−1)
𝑟 )𝑋

2𝑋2 − 𝜁∗2𝑃 (𝜎
(𝑘−1)
𝑟 )𝑍

∣

* Identify 𝑗.
* if the negative element is defined for both 𝜁∗

𝑁
(𝜎(𝑘−1)

𝑡2
) and 𝜁∗

𝑁
(𝜎(𝑘−1)

𝑡3
), assign 𝜎𝑘+1

𝑙
= 𝜎

(𝑘−1)
𝑟 . If 𝜎(𝑘−1)

𝑡2
> 𝜎

(𝑘−1)
𝑡3

then assign 
𝜎
(𝑘+1)
𝑟 = 𝜎

(𝑘−1)
𝑡3

else 𝜎(𝑘+1)
𝑟 = 𝜎

(𝑘−1)
𝑡2

.

* Only if the negative element of 𝜁∗
𝑁
(𝜎(𝑘−1)

𝑡2
) exists, assign 𝜎𝑘+1

𝑙
= 𝜎

(𝑘−1)
𝑟 and 𝜎(𝑘+1)

𝑟 = 𝜎
(𝑘−1)
𝑡2

.

* Only if the negative element of 𝜁∗
𝑁
(𝜎(𝑘−1)

𝑡3
) exists, assign 𝜎𝑘+1

𝑙
= 𝜎

(𝑘−1)
𝑟 and 𝜎(𝑘+1)

𝑟 = 𝜎
(𝑘−1)
𝑡3

.

* if no 𝑗 is defined

· Calculate 𝜁∗2𝑃 (𝜎
(𝑘−1)
𝑙

), 𝜁∗2𝑃 (𝜎
(𝑘−1)
𝑟 ), 𝜁∗2𝑃 (𝜎𝑡1

), 𝜁∗2𝑃 (𝜎𝑡2
) and 𝜁∗2𝑃 (𝜎𝑡3

).
· Assign those 𝜎(𝑘−1)

𝑙
, 𝜎(𝑘−1)

𝑟 , 𝜎𝑡1
, 𝜎𝑡2

and 𝜎𝑡3
that correspond to the two smallest 𝑏∗

𝑃
values in absolute value as 𝜎(𝑘−1)

𝑙
and 

𝜎
(𝑘−1)
𝑟 .

Stop the computation if 𝜎(𝑘)
𝑟 − 𝜎

(𝑘)
𝑙

< 𝜖 or 𝜁∗
𝑁
(𝜎𝑘

𝑙
) < 𝜖𝜁∗

𝑁
(0), with 𝜖 as a relative tolerance. Then the weights 𝑤𝑃 and nodes 𝜉𝑃 of the 

reconstruction are computed using a Gauss quadrature based on recurring coefficients a∗(𝜎(𝑘)
𝑙

) and b∗(𝜎(𝑘)
𝑙

).

4.5. Hausdorff moment problem

A sufficient and necessary condition is that there should exist at least one non-decreasing function 𝑑𝜇(𝜉) = 𝜂(𝜉)𝑑𝜉 such that

𝜇𝑘 =

1

∫
0

𝜉𝑘𝑑𝜇(𝜉)

for 𝑘 = 0, 1, 2, …, with all the integrals converging the sequence {𝜇𝑘}∞0 is a positive definite [34].

4.5.1. Application of Halley-Ridder (H-R) method to the Hausdorff problem

As stated in case (c) from Section 4.1, one of the realisability criteria of EQMOM moment-inversion procedure is to compute for 
𝜎 such that 𝜏∗

𝑘
(𝜎) ∈ (0, 1), ∀𝑘 ∈ 1,2,… ,𝑁 − 1 and 𝜏∗

𝑁
(𝜎) = 0. Several randomly selected moment sets are taken for testing purpose. For 
10

the Beta kernel, the evolution of 𝜏∗
𝑘
(𝜎), 𝑘 = 2, 3, 4, 5, 6 is shown in Fig. 3 such that the initial moment sets are
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Fig. 3. Evolution of 𝜏∗
𝑘
(𝜎), where 𝑘 = 2,3,5,6 for Beta kernel with the initial moments sets mentioned in Eq. (20).

𝑚
(1)
6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.8
0.736

0.69632
0.6659584

0.640222208
0.61713719296

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑚
(2)
6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.5

0.2875
0.174875
0.10929325
0.0695751215

0.045108235453

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑚
(3)
6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.409890129103329
0.314508552447814
0.268912990299659
0.240626997247657
0.220778450679946
0.205805473717484

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,𝑚

(4)
6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.445967016759259
0.361907331989521
0.320071825637556
0.293507585949640
0.274561571617238
0.260088628766843

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

which are taken from Pigou et al. [16]. The explanation of Figs. 3(a-d) are as follows:

• Fig. 3a: the root 𝜎𝑁 of 𝜏∗2𝑃 (𝜎) exists and the EQMOM Beta kernel is well defined
• Fig. 3b: the root 𝜎𝑁 and 𝜎𝑁−1 are not defined in the interval, where 𝜏∗

𝑘
(𝜎), 𝑘 ∈ 2,3,… ,𝑁 − 2 are all positive.

• Fig. 3c: 𝜏∗
𝑁
(𝜎) has more than a root.

• Fig. 3d: 𝜎𝑁 is defined but there is an interval in which convergence criteria is undefined.

The procedure given in Section 4.3.1 can be applied to the Hausdorff problem by checking if all of the elements of 𝜏∗2𝑃 (𝜎) fall into 
the interval (0, 1).

• Check the realisability of m2𝑃 = m∗
2𝑃 by computing 𝜏∗

𝑁
(0) and check if all elements fall into (0, 1)

• [𝜎(0)
𝑙

, 𝜎(0)
𝑟 ] = [0, 1] (initial interval) and 𝜎2 is the analytic solution of 𝜏∗2 (𝜎)

• Iterate over 𝑘
– identify 𝑗 as the index of the first element of 𝜏∗

𝑁
(𝜎(𝑘−1)

𝑟 ) being negative or higher than 1, if defined

* 𝜎𝑡1
=

𝜎
(𝑘−1)
𝑙

− 𝜎
(𝑘−1)
𝑟

2

11

* if 𝑗 < 𝑁 and 𝜏∗
𝑗
(𝜎(𝑘−1)

𝑟 ) > 1,
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· 𝜎𝑡2
= 𝜎𝑡1

+ (𝜎𝑡1
− 𝜎

(𝑘−1)
𝑙

)
1 − 𝜏∗

𝑗
(𝜎𝑡1

)√
(1 − 𝜏∗

𝑗
(𝜎𝑡1

))2 − (1 − 𝜏∗
𝑗
(𝜎(𝑘−1)

𝑙
)) ∗ (1 − 𝜏∗

𝑗
(𝜎(𝑘−1)

𝑟 ))

* if 𝑗 =𝑁 or 𝜏∗
𝑗
(𝜎(𝑘−1)

𝑟 ) < 0

· 𝜎𝑡2
= 𝜎𝑡1

+ (𝜎𝑡1
− 𝜎

(𝑘−1)
𝑙

)
𝜏∗
𝑗
(𝜎𝑡1

)√
𝜏∗
𝑗
(𝜎𝑡1

)2 − 𝜏∗
𝑗
(𝜎(𝑘−1)

𝑙
) ∗ 𝜏∗

𝑗
(𝜎(𝑘−1)

𝑟 )

* 𝑋 =
𝜏∗
𝑗
(𝜎(𝑘−1)

𝑟 ) − 𝜏∗
𝑗
(𝜎𝑡2

)

𝜎
(𝑘−1)
𝑟 − 𝜎𝑡2

* 𝑌 =
𝜏∗
𝑗
(𝜎𝑡2

) − 𝜏∗
𝑗
(𝜎(𝑘−1)

𝑙
)

𝜎𝑡2
− 𝜎

(𝑘−1)
𝑙

* 𝑍 = 𝑋 − 𝑌

𝜎
(𝑘−1)
𝑟 − 𝜎

(𝑘−1)
𝑙

* if 𝑗 =𝑁 or 𝜏∗
𝑗
(𝜎(𝑘−1)

𝑟 ) < 0

· 𝜎𝑡3
= 𝜎

(𝑘−1)
𝑟 −

2(1 − 𝜏∗
𝑗
(𝜎𝑘−1)

𝑟 ))𝑍

2𝑍2 − (1 − 𝜏∗
𝑗
(𝜎(𝑘−1)

𝑟 ))𝑍

* if 𝑗 =𝑁 or 𝜏∗
𝑗
(𝜎(𝑘−1)

𝑟 ) < 0

· 𝜎𝑡3
= 𝜎

(𝑘−1)
𝑟 −

2𝜏∗
𝑗
(𝜎𝑘−1)

𝑟 )𝑍

2𝑍2 − 𝜏∗
𝑗
(𝜎(𝑘−1)

𝑟 )𝑍
– else

* 𝜎𝑡1
=

𝜎
(𝑘−1)
𝑙

− 𝜎
(𝑘−1)
𝑟

2

* 𝜎𝑡2
= 𝜎

(𝑘−1)
𝑟 + 𝜎𝑡1

+ (𝜎𝑡1
− 𝜎

(𝑘−1)
𝑙

)
𝜏∗2𝑃 (𝜎𝑡1

)√
∣ 𝜏∗2𝑃 (𝜎𝑡1

)2 − 𝜏∗2𝑃 (𝜎
(𝑘−1)
𝑙

) ∗ 𝜏∗2𝑃 (𝜎
(𝑘−1)
𝑟 ) ∣

* 𝑋 =
𝜏∗2𝑃 (𝜎

(𝑘−1)
𝑟 ) − 𝜏∗2𝑃 (𝜎𝑡2

)

𝜎
(𝑘−1)
𝑟 − 𝜎𝑡2

* 𝑌 =
𝜏∗2𝑃 (𝜎𝑡2

) − 𝜏∗2𝑃 (𝜎
(𝑘−1)
𝑙

)

𝜎𝑡2
− 𝜎

(𝑘−1)
𝑙

* 𝑍 = 𝑋 − 𝑌

𝜎
(𝑘−1)
𝑟 − 𝜎

(𝑘−1)
𝑙

* 𝜎𝑡3
=∣ 2𝜎(𝑘−1)

𝑟 −
2𝜏∗2𝑃 (𝜎

(𝑘−1)
𝑟 )𝑋

2𝑋2 − 𝜏∗2𝑃 (𝜎
(𝑘−1)
𝑟 )𝑍

∣

* Identify 𝑗 as the index of the first negative or bigger than 1 element of 𝜏∗
𝑁
(𝜎(𝑘−1)

𝑡2
) and 𝜏∗

𝑁
(𝜎(𝑘−1)

𝑡2
).

* if the negative or bigger than 1 element defined for both 𝜏∗
𝑁
(𝜎(𝑘−1)

𝑡2
) and 𝜁∗

𝑁
(𝜎(𝑘−1)

𝑡3
), assign 𝜎𝑘+1

𝑙
= 𝜎

(𝑘−1)
𝑟 . If 𝜎(𝑘−1)

𝑡2
> 𝜎

(𝑘−1)
𝑡3

then 
assign 𝜎(𝑘+1)

𝑟 = 𝜎
(𝑘−1)
𝑡3

else 𝜎(𝑘+1)
𝑟 = 𝜎

(𝑘−1)
𝑡2

.

* Only if the negative or bigger than 1 element of 𝜏∗
𝑁
(𝜎(𝑘−1)

𝑡2
) is defined, assign 𝜎𝑘+1

𝑙
= 𝜎

(𝑘−1)
𝑟 and 𝜎(𝑘+1)

𝑟 = 𝜎
(𝑘−1)
𝑡2

.

* Only if the negative or bigger than 1 element of 𝜏∗
𝑁
(𝜎(𝑘−1)

𝑡3
) is defined, assign 𝜎𝑘+1

𝑙
= 𝜎

(𝑘−1)
𝑟 and 𝜎(𝑘+1)

𝑟 = 𝜎
(𝑘−1)
𝑡3

.

* if no 𝑗 is defined
· Calculate 𝜏∗2𝑃 (𝜎

(𝑘−1)
𝑙

), 𝜏∗2𝑃 (𝜎
(𝑘−1)
𝑟 ), 𝜏∗2𝑃 (𝜎𝑡1

), 𝜏∗2𝑃 (𝜎𝑡2
) and 𝜏∗2𝑃 (𝜎𝑡3

).
· Assign those 𝜎(𝑘−1)

𝑙
, 𝜎(𝑘−1)

𝑟 , 𝜎𝑡1
, 𝜎𝑡2

and 𝜎𝑡3
that correspond to the two smallest 𝑏∗

𝑃
values in absolute value as 𝜎(𝑘−1)

𝑙
and 

𝜎
(𝑘−1)
𝑟 .

– if 𝜏∗
𝑁
(𝜎𝑘

𝑙
) > 𝜖𝜏∗

𝑁
(0), update initial interval as [1, 𝜎2] and run the procedure by making the if queries before else for 𝜎(𝑘−1)

𝑙
.

Stop the computation if 𝜎(𝑘)
𝑟 − 𝜎

(𝑘)
𝑙

< 𝜖 or 𝜏∗
𝑁
(𝜎𝑘

𝑙
) < 𝜖𝜏∗

𝑁
(0), with 𝜖 as a relative tolerance. For 𝜏∗

𝑁
(𝜎𝑘

𝑙
) > 𝜖𝜏∗

𝑁
(0), if the algorithm cannot 

find 𝜎𝑃 in the range [1, 𝜎2], the 𝜎𝑃 found in the range [0, 1] is used. Then the weights 𝑤𝑃 and nodes 𝜉𝑃 of the reconstruction are 
computed using a Gauss quadrature based on recurring coefficients a∗(𝜎(𝑘)

𝑙
) and b∗(𝜎(𝑘)

𝑙
).

5. Tested moment sets

A sufficient and necessary condition is that there should exist at least one non-decreasing function 𝑑𝜇(𝜉) = 𝜂(𝜉)𝑑𝜉 such that The 
H-R method is tested for several kernels defined on: Gauss and Laplace kernels where Ω𝜉 = (−∞, ∞), Gamma and Weibull kernels 
12

where Ω𝜉 = (0, +∞) and Beta kernel where Ω𝜉 = (0, 1), using Python implementations. Also, to see gain in number of tested 𝜎 values, 
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the procedure [16] is performed for the same kernels, using Python 3.10. The gain indicates the percentage by which the number of 
iterations decreases in the proposed Halley-Ridder’s method as compared to Ridder’s method used by Pigou et al. [16].

Since the moment-inversion procedure used in this study is obtained by improving the moment-inversion procedure of Pigou 
et al. [16], it is necessary to know how these tested moment sets are obtained. Moments sets for Log-normal, Gauss, and Laplace 
kernels defined on Ω𝜉 = (−∞, ∞) were both taken from [16] and were constructed by random vectors a𝑃−1 and b𝑃 using a reversed 
Chebyshev algorithm. The elements of these vectors are calculated by the following distribution laws:

𝑎𝑘 ∼ (0,25), 𝑘 ∈ 0,… , 𝑃 − 1

𝑏𝑘 ∼ 1 +𝐸𝑥𝑝(4), 𝑘 ∈ 1,… , 𝑃
.

Similarly, moments sets for Gamma and Weibull kernels defined on Ω𝜉 = (0, +∞) were both taken from [16] and constructed by 
random vectors 𝜁2𝑃 using a reversed 𝜁 -Chebyshev algorithm. The elements of these vectors are calculated using:

𝜁𝑘 ∼ 1 +𝐸𝑥𝑝(4), 𝑘 ∈ 1,… ,2𝑃

𝜁2𝑃 ∼𝐸𝑥𝑝(0.5)

Also, moments sets for kernel defined on Ω𝜉 = (0, 1) were constructed by random vectors 𝜏2𝑃 using a reversed 𝜏-Chebyshev algorithm. 
Elements of these vectors are calculated using:

𝜏𝑘 ∼ (0,1), 𝑘 ∈ 1,… ,2𝑃 .

Using the proposed Halley-Ridder moment-inversion procedure, the number of iterations required for the convergence is calculated 
for the tested moment sets.

6. Results and discussions

The H-R method proposed in this study and the method proposed by Pigou et al. [16] are applied to the moments sets obtained 
from [16]. Table 1 shows the results of these two methods which indicates a reduction in the number of 𝜎 values. Since the H-R 
method shows a decrease compared to the method used by Pigou et al. [16] in terms of tested 𝜎 values, it also means a decrease 
compared to the method used by Nguyen et al. [15]. This reduction is mainly due to the H-R methodology which gives a better 
choice for the tested shape parameter 𝜎 values and uses three values to update the interval while the method of Pigou et al. [16]
used two values. The coefficient of variation in the number of 𝜎 values for each tested Kernel Density Functions (KDFs) is shown by 
the ratio of standard deviation to mean in Table 2. As seen in the table, there is no significant difference between the Halley-Ridder 
method used in this study and Ridder’s method used in Pigou et al. [16]. In other words, there is no significant difference in the 
extent of variability of the two procedures relative to the mean of the tested 𝜎 values. In the proposed H-R method, because of using 
three values to update the range, an increase in the number of floating point operations (FLOPS) can be observed with a decrease in 
the number of 𝜎 values. The increase in number of FLOPS using the H-R method compared to the method proposed by Pigou et al. 
[16] is shown in Table 3 for all tested kernels and moment sets by considering linear system, Chebyshev algorithm and calculation 
of the root 𝜎𝑃 . From Table 1 and Table 3, it can be seen that as the number of 𝜎 values decreases, the difference in number of FLOPS 
between the two methods also decreases. Both conditions of moment sets being near the boundary and far from the boundary of the 
realisable moment space are tested. However, it did not have an effect on increasing or decreasing the 𝜎 values and FLOPS numbers. 
The most expensive operation in both the methods is the calculation of eigenvalues and eigenvectors of the tridiagonal symmetric 
matrix where the Jacobi algorithm was used. As a suggestion, divide and conquer algorithm [35] can be used instead of Jacobi 
algorithm because an advantage is that it can be used to calculate all or part of the eigenvalues of a symmetric matrix using parallel 
computation.

Moreover, for Beta kernel defined in Ω𝜉 = (0, 1) in the case given in Fig. 3(c), the lowest root is calculated by the H-R method 
even they are very close to each other. So a small change in the raw moments will only cause a small change in the resulting shape 

Fig. 4. Evolution of number density function (NDF) at 𝑡 = 20 (𝜂(𝑟, 20)): exact (solid orange line) vs. numerical (dashed blue line) with LogN KDF (left) for 𝑃 = 3 and 
13

Gamma KDF (right) for 𝑃 = 4, for diffusion-controlled growth.
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Table 1

Difference in gain for all the tested kernels and moment sets used in this study in comparison to Pigou et al. [16]. The numbers indicate a statistical average of 10,000 
moment sets.

Tested kernels Realisability P=2 P=3 P=4 P=5
of moment set

Gauss Strict 30.3±9.4 29.8±5.1 32.7±8.7 22.3±4.8
Weak 19.8±1.2 17.8±11.5 16.8±7.1 17.0±3.5

Laplace Strict 21.4±23.0 24.0±6.8 21.0±11.8 20.2±8.0
Weak 10.2±6.3 35.4±13.4 15.0±10.3 15.4±2.2

Log-normal Strict 37.3±36.5 25.0±37.6 16.6±62.8 10.3±36.0
Weak 34.3±58.6 21.9±40.5 12.8±25.5 4.6±20.2

Gamma Strict 33.1±35.2 33.6±15.8 32.2±27.3 28.0±19.2
Weak 43.6±71.3 33.2±36.8 33.7±28.5 28.9±21.8

Weibull Strict 33.9±38.1 20.8±24.8 14.7±22.0 13.5±23.8
Weak 41.8±58.8 29.5±32.5 14.6±11.7 10.5±4.6

Table 2

Coefficient of variation (standard deviation/mean) for the distribution of tested shape parameter 𝜎 values for various kernels. Only moment sets generated far from 
the realisable moment space are considered.

Tested kernels Realisability P=2 P=3 P=4 P=5
of moment set

Gauss this study 0.29 0.24 0.23 0.22
Pigou et al. [16] 0.18 0.18 0.16 0.16

Laplace this study 0.30 0.25 0.22 0.21
Pigou et al. [16] 0.19 0.18 0.16 0.16

Log-normal this study 0.25 0.19 0.17 0.16
Pigou et al. [16] 0.25 0.23 0.23 0.23

Gamma this study 0.38 0.27 0.20 0.21
Pigou et al. [16] 0.39 0.21 0.19 0.18

Weibull this study 0.26 0.21 0.19 0.18
Pigou et al. [16] 0.27 0.22 0.21 0.21

Table 3

Difference in the number of FLOPS for all the tested kernels and moment sets used in this study in comparison to Pigou et al. [16]. The numbers indicate a statistical 
average of 10,000 moment sets.

Tested kernels Realisability P=2 P=3 P=4 P=5
of moment set

Gauss Strict 30.9±16.6 25.3±9.8 21.1±7.6 23.0±7.2
Weak 47.3±19.9 38.3±15.3 33.6±11.3 28.1±9.0

Laplace Strict 44.7±24.2 33.9±14.0 30.0±10.5 27.3±8.6
Weak 63.0±26.1 45.4±18.3 38.2±13.0 32.9±10.6

Log-normal Strict 34.8±13.2 35.1±17.1 32.2±5.1 28.8±4.2
Weak 40.0±4.0 37.5±7.6 33.7±7.6 30.5±6.6

Gamma Strict 34.8±40.4 24.7±10.5 21.1±5.7 19.9±5.4
Weak 22.2±3.3 23.7±5.7 19.0±5.1 18.6±5.0

Weibull Strict 38.0±13.0 36.9±9.9 32.5±7.1 21.4±0.5
Weak 45.3±4.9 39.9±10.5 33.6±9.4 23.0±1.8

parameter values. In the case given in Fig. 3(d), the root being out of [0, 1] is calculated by the H-R method. Such moment vectors 
are rarely encountered in the generated tested moment set.

6.1. Test cases for validation of the proposed method

The system of moment equations (7) for growth by using quadrature approximation, for 𝑘 ∈ ℕ, can be given as

𝑚𝑘 𝜉𝑚𝑎𝑥

𝑃∑ 𝑄∑ (𝜎) 𝑘−1
14

𝑑𝑡
= −𝑔(𝑡, 𝜉)𝜂(𝑡, 𝜉)|0 + 𝑘

𝑖=1
𝑤𝑖

𝑗=1
𝜔

𝑗
𝜉
𝑖𝑗

𝑔(𝑡, 𝜉𝑖𝑗 ), (21)
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Fig. 5. Evolution of 𝜁∗
𝑘
(𝜎), where 𝑘 = 2,3,4,5,6,7,8 for Diffusion-controlled growth with LogN KDF at 𝑡 = 0,3,10,20.

where 𝜉𝑖𝑗 = 𝜉𝑖𝜆
(𝜎)
𝑗

for Gauss-Wigert and 𝜉𝑖𝑗 = 𝜎𝜆
(𝜎)
𝑗

for Gauss-Laguerre quadrature approximations.
The system of moment equations for aggregation by using Gauss-Wigert quadrature approximation (13), for 𝑘 ∈ ℕ can be given 

as

𝑚𝑘

𝑑𝑡
= 1

2

𝑃∑
𝑖1=1

𝑄𝑖1∑
𝑗1=1

𝑃∑
𝑖2=1

𝑄𝑖2∑
𝑗2=1

𝑤𝑖1𝑗1
𝑤𝑖2𝑗2

[(𝜉𝑖1𝑗1 + 𝜉𝑖2𝑗2
)𝑘 − 𝜉𝑘

𝑖1𝑗1
− 𝜉𝑘

𝑖2𝑗2
]𝛽(𝜉𝑖1𝑗1 , 𝜉𝑖2𝑗2 ), (22)

where 𝜉𝑖1𝑗1 = 𝜉𝑖1
𝜆
(𝜎)
𝑗1

, 𝜉𝑖2𝑗2 = 𝜉𝑖2
𝜆
(𝜎)
𝑗2

, 𝑤𝑖1𝑗1
= 𝑤𝑖1

𝜔
(𝜎)
𝑗1

and 𝑤𝑖2𝑗2
= 𝑤𝑖2

𝜔
(𝜎)
𝑗2

. This quadrature rule needs to be calculated for each value of 
𝜎. For each Gamma KDF, this becomes

𝛿𝜎 (𝜉, 𝜉𝑖) =
𝜉𝑙−1𝑒𝑥𝑝(−𝜉∕𝜎)

Γ(𝑙)𝜎𝑙
(23)

with 𝑙 =
𝜉𝑖

𝜎
and Γ(𝑥) = ∫ ∞

0 𝑡𝑥−1𝑒−𝑡𝑑𝑡.

Similarly, the system of moment equations can be obtained by substituting Gauss-Laguerre quadrature approximation (14) in (7). 
This quadrature rule needs to be calculated for each value of 𝜎. For each LogN KDF, this becomes

𝛿𝜎 (𝜉, 𝜉𝑖) =
1

𝜎𝜉
√
2𝜋

𝑒𝑥𝑝(−
(log (𝜉) − log (𝜉𝑖))2

2𝜎2 . (24)

Case 1: Diffusion-controlled growth

A pure diffusion-controlled growth case described by McGraw [21] is considered here. In this case, the chosen internal coordinate for 
the size variable is radius 𝑟 (𝜇𝑚)). The initial distribution is given by 𝜂(0, 𝑟) = 0.108𝑒−0.6𝑟. The growth rate is given by 𝑅𝑔𝑟𝑜𝑤 = 2.34𝑟.

Using the particle radius as the interval variable, the analytic solution is given by:

𝜂(𝑡, 𝑟) = 0.108𝑟
√

𝑟2 − 2
3
2.34𝑡 exp(−𝑏

√
𝑟2 − 2

3
2.34𝑡). (25)

The results for the test case are presented by using the LogN KDF for 𝑃 = 3 and Gamma KDF for 𝑃 = 4 with the moment-inversion 
procedure based on Halley-Ridder (H-R) method in Fig. 4. It can be observed that the reconstructed NDFs are very similar for both 
LogN and Gamma KDFs, and relatively match better with the exact solution than Nguyen et al.[15]. If considering surface growth, it 
can be deduced from Fig. 4 that the results can be improved by using multiple moments. As seen in Fig. 4, there exists a discrepancy 
with the analytical solution for LogN KDF similar to the results of Nguyen et al. [15]. To explain this discrepancy, the evolution 
of 𝜁∗2 (𝜎), 𝜁

∗
3 (𝜎), …, 𝜁∗8 (𝜎) (𝑡 = 0, 3, 5, 10, 20) has been given in Fig. 5. It is observed that for 𝑡 = 0, 𝜁∗

𝑘
(𝜎) functions have a root in the 

interval. But for 𝑡 = 20, 𝑘 = 2, 4, 6, 8 have a root in the interval while 𝑘 = 3, 5, 7 do not have a root (zero at infinity). Therefore, it is 
15

presumed that this negation might be the reason for the discrepancy in Fig. 4. A similar discrepancy with the analytical solution is 
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Fig. 6. Evolution of 𝜁∗
𝑘
(𝜎), where 𝑘 = 2,3,4,5,6,7,8 for diffusion-controlled growth with Gamma KDF at 𝑡 = 3,10,20.

Fig. 7. Brownian aggregation with self-similar NDF (solid orange line) at 𝑡 = 10 (𝜂(𝑣,10)): LogN KDF (left) for 𝑃 = 2 and Gamma KDF (right) for 𝑃 = 4.

found in Nguyen et al. [15]. The evolution of 𝜁∗2 (𝜎), 𝜁
∗
3 (𝜎),…, 𝜁∗6 (𝜎) (𝑡 = 0, 3, 10) is given in Fig. 6 for Gamma KDF where the same 

situation is observed as well.

Case 2: Aggregation with Brownian kernel

A pure aggregation case using the Brownian kernel described by von Smoluchowski [36] 𝛽(𝑣, 𝑣′) = (𝑣1∕3 + (𝑣′)1∕3) × (𝑣−1∕3 + (𝑣′)−1∕3)
is considered here. In this case, the chosen internal coordinate for the size variable is volume 𝑣. The initial condition is given by 
𝜂(0, 𝑣) = 𝑒𝑥𝑝(−𝑣). The results for the test case are presented by using the LogN KDF for 𝑃 = 2 and Gamma KDF for 𝑃 = 4 with the 
moment-inversion procedure based on Halley-Ridder (H-R) method in Fig. 7.

It can be observed that Gamma KDF results match better than LogN KDF results. The NDF calculated with Gamma KDF is 
significantly accurate and slightly better in agreement with self-similar NDF as shown in Nguyen et al. [15]. There exists a discrepancy 
with self-similar NDF solution for LogN KDF, similar to the results of Nguyen et al. [15]. To explain this discrepancy, the evolution 
of 𝜁∗2 (𝜎), 𝜁

∗
3 (𝜎), 𝜁

∗
4 (𝜎) (𝑡 = 10) has been given in Fig. 8.

It is observed in Fig. 8 that for 𝑡 = 10, there is 𝜁∗4 (0) = 𝜁∗3 (0) > 𝜁∗2 (0) and the difference between 𝜁∗3 (0) and 𝜁∗2 (0) values is relatively 
large. However for 𝜎𝑃 , the difference between 𝜁∗3 (𝜎𝑃 ) and 𝜁∗2 (𝜎𝑃 ) is relatively small. This causes a change in the recurring coefficients 
16

for a∗
𝑃−1(𝜎) and b∗

𝑃−1(𝜎) in the Jacobi matrix.
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Fig. 8. Brownian aggregation with self-similar NDF (solid orange line) at 𝑡 = 10 (𝜂(𝑣,10)): LogN KDF for 𝑃 = 2.

7. Conclusion

A moment-inversion procedure based on the proposed Halley-Ridder (H-R) method has been implemented in this study. The 
computation of convergence via the core-iterative procedure based on recurring coefficients namely, 𝑏∗

𝑘
(𝜎), 𝜁∗

𝑘
(𝜎) and 𝜏∗

𝑘
(𝜎) are 

mentioned for situations encountered in moment-inversion procedures. Three cases in which the procedures do not respond are 
examined in detail. They can be given by (i) calculation of the 𝜎 root being out of the initial interval, (ii) calculation of the smallest 
𝜎 root in the case there is more than one 𝜎𝑃 , or there is multiple 𝜎𝑃 roots and (iii) for the Hausdorff problem, calculation the 𝜎𝑃

root when there is a gap where convergence criteria is undefined. For (iii), because the 𝜏∗
𝑘
(𝜎) must be smaller than 1, it is hard 

to exceed the gap where the convergence criteria is undefined and reach the 𝜎𝑃 . Due to the additional condition, the H-R method 
responds positively to (iii). Although there is no significant improvement in the extent of variability relative to the mean of the tested 
shape parameter values, an increase in the number of FLOPS has been observed which the proposed procedure responds to with 
limitations. The total number of FLOPS for all the KDFs (Gauss, Laplace, Log-normal Gamma and Weibull) used for the EQMOM 
approximation in this study increased by around 30%. This indicates a more reliable and robust moment-inversion procedure for use 
with the quadrature-based method of moments.
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Appendix A. Root-finding algorithms

A.1. Ridder’s method

Ridder’s method is an iterative root-finding algorithm [14,37] based on the false position method which is used for the calculation 
of the root of a real continuous function. When a root is in the range (𝜗1, 𝜗2), firstly the midpoint 𝜗3 = (𝜗1 +𝜗2)∕2 is evaluated. It then 
approximates the root by using an unique exponential function 𝑒𝑋 which turns the residual function into a straight line such that it 
gives

𝜓(𝜗1) − 2𝜓(𝜗3)𝑒𝑋 +𝜓(𝜗2)𝑒2𝑋 = 0. (A.1)

This is a quadratic equation in 𝑒𝑋 , whose solution is calculated from

𝑒𝑋 =
𝜓(𝜗3) + 𝑠𝑖𝑔𝑛[𝜓(𝜗2)]

√
𝜓(𝜗3)2 −𝜓(𝜗1)𝜓(𝜗2)

𝜓(𝜗2)
. (A.2)

Then, a new guess for the root, 𝜗4 can be computed by applying the false position method, not to the values 𝜓(𝜗1), 𝜓(𝜗3), 𝜓(𝜗2) but 
17

to the values 𝜓(𝜗1), 𝜓(𝜗3)𝑒𝑋 , 𝜓(𝜗2)𝑒2𝑋 . The overall formula is given by:
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𝜗4 = 𝜗3 +
(𝜗3 − 𝜗1)𝑠𝑖𝑔𝑛[𝜓(𝜗1) −𝜓(𝜗2)]𝜓(𝜗3)

𝜓(𝜗3)2 −𝜓(𝜗1)𝜓(𝜗2)
(A.3)

and it guarantees that 𝜗4 lies in the interval (𝜗1, 𝜗2), so 𝜗4 never moves out of the interval. Further, the convergence order of the 
method is 

√
2 [37].

A.2. Halley’s method

Halley’s method is an iterative root-finding algorithm that is used for functions of one real variable with a continuous second 
derivative [20,38]. Considering the second-order Taylor series

𝜓(𝜗) = 𝜓(𝜗𝑛) +𝜓 ′(𝜗𝑛)(𝜗− 𝜗𝑛) +
1
2
𝜓 ′′(𝜗𝑛)(𝜗− 𝜗𝑛)2 +… (A.4)

A root of 𝜓(𝜗) satisfies 𝜓(𝜗) = 0, so

0 ≈ 𝜓(𝜗𝑛) +𝜓 ′(𝜗𝑛)(𝜗𝑛+1 − 𝜗𝑛) +
1
2
𝜓 ′′(𝜗𝑛)(𝜗𝑛+1 − 𝜗𝑛)2 +… . (A.5)

Now, reorganizing the terms yield

0 = 𝜓(𝜗𝑛) + (𝜗𝑛+1 − 𝜗𝑛)[𝜓 ′(𝜗𝑛) +
1
2
𝜓 ′′(𝜗𝑛)(𝜗𝑛+1 − 𝜗𝑛)2], (A.6)

Putting second term to left side and dividing by 𝜓 ′(𝜗𝑛) +
1
2
𝜓 ′′(𝜗𝑛)(𝜗𝑛+1 − 𝜗𝑛) gives

𝜗𝑛+1 = 𝜗𝑛 −
𝜓(𝜗𝑛)

𝜓 ′(𝜗𝑛) +
1
2
𝜓 ′′(𝜗𝑛)(𝜗𝑛+1 − 𝜗𝑛)2

. (A.7)

Using the result from Newton’s method,

𝜗𝑛+1 − 𝜗𝑛 = −
𝜓(𝜗𝑛)
𝜓 ′(𝜗𝑛)

, (A.8)

Gives

𝜗𝑛+1 = 𝜗𝑛 −
2𝜓(𝜗𝑛)𝜓 ′(𝜗𝑛)

2[𝜓 ′(𝜗𝑛)]2 −𝜓(𝜗𝑛)𝜓 ′′(𝜗𝑛)
. (A.9)

In Equation (A.9), 𝜗𝑛+1 is free and is not confined so the method never comes out of the interval (𝜗1, 𝜗2). Moreover, the convergence 
order of the method is 3 i.e. it converges cubically [20].
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