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Efficient cross-trait penalized regression increases
prediction accuracy in large cohorts using
secondary phenotypes
Wonil Chung 1,2, Jun Chen3, Constance Turman1,2, Sara Lindstrom4, Zhaozhong Zhu 1,2,5, Po-Ru Loh1,2,6,

Peter Kraft1,2,7 & Liming Liang 1,2,7

We introduce cross-trait penalized regression (CTPR), a powerful and practical approach for

multi-trait polygenic risk prediction in large cohorts. Specifically, we propose a novel cross-

trait penalty function with the Lasso and the minimax concave penalty (MCP) to incorporate

the shared genetic effects across multiple traits for large-sample GWAS data. Our approach

extracts information from the secondary traits that is beneficial for predicting the primary

trait based on individual-level genotypes and/or summary statistics. Our novel imple-

mentation of a parallel computing algorithm makes it feasible to apply our method to

biobank-scale GWAS data. We illustrate our method using large-scale GWAS data (~1M

SNPs) from the UK Biobank (N= 456,837). We show that our multi-trait method outper-

forms the recently proposed multi-trait analysis of GWAS (MTAG) for predictive perfor-

mance. The prediction accuracy for height by the aid of BMI improves from R2= 35.8%

(MTAG) to 42.5% (MCP+ CTPR) or 42.8% (Lasso+ CTPR) with UK Biobank data.
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W ith the arrival of large-scale public biobanks harboring
more than 500K samples, polygenic risk scores (PRS)-
based methods1–7 have been widely adopted for

genetic risk prediction in practice due to computational feasibility
and easy accessibility of the genome-wide association study
(GWAS) summary statistics. PRS are usually constructed as a
weighted sum of adjusted genetic effects through linkage dis-
equilibrium (LD) information8. To boost predictive power of
PRS, various approaches, including weighted multi-trait summary
statistic best linear unbiased prediction method (wMT-SBLUP)9

and multi-trait analysis of GWAS (MTAG)10, incorporate
information contained in related traits that share genetic archi-
tecture with a trait of interest. However, such approaches only
utilize marginal single-nucleotide polymorphism (SNP) effects of
multiple traits, not SNP effects conditional on other SNPs and
thus may produce less accurate risk scores and limited prediction
accuracy (PA) to some extent. There exists a necessity to develop
multi-trait prediction methods using whole-genome individual-
level genotypes.

The most commonly used whole-genome prediction methods
for multiple traits are bivariate ridge regression method11 and
multi-trait genomic best linear unbiased prediction method
(MTGBLUP)12–15, which treat the genetic effects as random to
obtain individual and SNP risk predictors using one or more
genetically correlated traits. However, MTGBLUP requires the
estimation of genetic relationship matrix (GRM), which becomes
computationally prohibitive as the sample size increases. Fur-
thermore, it implicitly assumes the infinitesimal genetic archi-
tecture, which indicates all variants are causal with relatively
small effect size, whereas in reality complex traits or diseases are
estimated to have roughly only a few thousand causal variants on
the genome16,17. It deserves to construct polygenic risk predictors
to accommodate a broad range of genetic architectures for large-
sample datasets. Penalized regression methods such as the least
absolute shrinkage and selection operator (Lasso)18,19, the elastic
net20, the adaptive Lasso21, the minimax concave penalty (MCP)
22,23, or statistical learning approaches24 have previously been
evaluated for genomic risk prediction25,26. These methods have
the potential to be applied to GWAS data with large sample size
via efficient penalized regression algorithm under the non-
infinitesimal assumption. Furthermore, they can be extended to
incorporate genetic effects for related traits via summary statistics
by adding additional penalty functions27,28 while the multivariate
linear mixed model of MTGBLUP requires individual-level gen-
otype data for all traits12.

Here we develop a new statistical framework for cross-trait
penalized regression (CTPR) for polygenic risk prediction of
complex traits using individual-level data and/or summary sta-
tistics in large cohorts. In contrast to other methods based on
multivariate modeling such as MTGBLUP and MTAG, our
method attempts to optimize the PA only for the primary trait of
interest. This strategy allows us to leverage information from
other traits that is useful for the primary trait only, and thus
additional traits with different degrees of genetic relatedness
could be effectively utilized. Our approach takes advantage of
genetic correlation among multiple traits to predict the primary
trait of interest using penalized least-squares methods. Among
many regularized methods, the Lasso and the MCP are evaluated
for inducing a sparse solution. In order to incorporate the shared
genetic effects across traits for improving PA, we propose a cross-
trait penalty which is a smooth function of pairwise genetic
effects. This penalty function utilizes not only individual-level
genotypes but also summary statistics and thus the method can
exploit many recent largest GWAS results. Because multiple traits
are not required to be measured on the same individuals, any
existing datasets of genetically correlated traits can be used to

improve PA. Another important feature of our method is that our
novel implementation of a parallel computing algorithm called
Message Passing Interface (MPI) makes it feasible to apply our
methods to large biobank-scale GWAS data. Based on the new
computing algorithm, we apply our method to large-scale GWAS
data (~1M) from UK Biobank29–31 (N= 456,837) and NHS/
HPFS/PHS cohort32 (N= 20,676) and perform systematic simu-
lation studies and real GWAS analyses. Using large-scale GWAS
datasets, we show that our multi-trait methods significantly
increase the PA, as illustrated for human height (HGT) by
incorporating information from body mass index (BMI), hip
circumference (HIP), waist circumference (WST), and waist–hip
ratio (WHR) compared to other single-trait approaches. We
further demonstrate that our prediction methods outperform
other multi-trait approaches, including MTGBLUP and the
recently proposed MTAG methods.

Results
Overview of methods. The CTPR algorithm estimates all SNP
effects for the primary trait of interest via a new multivariate
penalized least-squares method utilizing information from
individual-level data and/or summary statistics of genetically cor-
related secondary traits. We propose a new cross-trait quadratic
penalty function with the Lasso or the MCP penalty to incorporate
common genetic effects across multiple traits. This function induces
the smoothness of the coefficients and can incorporate the
prior knowledge on the similarity of a pair of traits at a given
SNP via the adjacency coefficients. It effectively extracts
information from the secondary traits that is beneficial for the
primary trait but scales down information that is not. All coeffi-
cients are estimated in a computationally effective way using
coordinate decent algorithm. We utilize n-fold cross-validation
(e.g. n= 5) to select tuning parameters (i.e. λ1 for Lasso or MCP
and λ2 for cross-trait penalty). The data for the primary trait are
randomly partitioned into n equal-sized subsets, where n−1 subsets
are used as a training set and the remaining one as a validation
set. We select the optimal values for λ1 and λ2 that minimize
the averaged mean squared error (MSE) of the primary trait over
n folds. Because the closed form solution for coordinate descent
algorithm over a single SNP coefficient exists, our method is
computationally efficient and can be extended for parallel
computing.

To make it feasible to apply our methods to biobank-based
GWAS data, we further develop a novel distributed memory
parallel computing algorithm utilizing MPI. First, large-scale
GWAS data are divided into non-overlapping subgroups contain-
ing SNPs in low LD within each subgroup and each MPI core is
assigned to one of subgroups with its own memory. Next, we
define another group, called core-group, each of which contains
several subgroups. All MPI cores in the same core-group run
simultaneously at each estimation step keeping all cores in other
core-groups waiting till finish. In this way, coefficients within a
core-group are simultaneously updated and eventually all
coefficients are updated consecutively in core-group to improve
the computational efficiency as well as to avoid convergence
problem. This algorithm enables multiple subgroups of SNP
coefficients updated simultaneously or sequentially at each
estimation step and therefore it provides the approximate
(time-saving) or the exact (time-consuming) solution for
coordinate descent optimization. We observed these approaches
produce similar predictive power as long as the convergence is
achieved. The overview of our CTPR method regarding MPI
algorithm for biobank-based GWAS data is described in Fig. 1.

To assess the computational feasibility of CTPR for biobank-
based GWAS data, we simulated data using N= 437K individuals
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and P= 1M SNPs from UK Biobank, which required ~1.7TB of
memory with float data type (i.e. 437K*1M*4B= ~1.7TB). The
CTPR ran on 40 cores (Intel Xeon CPU 2.1 GHz) with 48 GB of
memory for each core, total of ~1.9 TB of memory, for up to
7 days to complete the analyses with 40 core-groups (exact
solution). The running time of CTPR depends linearly not only
on the sample size (N) and the number of SNPs (P) but also on
the number of core-group (q), which represents O(NPq). With 10
core-groups (approximate solution), the running time of CTPR
dropped to ~1.75 days and it still generated almost the same
predictive performance as exact solution due to good conver-
gence. Even when sample size increases, the running time is able
to remain similar because larger sample size increases likelihood
of convergence and therefore less number of core-groups are
needed.

Predictive power of CTPR vs existing methods in simulations.
To evaluate the predictive power of CTPR in a practical way, we
first mimicked the real GWAS data (e.g. height, BMI) for simu-
lation and then changed three important parameters (i.e. genetic
correlation, number of traits, sample size) one at a time. These
simulations were designed to provide a clear picture on how each
parameter would affect the gain in power of CTPR and hence we
can obtain practical insight on how to increase PA for the pri-
mary trait of interest through collecting appropriate secondary
traits and more samples. We further compared our proposed
methods with the existing methods such as MTAG and
MTGBLUP under the same simulation settings.

We sampled 30,000 (30K), 200,000 (200K), or 436,837 (437K)
individuals for a training set and 20,000 (20K) individuals for a
validation set with 955,842 (1M) common SNPs from UK
Biobank. We simulated up to four phenotypes with 6.8K–12.6K
causal SNPs17,33 explaining 45% of phenotypic variance for the
primary trait and 25% for the secondary traits and varied genetic
correlation among four traits (ρ= 0.25, 0.5, 0.75). To simulate the
phenotypes, we used the classical linear model and generated
genetic effects from a multivariate normal distribution with the
desired SNP-heritability level and genetic correlation among
multiple traits. The random error for each individual was
independently sampled from a univariate normal distribution.
PA was assessed throughout the paper using squares of
correlation between true and predicted phenotype values, which
is equivalent to prediction R2.

We first considered the scenario with 30K training samples,
two traits and ranged genetic correlation from 0.25 to 0.75
(Fig. 2a). For the secondary traits, our method utilized SNP effects
summary statistics from SNPTEST33 which fitted a single SNP
linear regression with top 10 genotype PCs. The implementation
of a novel cross-trait penalty function enables the CTPR to exploit
fixed SNP effects of the secondary trait. As shown, increase in
genetic correlation between two traits resulted in a gain in PA of
multi-trait methods (Lasso+CTPR or MCP+ CTPR) over
single-trait methods (Lasso or MCP) in terms of prediction R2.
The Lasso+ CTPR performed slightly better than the MCP+
CTPR and the Lasso performed better than the MCP. We next
examined if more secondary traits can improve PA of the primary
trait (Fig. 2b). The genetic correlation between the primary trait
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Fig. 1 Overview of CTPR method regarding distributed memory MPI algorithm for biobank-based GWAS data. Biobank-based large-scale GWAS data are
first divided into q non-overlapping subgroups (GWAS data 1,…,q) containing SNPs in low LD and each MPI core is assigned to one of q subgroups. Each
subgroup of GWAS data runs on each MPI core of computing nodes with its own memory which only requires 1/q of whole memory size. We next propose
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eventually all coefficients are updated consecutively in core-groups to improve the computational efficiency as well as to avoid convergence problem. This
algorithm enables multiple subgroups of SNP coefficients updated simultaneously or sequentially at each estimation step and therefore it provides the
computationally more efficient or exact coordinate descent optimization for polygenic risk prediction
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and each of the secondary traits was fixed to 0.5 and the genetic
correlation among secondary traits was set to 0. The PA of multi-
trait methods increased as more traits were included because SNP
effects of the primary trait can be estimated more accurately from
the correlated secondary traits. Next, we evaluated the effect of
sample size on PA (Fig. 2c). As sample size increased from 30K to
437K, the PA of both single-trait and multi-trait methods
dramatically increased and at the same time multi-trait methods
consistently outperformed single-trait methods. These results
showed that including more samples and more secondary traits
that are genetically correlated with the primary trait help to
improve the PA of the primary trait.

We next compared our prediction methods with the summary
statistics-based prediction methods such as LDpred8 and the
recently proposed MTAG10. When computing PA using LDpred,
we generated various candidate risk scores such as LDpred-inf,
LDpred with a range of ρ values (i.e. tuning parameter for the
fraction of causal SNPs), and LDpred with pruning+ threshold-
ing and then determined the risk score with the best predictive
capacity. For single-trait approach, we used the unadjusted PRS
and the LDpred-adjusted risk scores (PRS, LDpred). For multi-
trait approach, we first executed MTAG to incorporate informa-
tion from summary statistics for multiple traits and then
computed PA via PRS and LDpred (PRS+MTAG, LDpred+
MTAG). We used the same simulation settings as previous
simulations. The overall predictive performance of our methods
was uniformly better than that of summary statistics-based
methods in simulations (Fig. 2, Supplementary Table 1). The
LDpred performed better than unadjusted PRS for all simulation
settings and especially, as sample size increased, the difference of
PA between LDpred and unadjusted PRS was getting larger
(Fig. 2c), which can be explained by the fact that LDpred

explicitly models LD using a reference panel and estimates
posterior mean effect size more accurately with large sample size
than unadjusted PRS8,34. Starting with two traits and genetic
correlation= 0.25, MTAG-based methods (PRS+MTAG,
LDpred+MTAG) were similar to single-trait methods (PRS,
LDpred) but MTAG-based methods performed increasingly
better as number of traits increased and genetic correlation was
getting larger (Fig. 2a, b). Because the MTAG estimates the trait-
specific association statistics using a generalization of inverse-
variance weighted meta-analysis10, it can produce better sum-
mary data by combining multiple traits as the proportion of
shared causal variants is larger with a higher genetic correlation.

We next compared our methods with GBLUP-based methods
such as STGBLUP and MTGBLUP12. We also considered the
same simulation settings as the previous ones. The overall
predictive performance of STGBLUP and MTGBLUP methods
was slightly better than summary statistics-based methods but
uniformly worse than our methods (Fig. 2a, b). MTGBLUP
utilized individual-level genotype for all traits instead of marginal
SNP effects and thus it produced slightly better predictive
performance than summary statistics-based methods. However,
MTGBLUP performed worse than our methods because it
assumed infinitesimal genetic architecture which is less appro-
priate in the real situation than non-infinitesimal assumption of
our methods. MTGBLUP performed similar to STGBLUP with a
low genetic correlation but it performed better and better as
genetic correlation increased from 0.25 to 0.75 (Fig. 2a, b). Due to
the limited execution time and memory, GBLUP-based methods
were not feasible with large sample size (N > 30K) and they were
excluded in the simulations for sample size (Fig. 2c).

To further explore the relationship between the predictive
power of CTPR and other parameters of the data such as number
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of causal SNPs, proportion of shared causal SNPs, SNP-
heritability, number of traits, and sample size of summary
statistics for secondary traits, we conducted the additional
simulations (Supplementary Figs. 1–5). We first showed that
smaller number of causal SNPs (larger per-SNP heritability)
resulted in larger PA since SNPs strongly associated with the trait
tend to be estimated more accurately by our prediction models
(Supplementary Fig. 1). We next observed that high proportion of
shared causal SNPs between two traits help to gain in PA
especially at high genetic correlation (Supplementary Fig. 2). The
results of Supplementary Fig. 3 explained that larger SNP-
heritability of primary and/or secondary traits help PA of the
primary trait. We also showed that including more secondary
traits that were less genetically correlated with each other would
increase the PA for the primary trait (Supplementary Fig. 4).
Lastly, PA increases as sample size of the summary statistics
increases and therefore all GWAS summary statistics with large
sample size for related secondary traits could be used to improve
the prediction model of the primary trait (Supplementary Fig. 5).
A more detailed explanation is found in supplementary
documents.

Evaluation using real large-sample GWAS data from UK Bio-
bank. We evaluated the proposed prediction methods with real
GWAS data by taking HGT as a primary trait and BMI, HIP,
WST, and WHR as secondary traits. For our analysis, UK Bio-
bank data29–31 were used as training sets and a leave-out subset of
UK Biobank or NHS/HPFS/PHS cohort data32 as validation sets.
UK Biobank data were genotyped using UK BiLEVE and UK
Biobank Axiom arrays and imputed using the 1000 Genomes
Phase 3 reference panels, which led to ~93 million SNPs (Sup-
plementary Table 7). Five phenotypes of interest, HGT, BMI,
HIP, WST, and WHR were measured on 456,837 individuals,
who were of self-reported European ancestry. Among those
individuals, we used 30,000 (30K) or 436,837 (437K) samples for
training and 20,000 (20K) samples for testing. NHS/HPFS/PHS
cohort data were made of 23 GWAS datasets based on three
different genotype platforms and imputed via the 1000 Genomes
Phase 1 reference panels (Supplementary Table 7). We again
excluded individuals of non-European ancestry and had 20,769
individuals, among which 20,000 (20K) individuals were ran-
domly selected for an independent validation set. We restricted
the set of SNPs for risk prediction to Hapmap3 SNPs for com-
parability across the two cohorts. We prepared the overlap
Hapmap3 SNPs between UK Biobank and NHS/HPFS/PHS
cohort based on MAF (>0.05) and imputation R2 (>0.80), which
consisted of 955,842 (1M) SNPs. We divided these genotype
datasets into an adequate number of files for parallel computing.
We computed summary statistics for all traits which were con-
ducted via SNPTEST with age, sex, and top 10 genotype PCs.

We performed LD score regression35 on the GWAS summary
statistics to estimate the proportion of phenotypic variance
explained by all SNPs (i.e. heritability) for HGT, BMI, HIP, WST,
and WHR using LDSC software35–37. We showed that 45.3% (s.e.
= 4.1%), 24.3% (s.e.= 2.4%), 20.1% (s.e.= 2.1%), 18.7% (s.e.=
1.9%), and 14.7% (s.e.= 1.9%) of variance of HGT, BMI, HIP,
WST, and WHR, respectively, can be explained by 1M SNP data
in the UK Biobank. We showed that the genetic correlation
between HGT and BMI was −0.130 and those between HGT and
the other phenotypes were 0.304 (HIP), 0.162 (WST), and −0.112
(WHR). The phenotypic correlations between HGT and the other
phenotypes were computed after adjusting for age and sex. HGT
and BMI or WHR were shown to be negatively correlated (r=
−0.097, −0.059), and HGT and HIP or WST were shown to be
positively correlated (r= 0.178, 0.088) in the UK Biobank,

respectively (Supplementary Figs. 7 and 8). Similar patterns were
found in NHS/HPFS/PHS datasets (Supplementary Fig. 7). The
difference of heritability estimates between BMI and other three
phenotypes, and the difference of absolute genetic correlations
between HGT-BMI and HGT-other three phenotypes are not big,
so we expect that the difference of PA for HGT between using
BMI and other three phenotypes would not be large.

We first applied our single-trait and multi-trait approaches to
predict HGT by the aid of BMI with 30K training individuals
from UK Biobank. We considered age and sex-adjusted HGT as a
primary trait and summary statistics for BMI as a secondary trait.
To make all phenotypes on the same scale and direction, SNP
effects for BMI were re-scaled to make slopes of the regression of
SNP effects for HGT on SNP effects for BMI equal to 1. The
performance of Lasso+ CTPR was comparable to that of MCP+
CTPR using either UK Biobank or NHS/HPFS/PHS as a
validation set. PA evaluated in NHS/HPFS/PHS was smaller
than PA tested within UK Biobank likely due to genetic
heterogeneity between UK Biobank and NHS/HPFS/PHS
(Fig. 3a). The results confirmed again that our multi-trait
approaches improved PA compared to the single-trait
approaches. With 30K training sample size, the relative gains in
prediction R2 of our multi-trait approaches were 11.1% for Lasso
+ CTPR (27.4% for MCP+ CTPR) using UK Biobank and 8.7%
(23.5%) using NHS/HPFS/PHS data as a validation set (Supple-
mentary Table 9).

Next, we compared our prediction methods to the existing
multi-trait methods such as MTAG and MTGBLUP with 30K
training samples. For MTAG, summary statistics for HGT and
BMI from the UK Biobank were used to build predictors and, for
MTGBLUP, individual-level GWAS data for both traits were
used. Similar to our method, the PA using MTAG and
MTGBLUP decreased when testing on NHS/HPFS/PHS cohort
compared to testing within UK Biobank. MTGBLUP method
performed quite similar to MTAG but both methods performed
much worse than CTPR using UK Biobank or NHS/HPFS/PHS
cohort (Fig. 3a). Using MTAG or MTGBLUP did not show better
PA compared to their corresponding single-trait methods. As
expected, LDpred performed better than unadjusted PRS for both
single-trait and multi-trait approaches. The PA for HGT
improved from R2= 11.3% (LDpred+MTAG) or 11.4%
(MTGBLUP) to 14.5% (MCP+ CTPR) or 14.6% (Lasso+CTPR)
using UK Biobank and from R2= 9.0% (LDpred+MTAG) or
8.5% (MTGBLUP) to 11.3% (MCP+ CTPR, Lasso+CTPR)
using NHS/HPFS/PHS data (Supplementary Table 9).

We then considered HIP, WST, WHR one at a time and four
traits including BMI jointly as secondary traits to help prediction
of HGT using our methods (Supplementary Table 10). Using our
multi-trait methods, the PA of two-trait approach with HIP,
WST, and WHR was slightly less than PA with BMI but PA of
five-trait approach performed the best among all the analyses.
This is likely because heritability for BMI is the largest among all
secondary traits, while genetic correlations among secondary
traits are relatively high and their genetic correlations with HGT
are quite similar.

Finally, we showed that the use of full training samples (N=
437K) from UK Biobank can substantially improve PA compared
to the smaller training samples (N= 30K). Similar to the 30K
sample analyses, our multi-trait methods outperformed all
summary statistics-based methods (LDpred, MTAG) as well as
our single-trait methods (Fig. 3b). Because the GBLUP-based
methods were not feasible with 437 K training samples, we
excluded them from full sample analyses. Especially, we found
that the PA for HGT using Lasso+ CTPR (42.8%) captured most
of estimated SNP-heritability for HGT (45.3%) using the same
UK Biobank data although our SNP-heritability estimate may be
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underestimated (because current SNP-heritability estimate ranges
from 45% (ref. 38) to 54% (ref. 39)) and thus 45.3% may not be the
upper limit of the PA40. The PA for HGT improved from R2=
35.8% (LDpred+MTAG) to 42.5% (MCP+ CTPR) or 42.8%
(Lasso+ CTPR) using UK Biobank and from R2= 22.3%
(LDpred+MTAG) to 29.2% (MCP+ CTPR) or 29.8% (Lasso
+CTPR) using NHS/HPFS/PHS data as a validation set
(Supplementary Table 9).

The scatter plots for actual HGT vs. predicted HGT of the 20K
testing samples from NHS/HPFS/PHS or UK Biobank provided
practical insight on how differenty our multi-trait method (Lasso
+CTPR) and the summary statistics-based multi-trait method
(LDpred+MTAG) generate the predicted outcomes, using 30K
or 437K training samples, respectively (Fig. 4). Two distinguish-
able groups in each scatter plot represented different sex groups
(i.e. men and women groups). The scatter plots clearly showed
that our multi-trait method (Lasso+ CTPR) produced much
better predicted HGT than the other method (LDpred+MTAG).
Also, the use of the same cohort as a testing set helped to generate
better predicted values. Furthermore, more samples enabled
Lasso + CTPR and LDpred+MTAG to show better predictive
performance (437 K sample analyses vs. 30 K sample analyses).
We found that PA of men was always smaller than PA of women,
which can be explained by the fact that the training sample size
for women is larger than men and heritability for women HGT is
larger than heritability for men HGT in UK Biobank.

Discussion
We have developed a novel statistical framework for cross-trait
penalized regression for polygenic risk prediction, CTPR, using
individual-level genotype data and GWAS summary statistics,
and shown that the CTPR can utilize biobank-based GWAS data
for multi-trait risk prediction in a computationally efficient way

based on a new MPI algorithm (Fig. 1). We have further
demonstrated in extensive simulations and real GWAS data
analyses from UK Biobank and NHS/HPFS/PHS cohort that the
proposed multi-trait methods (Lasso+CTPR or MCP+CTPR)
produced better prediction performance over existing single-trait
and multi-trait methods such as MTAG and MTGBLUP. With
30K training samples from UK Biobank, the PA of Lasso+ CTPR
for human height by aid of BMI improved 29.2% over MTAG
and 28.1% over MTGBLUP and with 437 K training samples, the
PA of Lasso+ CTPR improved 18.9% over MTAG (Fig. 3).

The CTPR outperforms the existing multi-trait prediction
methods such as MTAG and MTGBLUP for two main reasons.
First, the CTPR fits all SNPs simultaneously using penalized
regression, which can produce more precise estimates of all SNPs
than MTAG because MTAG utilizes only marginal SNP effects
for multiple traits. Although marginal SNP effects can be re-
analyzed to account for LD through approximate summary sta-
tistic BLUP predictors (SBLUP) or approximate mixture model
predictors (LDpred), summary statistics-based methods perform
worse than GBLUP-based methods with individual-level data in
general9,34. The predictive performance of wMT-SBLUP is also
mostly worse than MTGBLUP because wMT-SBLUP is con-
sidered as a natural extension of MTGBLUP to summary statis-
tics9. Based on our simulation and real data analyses, our CTPR
outperformed MTGBLUP and consequently wMT-SBLUP. Sec-
ond, the CTPR takes advantage of non-infinitesimal genetic
architecture, which enables a gain in PA relative to the existing
infinitesimal model-based methods such as MTGBLUP. The
CTPR utilizes shrinkage methods to estimate SNP effects more
accurately than MTGBLUP and thus achieves better estimates for
non-causal genetic effects and better prediction than MTGBLUP
under non-infinitesimal genetic architecture. Wood et al.41

showed that the genetic architecture for human height is
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Fig. 3 Comparisons of the predictive performance for HGT by the aid of BMI among LDpred, MTAG, STGBLUP, MTGBLUP, and CTPR using UK Biobank
data (N= 30K or 437K) as a training set and either UK Biobank (N= 20K) or NHS/HPFS/PHS cohort (N= 20K) as a validation set. We considered human
height (HGT) as the primary trait and body mass index (BMI) as the secondary trait. Prediction R2 were computed with two different validation sets (UK
Biobank, NHS/HPFS/PHS data) and two different training sample sizes (30K, 437K) using summary-based prediction methods (LDpred, MTAG), GBLUP
(STGBLUP, MTGBLUP), and the proposed prediction methods (MCP/MCP+ CTPR, Lasso/Lasso+ CTPR). Clearly, our multi-trait methods (Lasso+ CTPR,
MCP+CTPR) generated better predictive performance than our single-trait methods and the existing prediction methods with different training sample
sizes and different validation sets. All error bars represent standard errors of prediction R2. a Real GWAS analysis results with 30K training samples for
prediction R2 of HGT by the aid of BMI. b Real GWAS analysis results with 437K training samples for prediction R2 of HGT by the aid of BMI
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characterized by a considerably large but finite number (e.g.
thousands) of causal SNPs. Recently, the proportion of under-
lying susceptibility SNPs for 32 complex traits were estimated
using GWAS summary statistics and external LD information
based on a two or three component normal-mixture model42, and
1.48% of SNPs from GIANT consortium (N= 253K) were
expected as causal for human height. Most complex traits and
disease phenotypes from a variety of sources were expected to
have a smaller proportion of causal SNPs than human height
(0.15–1.40%). Since the genetic architecture underlying these
broad ranges of phenotypes have proportion of causal SNPs far
from the infinitesimal model, we expect that our multi-trait
methods will perform well for many phenotypes of interest. Also,
we found Lasso-based methods perform increasingly better than
Ridge/GBLUP-based methods as training sample size increases at
the same proportion of causal variants in our simulation studies
(Supplementary Figs. 9 and 10). Furthermore, our method runs
through the proposed distributed memory MPI algorithm and
thus it is computationally feasible for biobank-based large-scale
GWAS data but GBLUP-based method is impractical because it
requires the estimation of GRM matrix, which become compu-
tationally prohibitive as the sample size increases.

For a cross-trait penalty, Li and Li27 and Kim and Xing28

proposed to use L1 norm of the difference between two coeffi-
cients28 as well as L2 norm. Indicator variables for SNP effects can
be even employed. For this paper, we selected a Laplacian
quadratic penalty to incorporate related traits because the pro-
posed cross-trait penalty function is easier to obtain the close
form solution for a single coefficient and computationally more

efficient than other penalty forms. Furthermore, it imposes the
smoothness over coefficients to remedy the disadvantage of
Lasso or MCP penalties, which is one of the advantages of the
elastic net20.

Our cross-trait penalty term directly compares SNP effects of
two phenotypes and does not scale SNP effects during the esti-
mation step for genetic prediction. Therefore, it becomes an
important issue to make all phenotypic values on the same scale
and direction. Furthermore, our cross-trait penalty can utilize
fixed GWAS summary statistics whose phenotypes and genotypes
are rarely available. Since we generally have no information on
phenotypes and genotypes for such summary statistics, it is
necessary to implement an appropriate method to handle this
issue. To make all phenotypic values on the same scale and
direction, we first compute all marginal SNP effects via simple
linear regression and then re-scale the secondary trait to make the
slope for SNP effects of the primary trait regressed on SNP effects
of the secondary traits equal to 1. This procedure ensures all SNP
effects for all traits on the same scale as well as the same direction.
For example, HGT and BMI are negatively correlated and thus
the slope for beta coefficients of HGT regressed on beta coeffi-
cients of BMI is negative. The CTPR utilizes BMI multiplied by
the slope for HGT~BMI regression as a secondary trait and it
finally uses positively correlated BMI on the same scale. This has
been implemented in the software CTPR (Cross-Trait Penalized
Regression). The complete pipeline used to install and execute the
CTPR, including required computing resources, input file for-
mats, and optional parameters, is provided on GitHub (see the
URL below). On top of that, we are implementing the pipeline on
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Fig. 4 Scatter plots of actual HGT vs. predicted HGT of 20K testing samples from either NHS/HPFS/PHS cohort or UK Biobank which were estimated by
30K or 437K training samples from UK Biobank using LDpred+MTAG and Lasso+CTPR. We provided prediction R2 as well as sex-specific prediction R2

(R2m: PA for men, R2w: PA for women). We showed scatter plots of actual HGT vs. predicted HGT of 20K testing samples from NHS/HPFS/PHS cohort or
UK Biobank data to give practical insight on how differently Lasso+ CTPR and LDpred+MTAG generate predicted outcomes using 30K or 437K training
samples from UK Biobank. Prediction R2 for men is constantly smaller than prediction R2 for women and the use of the different cohort as a validation set
produced worse predicted values than the use of the same cohort. Lasso+ CTPR generated better predicted HGT than LDpred+MTAG for all analyses
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public cloud platforms (e.g. Amazon web services, Google cloud
platform, and Microsoft Azure) such that users do not need to
compile and install the pipeline by themselves.

The adjacency coefficients in our cross-trait penalty function
provide a convenient way to incorporate prior knowledge about
the relation between the phenotypes. Here, we assumed no prior
knowledge and thus set all adjacency coefficients to 1. To improve
PA, we can use more appropriate values such as the cross-trait
heritability estimates from literature on large-scale GWAS stu-
dies, which quantifies the genetic contribution to the covariance
between two traits. Alternatively, we can consider SNP-specific
adjacency measures based on their correlation coefficients with
the respective phenotypes. Also, SNP-set specific adjacency
measures can be considered based on cross-trait heritability
computed from a specific SNP-set when functional information
on SNPs are available. All SNPs are divided into multiple SNP-
sets based on functional information and then each cross-trait
heritability estimate for each SNP-set can be computed and used
as adjacency coefficients.

Although our prediction methods provide powerful predictive
performance, they have some limitations. First, the proposed
methods require more computation time than summary
statistics-based methods such as LDpred and MTAG although
our methods outperform them. Novel MPI algorithm were thus
implemented using parallel computing to reduce computation
time and utilize computing resource effectively. This algorithm
can compute exact (i.e. same as obtained by using the original
coordinate decent algorithm) SNP effects as well as approximate
ones and both are remarkably similar once the convergence
is achieved. Interestingly, the computation time of our method
increases only linearly with the sample size, number of SNPs,
and number of core-groups and also larger sample size enables
us to specify smaller number of core-groups, which makes
it feasible for use in future large-sample GWAS analyses.
Second, the current models described here were designed only for
continuous traits. In principle, the current methods can be
directly applied to binary traits by treating them as continuous
traits with values of 0 and 1 although the performance on
binary traits still need to be evaluated using simulation and real
GWAS data. In general, the CTPR can suffer miscalibration for
binary traits and specifically miscalibration takes place when
minor allele count multiplied by the proportion of cases is small.
Thus, we recommend to use binary traits with a case proportion
of at least 10% and SNPs with MAF > 0.1% in biobank-based
GWAS data16.

In conclusion, the proposed cross-trait prediction method
described here is a powerful and practical tool to predict a trait of
interest by incorporating other related traits using large-scale
GWAS data. It can utilize GWAS summary statistics from many
related secondary traits for better prediction. We expect our
proposed method will become more useful as larger sample
GWAS data become accessible via either individual-level data or
summary statistics.

Methods
UK Biobank data. UK Biobank is a large-scale national health resource of over
500,000 individuals from across the United Kingdom (UK). Study participants
were invited to 1 of 22 centers across the UK between 2006 and 2010, described in
detail elsewhere29. Over 500,000 subjects with their phenotypes in the UK Biobank,
~488,377 subjects were genotyped at ~800,000 SNPs using the UK BiLEVE and UK
Biobank Axiom Arrays from Affymetrix. Pre-phasing was carried out using a
modified version of the SHAPEIT2 (ref. 43) and imputation was performed with
the UK10K and the 1000 Genomes Phase 3 reference panels using IMPUTE2
(ref. 44), which resulted in ~93 million SNPs (Supplementary Table 7). With MAF
> 0.05, imputation R2 > 0.8, and P(HWE) > 10−10, we finally have 5,498,274 SNPs.
Genotyping, quality control for SNPs and samples, and imputation procedures are
described in detail here30,31. Individuals of non-European ancestry were excluded
to be consistent with NHS/HPFS/PHS cohort data, which results in 456,837

individuals. For simulation studies and real GWAS analyses, we prepared 30,000
(30K) and 436,837 (437K) individuals for a training set and the remaining 20,000
(20K) individuals for a validation set.

NHS/HPFS/PHS cohort data. We combined 23 GWAS datasets from Nurses’
Health Study I, II (NHS, NHS2), Health Professionals Follow-up Study (HPFS),
and Physicians’ Health Study (PHS) into three compiled datasets based on their
genotype platform types: Affymetrix, Illumina HumanHap, and Illumina
OmniExpress. We eliminated any SNPs that were not in all studies or with high
missingness (>0.05), which led to 668,283 SNPs in the Affymetrix, 459,999 SNPs in
the Illumina HumanHap, and 565,810 SNPs in the Illumina OmniExpress dataset.
Based on a pairwise identity by descent (IBD) analysis for each combined dataset,
we removed individuals that are duplicates (or identical twins) or flagged for
unexpected duplicates with the different cohort IDs but pairwise genotype con-
cordance rate >0.99. Related individuals (full sibs, half sibs) were not removed in
each dataset. This resulted in 8065 individuals in the Affymetrix dataset, 6787
individuals in the Illumina HumanHap, and 5,917 individuals in the OmniExpress,
the total number of which is 20,769. For imputation, the 1000 Genomes Project
Phase I Integrated Released Version 3 Haplotypes excluding monomorphic and
singleton sites (2010–11 data freeze, 2012-03-14 haplotypes) were used as reference
panel. Genotypes on each chromosome were first split into chunks and each chunk
of chromosome was pre-phased using MACH45 (v.1.0.18.c). Imputation was per-
formed using Minimac46 (v.2012-08-15), which finally led to ~31 million SNPs for
each dataset (Supplementary Table 7). We obtained 5,354,676 SNPs after removing
all SNPs with MAF <0.05 and imputation R2 < 0.8. For the simulation studies, we
randomly chose 20,700 individuals in the merged dataset, among which 14,800
individuals in the Affymetrix and Illumina datasets were used as a training set and
5900 individuals in the OmniExpress dataset were used as a validation set. For real
GWAS analysis, we selected 20,000 (20K) individuals to use an independent
validation set (Supplementary Table 8).

Prediction model. Suppose we have K traits with nk (k= 1,…,K) independent
samples for each trait. We assume the first trait to be the primary one we wish
to predict. Denote yki as the phenotypic value and xkij as the genotype for the
jth (j= 1,…,P) SNP of the ith sample with the kth trait. Assume

yki ¼ αk þ
PP
j¼1

xkijβkj þ ϵki and ϵki � N 0; σ2k
� �

; where αk is the intercept and βkj is

the coefficient for jth SNP and kth trait. The coefficients can be estimated using the
following least-squares method:

bβ ¼ argminβ þ
XK
k¼1

Xnk
i¼1

1
2nk

yki � αk �
Xp
j¼1

xkijβkj

 !2

: ð1Þ

Note the solution of (1) is equivalent to minimizing the objective function for
each trait separately. Usually P is larger than nk.

Sparsity penalty. To avoid overfitting, we add to (1) a sparsity penalty pspλ1 βð Þ to
induce a sparse solution. For pspλ1 βð Þ, we investigate two possibilities, the Lasso18

and the MCP22. The Lasso penalty, defined as pspλ1 βð Þ ¼ λ1
PK

k¼1

PP
j¼1 βkj

��� ���; pro-
vides an efficient way to induce sparsity due to its non-differentiability at 0. Under
certain regularity conditions, Lasso achieves variable selection consistency. Its
convexity makes optimization very straightforward but at the same time
produces biased estimates due to shrinkage of the non-zero coefficients. The
MCP, though not convex, provides the convexity of the penalized loss in sparse
regions to the greatest extent while trying to preserve the variable selection and
unbiasedness features. In other words, MCP imposes as much penalty as possible
on small coefficients but less or no penalty on large coefficients. It is defined as

pspλ1 ;γ βð Þ ¼ λ1
PK

k¼1

PP
j¼1

R jβkj j
0 1� x

γλ1

� �þ
dx; where (.)+ is a function which sets

negative values to 0 and γ is an additional regularization parameter with large value
providing smoother estimators but larger bias and less accurate variable selection.
When γ →∞, it converges to the Lasso. In practice, it can be set to a constant to
reduce computational complexity.

Cross-trait penalty. If we assume the phenotypes are correlated and affected by
some common causal SNPs with similar effects, we can add to (1) another cross-
trait penalty pctpλ2 βð Þ to induce certain smoothness of the coefficients with respect to

the relationship between two traits. For pctpλ2 βð Þ, we take it to be Laplacian quadratic

penalty, which can be defined as pctpλ2 βð Þ ¼ λ2
2

PK
k≠k′

PP
j¼1

akk′j βkj � βk′j

� �2
where akk′j is

the adjacency coefficient, which can be used for incorporating the prior
knowledge on the similarity of the coefficient between trait k and k′ for SNP j. If
we have M additional traits for which only summary statistics, not individual-
level genotypes, are available for all coefficients, these traits can be also used
through adding additional quadratic penalties. The modified cross-trait penalty
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is defined as

pctpλ2 βð Þ ¼ λ2
2

XK
k≠k′

XP
j¼1

akk′j βkj � βk′j

� �2
þ
XK
k¼1

XM
m¼1

XP
j¼1

ak Kþmð Þj βkj � ŝmj

� �2( )
;

ð2Þ

where ŝmj is the fixed summary statistics for additional traits. We can define the
adjacency coefficient to incorporate prior knowledge on how the phenotypes are
related but we set akk′j= 1 for all SNPs in this study, which assumes no prior
knowledge. Finally, the sparse and smoothed estimate of β can be estimated by

bβ ¼ argminβ
XK
k¼1

Xnk
i¼1

1
2nk

yki � αk �
XP
j¼1

xkijβkj

 !2

þpspλ1 βð Þ þ pctpλ2 βð Þ: ð3Þ

Coordinate descent algorithm. We first standardize the data so thatPnk
i¼1 x

2
kij ¼ nk ,

Pnk
i¼1 xkij ¼ 0, and

Pnk
i¼1 yki ¼ 0, so that the intercept will not be

included in the model. Coordinate descent algorithm47,48, which optimizes over
one coefficient at a time with other coefficients fixed, can be used for obtaining
the solution of (3). Because there is a closed form solution for optimization
over a single coefficient, the algorithm is very computationally efficient and
can handle a large number of SNPs. Suppose, eβ are current estimates and we
want to optimize over βk′j′. The univariate optimization over βk′j′ becomes

β̂k′j′ ¼ argminβk′j′
1
2 βk′j′ � ~bk′j′
� �2

þpspλ1 βk′j′

� �
þ λ2

2 dk′j′β
2
k′j′;

~bk′j′ ¼ ~ζk′j′ þ ~ξk′j′ ,

~ζk′j′ ¼
Pnk′

i¼1 xk′ij′~rk′ij′
� �

=n′k; ~rk′ij′ ¼ yk′i �
P

j≠j′ xk′ij
~βk′j;

~ξk′j′ ¼

λ2
P

k≠k′ akk′j′
~βkj′ þ

PK
k¼1

PM
m¼1 akðKþmÞj′ ŝmj′

� �
; dk′j′ ¼

P
k≠k′ akk′j′ and

pspλ1 βk′j′

� �
¼

λ1 βk′j′

��� ��� if the penalty is Lasso

λ1
R jβk′j′ j
0 1� x

γλ1

� �þ
dx if the penalty isMCP

8<: : For Lasso penalty,

the solution is given by

β̂k′j′ ¼ sgn ~bk′j′
� � j~bk′j′j � λ1

� �þ
1þ λ2dk′j′

; ð4Þ

where sgn(.) is the sign function. For MCP penalty, the solution is given by

β̂k′j′ ¼
sgn ~bk′j′
� �

γ j~bk′j′ j�λ1ð Þþ
γ 1þλ2dk′j′ð Þ�1

if ~bk′j′

��� ��� � γλ1 1þ λ2dk′j′
� �

;

~bk′j′
1þλ2dk′j′

if ~bk′j′

��� ���>γλ1 1þ λ2dk′j′
� �

8><>: : ð5Þ

It is easy to see that when γ →∞, ~bk′j′

��� ��� will be much smaller than γλ1 1þ λ2dk′j′
� �

and the Eq. (5) will converge to the Eq. (4). The coordinate descent algorithm
cycles through all the coefficients for all the traits until a certain convergence
criterion is reached such as the largest relative change of the coefficients from two
consecutive cycles is less than 10−3. Let N ¼PK

k¼1 nk , then the computational
complexity of above algorithm is O(NP2). To reduce the computational complexity
to O(NP), the residuals can be updated using

~rk′iðj′þ1Þ ¼ ~rk′ij′ � β̂k′j′xk′ij′ þ ~βk′ðj′þ1Þxk′iðj′þ1Þ: ð6Þ

Considerable speedup can be achieved by organizing the iterations around the
features with non-zero coefficients (active sets). After a complete cycle through all
the coefficients, we iterate on only the active set till convergence. The process
repeats until another complete cycle does not change the active set. Given a fixed
value of λ2, we compute the solutions for a decreasing sequence of values for λ1 on
the log scale, starting at the smallest value λmax

1 that produces the sparsest modelbβ ¼ 0
� �

: λmax
1 can be estimated as maxk;j

P
i
xkijyki

���� ����=nk . Apart from giving us a

path of solutions, this scheme exploits warm starts, and leads to a more stable
algorithm.

Tuning parameters. To select the tuning parameter λ1 and λ2, we use n-fold cross-
validation. Since our focus is to improve the prediction of the primary phenotype,
we only divide the dataset for the primary phenotype into n folds, each fold will be
used as the validation dataset and the remaining as the training dataset. The
datasets for secondary phenotypes are not divided and will be fully used. However,
if some individuals have data on both the primary phenotype and secondary
phenotypes, the secondary ones are also divided into n folds for those individuals
to avoid overfitting. We then run the penalized least-squares method on the
training dataset and obtain the MSE on the validation dataset. We select the values
for λ1 and λ2 that minimize the averaged MSE over the n folds. Though γ is also

tunable, we could fix γ to reduce computational cost while still achieving good
performance. We use γ= 3.0 following the author’s suggestion22.

Novel MPI algorithm for biobank-based GWAS data. Recent biobank-based
GWAS data contain several millions of SNPs in hundreds of thousands of indi-
viduals. Due to limited memory and computing resources, it may not be feasible to
update the coefficients for all SNPs simultaneously. Alternatively, we propose to
divide SNPs into multiple subgroups and allocate each subgroup to an MPI core for
parallel computing. Each core updates only parameters in the subgroup with the
remaining coefficients transferred from other cores. Because MPI allows for
communication between different cores, the data of all cores are synchronized at
each estimation step. A detailed description of MPI algorithm is below.

Whole-genome SNP data are divided into non-overlapping subgroups which
contain the fixed number of SNPs in low LD. We consider q subgroups where SNPs
within the same subgroup are independent. Each MPI core is assigned to one of q
subgroups and then all cores run simultaneously at each estimation step while the
residuals of the specific subgroup are updated in a sequential way (see Eq. (6)).
Now, we consider both extreme cases, where the number of subgroup q is either 1
or P (i.e. the number of all SNPs). When q= 1, we have one subgroup and the
coefficients for all SNPs are updated sequentially. When q= P, the number of
subgroups equals the number of SNPs and thus all SNPs are updated concurrently.
In the former case, there is no gain in computation time and the latter case may
lead to some convergence issues. There is a need to balance between them. We
propose to use another group, i.e. s core-groups (s ≤ q), each of which contains
several subgroups (see Fig. 1). All cores in each core-group run simultaneously at
each step, keeping all cores in other core-groups waiting till finish. In this way,
coefficients of the specific core-group are updated in a consecutive order to avoid
convergence problem as well as to use more computing cores.

More detailed, we consider two sequence of index sets, such as q (≤P) mutually
exclusive index sets {I1, I2,…,Iq} where

Sq
h¼1 I

h ¼ 1; ¼ ; Pf g and Ih∩ Ih′=∅, h≠h′,
and s (≤q) ordered index sets {A1, A2,…,As} where

Ss
f¼1 A

f ¼ 1; ¼ ; qf g and a1

<a2 <…<as for any element a f∈Af. We partition the parameters ~β into q

subvectors, ~β ¼ ~β
1ð1Þ

; ¼ ; ~β
sðqÞ� �

where ~β
f ðhÞ ¼ ~βkjjj 2 Ih; h 2 Af

n o
is the current

estimates corresponding to the hth subgroup in the fth core-group. In Eqs (4) and
(5), the solutions for both the Lasso and MCP penalties contain ~bk′j′ which can be
expressed as, for hth subgroup in the f th core-group,

~bf hð Þ
k′j′ ¼ 1

n′k

Xnk′
i¼1

xk′ij′~r
f hð Þ
k′ij′ þ λ2

X
k≠k′

akk′j′~β
f hð Þ
kj′ þ

XK
k¼1

XM
m¼1

ak Kþmð Þj′ ŝ
f hð Þ
mj′

 !
;

where

~rf ðhÞk′ij′ ¼ yk′i �
X

j≠j′;j2Ih
xk′ij~β

f ðhÞ
k′j �

X
f ′<f

X
h′2Af ′

X
j2Ih′

xk′ijβ̂
f ′ðh′Þ
k′j �

X
f ′>f

X
h′2Af ′

X
j2Ih′

xk′ij~β
f ′ðh′Þ
k′j :

ð7Þ
Since the last two terms of ~rf ðhÞk′ij′ are transferred from other cores, the coefficients

for SNPs within the hth subgroup in the fth core-group are easily estimated. When
s= 1, the coefficients in each subgroup are updated sequentially and when s= q,
the proposed MPI algorithm becomes the original coordinate descent algorithm
but taking 1/q required memory on each core.

Model for simulation. We simulated K traits, each with nk samples (k= 1,…,K).
We selected P SNPs and set the number of causal SNPs to C (C ≤ P) which were
randomly selected. To generate the phenotype, we used the following linear model:
yki ¼

PP
j¼1 xkijβkj þ ϵki; ϵki � N 0; σ2k

� �
; k ¼ 1; ¼ ;K: For considering the genetic

correlation among K traits, βj= (β1j,…,βKj) were generated from the following
multivariate normal distribution: βj ~NK(0,D) if jth SNP is causal, βj= 0 if jth
SNP is non-causal where D is a K × K covariance matrix with (l,m) element
denoted by dlm. If we set var (yki)= 1, the heritability for kth trait is

h2k ¼ var
PP

j¼1 xkijβkj

� �
. Assuming xkij and βkj are independent to each other and

xkij are standardized, h2k ¼ C � var βkj

� �
¼ C � dkk and hence dkk ¼ h2k=C. The

covariance between two phenotypes, dlm(l≠m) can be calculated using dlm ¼
ρlm

ffiffiffiffiffi
dll

p ffiffiffiffiffiffiffiffiffi
dmm

p
where ρlm is the correlation between βlj and βmj. Since var (yki)= 1,

the random error is σ2k ¼ 1� h2k . In this model, SNP-heritability is defined as
variance explained by the causal SNPs because beta coefficients for multiple traits
are generated from multivariate normal distribution only for causal SNPs and other
beta coefficients are set to zero. The covariance matrix for multivariate normal
distribution are designed with number of causal SNPs, desired SNP-heritability,
and genetic correlation among traits.

Family structure and cryptic relatedness in UK Biobank. The UK Biobank data
contains related samples, including twins, parent–offspring and sibling pairs. A
total of 142,726 training samples (32.7%) have at least one relative (third degree or
closer) in the cohort, which leads to 314,111 unrelated training samples. Also, a
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total of 6315 testing samples (31.6%) among 20,000 are inferred to be related with
someone in the full cohort. In order to check how related samples between training
and testing sets from UK Biobank have impact on potential inflation of PA, we re-
computed PA using only unrelated testing samples (N= 13,685) instead of all
testing samples and then conducted subsampling hypothesis tests49. The unrelated
testing samples (N= 13,685) have no relatives (third degree or closer) in the cohort
and hence there should be no relatives between training and testing sets. With the
same 437K training samples, we observed small reduction in PA using unrelated
testing samples but difference was not statistically significant based subsampling p-
values (change in PA from previous to current results ranged from +0.0023 to
−0.005, min p-value >0.422 for H0: difference= 0, see Supplementary Table 12).
For further comparisons, we randomly selected the same number of testing sam-
ples (N= 13,685) from NHS/HPFS/PHS cohort and re-computed PA using only
these samples. The results were still similar to our previous results and NHS/HPFS/
PHS samples still showed smaller PA than UK Biobank testing, likely due to genetic
heterogeneity between UK and US samples, and UK Biobank samples are likely
environmentally more homogeneous than samples within NHS/HPFS/PHS cohort.
Furthermore, the recent paper19 investigated the impact of relatives in UK Biobank
on PA and concluded that there was no discernable difference in prediction results
between using a training set drawn from the set of kinship-filtered samples and
samples from the unfiltered set. Due to notably large number of related samples
(>30%), removing these samples will result in a nontrivial decease in training
sample size and PA. Because we found the statistically non-significant impact of
related samples in UK Biobank on PA, we utilized full UK Biobank samples for our
analyses.

URLs. The URLs presented in the paper are as follows. UK Biobank: http://www.
ukbiobank.ac.uk/, LDpred: https://github.com/bvilhjal/ldpred, MTGBLUP: https://
github.com/uqrmaie1/mtgblup, MTAG: https://github.com/omeed-maghzian/
mtag/.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. The CTPR software is available at https://github.com/
wonilchung/CTPR. Data analysis codes are available from the corresponding
author upon reasonable request.

Data availability
All predictors for human height by aid of BMI with 437K training samples from UK
Biobank using PRS, LDpred, MCP, Lasso, PRS+MTAG, LDpred+MTAG, MCP+
CTPR, and Lasso+ CTPR are available for academic uses at http://lianglab.rc.fas.
harvard.edu/CTPR/. All other data are available from the corresponding author upon
reasonable request.
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