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Abstract: Breast cancer accounts for the largest number of newly diagnosed cases in 

female cancer patients. Although mammography is a powerful screening tool, about 20% 

of breast cancer cases cannot be detected by this method. New diagnostic biomarkers for 

breast cancer are necessary. Here, we used a mass spectrometry-based quantitative 

metabolomics method to analyze plasma samples from 55 breast cancer patients and  

25 healthy controls. A number of 30 patients and 20 age-matched healthy controls were 

used as a training dataset to establish a diagnostic model and to identify potential 

biomarkers. The remaining samples were used as a validation dataset to evaluate the 

predictive accuracy for the established model. Distinct separation was obtained from an 

orthogonal partial least squares-discriminant analysis (OPLS-DA) model with good 

prediction accuracy. Based on this analysis, 39 differentiating metabolites were identified, 

including significantly lower levels of lysophosphatidylcholines and higher levels of 

sphingomyelins in the plasma samples obtained from breast cancer patients compared with 
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healthy controls. Using logical regression, a diagnostic equation based on three metabolites 

(lysoPC a C16:0, PC ae C42:5 and PC aa C34:2) successfully differentiated breast cancer 

patients from healthy controls, with a sensitivity of 98.1% and a specificity of 96.0%. 
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1. Introduction 

According to the American Cancer Society estimation, breast cancer remains to be one of the most 

commonly diagnosed and death-related cancers in women in the United States [1]. In 2012, about 

226,870 females in the U.S. were diagnosed with breast cancer, which represents 29% of all newly 

diagnosed female cancer patients. Breast cancer was estimated to cause more than 39,000 deaths in the 

U.S. in the past year, ranking it as the second leading cause of cancer death in women [1]. Early 

diagnosis can significantly increase long-term survival rates for breast cancer [2]. Currently, 

mammography is the most acceptable and effective screening procedure for the detection of breast 

cancer and was recommended by the U.S. Preventive Services Task Force (USPSTF) to women over 

40 years old [3]. However, because of the high false positive rate of this screen, the USPSTF revised 

their recommendation to a reduced frequency of mammogram screening in 2009 [4]. Other imaging 

techniques, such as ultrasonography and magnetic resonance imaging, have also been used in breast 

cancer screening. Unfortunately, even with the inclusion of these imaging techniques, about 20% of 

breast cancer patients still cannot be detected [5]. Plasma (or serum) biomarkers (such as antigens and 

protein patterns) are promising [6,7]; however, they are still far from clinical use. Some tumor 

markers, such as CA15.3 and CA27.29, are recommended only for therapeutic monitoring, but not 

screening [8]. Therefore, new effective biomarkers for breast cancer screening that can be used 

individually or in combination with other existing methods are urgently needed.  

In addition to genetic and proteomic variations, cancer cells have been shown to express distinct 

metabolic variations compared with normal cells [9]. The advanced metabolomics technology based on 

mass spectrometry (MS) and nuclear magnetic resonance (NMR) have shown great potential in finding 

biomarkers with cancer cells or clinical samples [10–14]. To support fast proliferation of cancer cells, 

increased lipogenesis is believed to be a characteristic metabolic feature of many types of cancer  

cells [15]. The association between plasma (or serum) lipids (such as total cholesterol, high density 

lipoprotein and triglycerides) and the risk of breast cancer has also been reported in various  

studies [16,17]. The advent of advanced profiling technology using MS enables a targeted analysis and 

simultaneous quantitation of hundreds of lipids in a given biological specimen. Results from MS-based 

analyses of distinct lipid compositions in breast cancer tissues compared with levels in normal ones 

were recently reported, revealing a high correlation between lipid metabolism (such as PC 

(phosphatidylcholine) (14:0/16:0) level) and the tumor grade or estrogen receptor (ER) status [15]. We 

hypothesized that the variations in lipid expression in tumor tissues would result in a unique lipid 

profile in the plasma of breast cancer patients, which can be detected with the targeted and quantitative 

metabolomics approach. Detected differentiating plasma lipids may be useful as new biomarkers for 

early screening of breast cancer. 
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In this study, we used a quantitative and targeted metabolomics approach with electrospray 

ionization tandem mass spectrometry (ESI-MS/MS) to analyze plasma samples from 55 breast cancer 

patients and 25 healthy controls. The aim of this study was to identify potential diagnostic biomarkers 

and improve the understanding of lipid metabolism in breast cancer.  

2. Results and Discussion 

2.1. Multivariate Analysis  

A total of 146 metabolites were analyzed in this study. Using those metabolites, an unsupervised 

principle component analysis (PCA) was first performed on the training dataset. A five component 

PCA model was obtained with the parameters as: R2X = 0.643, Q2 = 0.416. A clear separation 

between sample groups was observed, with most of the healthy controls scattering at the top of the 

plot, while most of the breast cancer samples were scattered across the bottom half (Figure 1). The 

unsupervised PCA model revealed the general metabolic information between breast cancer patients 

and healthy controls. To further specify the metabolic variations associated with cancer morbidity, a 

supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) model was established 

with one predictive component and two orthogonal components (R2X = 0.464, R2Y = 0.884,  

Q2 = 0.756). As shown in Figure 2A, a clear separation was obtained in the scores plot, with all the 

breast cancer patients in the left half and healthy controls in the right half. To further validate the 

established model, a 999-time permutation test was performed for the corresponding model. The result 

showed that all the R2 and Q2 values in the permutation test were lower than the original ones. The  

Y-axis intercept for Q2 is below zero (Q2 intercept (0, −0.295)). These results validate the current 

supervised model. 

Figure 1. Principle component analysis (PCA) scores plot discriminating the metabolic 

profiles in plasma of breast cancer patients and those in healthy controls in the training 

dataset. Each red dot represents one breast cancer patient, while each black triangle 

represents one healthy control (five components model: R2X = 0.643, Q2 = 0.416,  

R2X1 = 0.261, R2X2 = 0.165, R2X3 = 0.101). 
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Figure 2. Orthogonal partial least squares-discriminant analysis (OPLS-DA) scores plot 

and permutation test for the model discriminating plasma samples from breast cancer 

patients and healthy controls in the training dataset. (A) OPLS-DA scores plot. The model 

parameters were: R2Xcum = 0.464, R2Ycum = 0.884, Q2 = 0.756. Each red dot represents 

one breast cancer patient, while each black triangle represents one healthy control;  

(B) A 999-times permutation test for the corresponding model. The Y-axis intercepts were:  

R2 (0, 0.498), Q2 (0, −0.295). 

 

2.2. Differentiating Metabolites Identification 

Based on the variable importance in the projection (VIP) values in the OPLS-DA model,  

46 metabolites were selected with VIP > 1. Univariate analysis using a Student’s t-test was also 

performed for selection of differentiating metabolites. After a false discovery rate (FDR) test with a 

classical one-stage method, 39 metabolites were selected with adjusted p-values less than 0.05  

(Table 1). Those 39 differentiating metabolites included 10 lysophosphatidylcholines (lysoPCs),  

23 glycerophosphocholines (PCs, nine PC aas and 14 PC aes), five sphingomyelins (SMs) and  

1 acylcarnitine. We further compared the concentrations of these 39 differentiating metabolites in 

breast cancer patients with Body Mass Index (BMI) < 25 (n = 16) and BMI > 30 (obese patients,  

n = 21). Only five among these 39 metabolites were significantly different between patients with 

normal weight and obese subjects in the student’s t-test. These five metabolites were excluded from 

our diagnostic equation. After FDR adjustment, no metabolites showed a significant difference with a 

q-value lower than 0.05.  
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Table 1. Differentiating metabolites between breast cancer patients and healthy controls 

identified from the learning dataset.  

NO Metabolites Classes VIP a FC b p-value c q-value d 

1 PC ae C40:3 Phosphatidylcholines 2.31 −4.24 2.79 × 10−10 1.36 × 10−8 
2 PC aa C42:4 Phosphatidylcholines 2.09 −1.96 4.87 × 10−8 9.73 × 10−7 
3 PC ae C38:3 Phosphatidylcholines 2.09 −2.15 5.16 × 10−8 9.73 × 10−7 
4 PC ae C40:4 Phosphatidylcholines 2.08 −1.93 5.33 × 10−8 9.73 × 10−7 
5 PC ae C38:1 Phosphatidylcholines 2.05 −72.18 1.16 × 10−7 1.82 × 10−6 
6 PC ae C42:4 Phosphatidylcholines 1.88 −1.63 2.08 × 10−6 2.76 × 10−5 
7 PC ae C40:5 Phosphatidylcholines 1.86 −1.63 2.73 × 10−6 3.32 × 10−5 
8 PC ae C42:5 Phosphatidylcholines 1.83 −1.44 4.68 × 10−6 5.25 × 10−5 
9 PC aa C40:2 Phosphatidylcholines 1.82 −2.24 5.63 × 10−6 5.87 × 10−5 
10 PC ae C44:3 Phosphatidylcholines 1.78 −1.63 9.07 × 10−6 8.83 × 10−5 
11 PC ae C38:2 Phosphatidylcholines 1.67 −1.84 4.31 × 10−5 3.93 × 10−4 
12 PC ae C42:1 Phosphatidylcholines 1.66 −1.63 4.69 × 10−5 4.02 × 10−4 
13 PC aa C40:3 Phosphatidylcholines 1.65 −1.62 5.43 × 10−5 4.40 × 10−4 
14 PC ae C36:2 Phosphatidylcholines 1.56 1.39 1.64 × 10−4 1.14 × 10−3 
15 PC aa C38:6 Phosphatidylcholines 1.48 1.46 3.64 × 10−4 2.21 × 10−3 
16 PC ae C40:6 Phosphatidylcholines 1.36 1.31 1.22 × 10−3 7.10 × 10−3 
17 PC aa C38:0 Phosphatidylcholines 1.31 1.44 1.92 × 10−3 1.08 × 10−2 
18 PC ae C34:2 Phosphatidylcholines 1.26 1.33 2.89 × 10−3 1.51 × 10−2 
19 PC aa C40:6 Phosphatidylcholines 1.26 1.36 2.90 × 10−3 1.51 × 10−2 
20 PC ae C40:2 Phosphatidylcholines 1.17 −1.32 6.22 × 10−3 2.93 × 10−2 
21 PC aa C40:4 Phosphatidylcholines 1.16 −1.38 6.71 × 10−3 2.97 × 10−2 
22 PC aa C34:2 Phosphatidylcholines 1.14 1.19 7.98 × 10−3 3.43 × 10−2 
23 PC aa C42:5 Phosphatidylcholines 1.13 −1.32 8.63 × 10−3 3.60 × 10−2 
24 lysoPC a C16:0 Lysophosphatidylcholines 2.53 −1.98 1.21 × 10−13 1.77 × 10−11 
25 lysoPC a C18:0 Lysophosphatidylcholines 2.5 −2.25 4.21 × 10−13 3.08 × 10−11 
26 lysoPC a C20:4 Lysophosphatidylcholines 2.2 −2.14 4.04 × 10−9 1.48 × 10−7 
27 lysoPC a C18:1 Lysophosphatidylcholines 2.11 −1.88 3.30 × 10−8 9.63 × 10−7 
28 lysoPC a C17:0 Lysophosphatidylcholines 2.04 −1.73 1.25 × 10−7 1.82 × 10−6 
29 lysoPC a C20:3 Lysophosphatidylcholines 1.6 −1.63 1.03 × 10−4 7.52 × 10−4 
30 lysoPC a C28:0 Lysophosphatidylcholines 1.16 −1.23 6.63 × 10−3 2.97 × 10−2 
31 lysoPC a C16:1 Lysophosphatidylcholines 1.09 −1.3 1.09 × 10−2 4.32 × 10−2 
32 lysoPC a C24:0 Lysophosphatidylcholines 1.09 −1.2 1.09 × 10−2 4.32 × 10−2 
33 lysoPC a C26:0 Lysophosphatidylcholines 1.08 −1.28 1.17 × 10−2 4.38 × 10−2 
34 SM (OH) C22:2 Sphingomyelins 1.62 1.38 8.26 × 10−5 6.35 × 10−4 
35 SM (OH) C14:1 Sphingomyelins 1.52 1.37 2.40 × 10−4 1.59 × 10−3 
36 SM (OH) C16:1 Sphingomyelins 1.49 1.34 3.49 × 10−4 2.21 × 10−3 
37 SM (OH) C22:1 Sphingomyelins 1.2 1.23 5.07 × 10−3 2.55 × 10−2 
38 SM C20:2 Sphingomyelins 1.08 1.32 1.17 × 10−2 4.38 × 10−2 
39 C4 Acylcarnitines 1.18 1.45 5.64 × 10−3 2.74 × 10−2 

a Variable importance in the projection (VIP) was obtained from OPLS-DA with a threshold of 1.0;  
b The fold change (FC) was calculated by the average value of the breast cancer group to that of the control 

group. FC with a value larger than zero indicates a higher level of the plasma metabolite in breast cancer 

patients, while a FC value lower than zero indicates a lower level, compared to healthy controls; c p-values 

are calculated from a Student’s t-test; d q-values are the adjusted p-value with the false discovery rate (FDR).  
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2.3. Diagnostic Equation 

To establish a simple diagnostic equation for identifying breast cancer patients from healthy 

controls, the 39 differentiating metabolites selected from training dataset were imported into SPSS for 

logical regression. The result indicated that the concentrations of three metabolites (lysoPC a C16:0, 

PC ae C42:5 and PC aa C34:2) significantly affected the diagnostic result between breast cancer 

patients and healthy controls. Using the concentrations of these three metabolites, a diagnostic 

equation of y = lysoPC a C16:0 × 1.034 + PC ae C42:5 × 44.248 − PC aa C34:2 × 0.585 − 37.002 was 

established. Y-values for each sample (both in the training and validation dataset) were calculated. A 

scatter plot demonstrated that almost all y-values obtained from breast cancer samples were lower than 

zero, while the y-values from healthy controls were higher than zero (except one breast cancer sample 

and one healthy control in the validation dataset, Figure 3), with a sensitivity of 98.1%, a specificity of 

96.0%, a positive predictive value of 98.1% and a negative predictive value of 96.0%.  

Figure 3. Scatter plot for y-values calculated from an established breast cancer versus 

healthy control diagnostic equation. Samples in blue represent healthy controls, while 

samples in red represent breast cancer patients. Samples represented by circles indicate the 

training samples and triangles for the validation ones.  

 

Since the age variation is larger in the breast cancer group in the validation dataset, the 

concentration of these three metabolites in younger breast cancer patients and older breast cancer 

patients were analyzed. The result showed no significant difference for these three metabolites (lysoPC 

a C16:0, PC ae C42:5 and PC aa C34:2) between breast cancer patients with an age less than 41 years 

old (n = 17) and breast cancer patients with an age more than 60 years old (n = 12). Additionally, no 

significant difference was observed for these three metabolites with patients younger than 50 years old 

(n = 29) and older than 50 years old (n = 24). Therefore, it appears that age is not a confounding factor 

for these three metabolites. 
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2.4. Phosphatidylcholines 

Glycerophospholipids contain two subclasses of lipid metabolites, PC diacyl (PC aa) and PC  

acyl-alkyl (PC ae). A total of 23 glycerophospholipids were selected as differentiating metabolites 

(Table 2), most of which were lower in the plasma of breast cancer patients (five of nine PC aas and 11 

of 14 PC aes). PC ae 40:3 was detected as the most statistically significant decreased lipid among all 

the phosphatidylcholines (p-value of 2.79 × 10−10). The decreased glycerophospholipids in the plasma 

samples of breast cancer patients may reflect a higher activity of phospholipase A2 (PLA2), a family of 

enzymes, which hydrolyze glycerophospholipids to lysoPCs and fatty acids [18].  

Previous studies revealed that the expression of PLA2 in cancer patients was upregulated [19,20]. 

The activity of PLA2 was observed as significantly higher in invasive breast tumor tissues than benign 

breast tumor tissues and normal breast tissues [21,22]. PLA2 is a diverse family of enzymes with 

different isoforms expressed across different tissues. Some specific classes of PLA2 were reported to 

be highly associated with breast cancer, such as sPLA2 (group IIA PLA2) [21,22] and PAF-AH  

(group VII and VIII PLA2) [23]. 

PLA2 can participate in the development of cancer through multiple mechanisms. It may mediate 

carcinogenesis by releasing lysoPCs, inducing cell growth via their metabolism to lysophosphatidic 

acid [24]. Some fatty acids, especially arachidonic acid, are released as well and metabolized into 

several molecules, many of which may induce cell growth and proliferation [25]. In our study, the 

concentrations of most lysoPCs were significantly decreased in the plasma samples of breast cancer 

patients, suggesting arachidonic acid metabolism might be a major contributor to breast cancer 

development. In addition, PLA2 may generate inflammatory mediators, which promote tumor  

formation [26]. Recently, PLA2 inhibitors have become attractive anti-cancer targets for the role of 

PLA2 in glycerophospholipid metabolism and carcinogenesis [27].  

2.5. Lysophosphatidylcholines 

LysoPCs were derived from partial hydrolysis of glycerophospholipids by phospholipase. In the 

identified differentiating metabolites between breast cancer patients and healthy controls, 10 of the 

selected metabolites were lysoPCs. The concentrations of the differentiating lysoPCs were detected to 

be lower in breast cancer patients compared to healthy controls. LysoPC a C16:0 and lysoPC a C18:0 

were identified as the top two differentiating metabolites with the lowest p-values (1.21 × 10−13 for 

lysoPC a C16:0 and 4.21 × 10−13 for lysoPC a C18:0) across all the 39 differentiating metabolites. 

Interestingly, phosphatidylcholines stearic acid (C18:0) extracted from breast cancer tissue samples 

was previously reported to be significantly lower in those patients with developed metastasis and was 

even considered to be an independent intra-tumor marker of breast cancer prognosis [28]. Decreased 

levels of lysoPC a C16:0 and lysoPC a C18:0 were reported to be associated with a decrease PC level 

in hepatocellular carcinoma tissues [29].  

These two lysoPCs (lysoPC a C 16:0 and lysoPC a C18:0) are among the most abundant lysoPCs in 

plasma. The decreased levels of two lysoPCs would largely contribute to the lower concentration of 

total lysoPCs in plasma, which was previously reported to be associated with an activated 

inflammatory status in cancer patients [30]. In fact, the total plasma lysoPCs (sum of the concentration 
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of all the 14 lysoPCs detected in the current study) was observed to be significantly lower in breast 

cancer patients (p = 6.87 × 10−8, fold change (FC) = −1.67, breast cancer to healthy control). The mean 

concentration of lysoPC a C 20:4 demonstrated a decreasing trend from stage I to stage IV breast 

cancer patients (9.22 ± 3.62 μM for stage I, 8.64 ± 2.20 μM for stage II, 8.37 ± 3.20 μM for stage III 

and 7.87 ± 2.50 μM for stage IV). Those lysoPCs include very long chain fatty acids, such as lysoPC a 

C24:0, lysoPC a C26:0 and lysoPC a C28:0, which were also significantly lower in breast cancer 

patients. LysoPCs can be metabolized by lysophospholipase and further metabolized to fatty acids and 

choline. The lower levels of lysoPCs may reflect a higher metabolism rate in breast cancer patients. 

Hydrolysis of lysoPCs through lysophospholipase D derives lysophosphatidic acids, which are 

important lipid mediators that regulate cell proliferation and migration by binding G-protein-coupled 

receptors [31]. Autotaxin (a secreted lysophospholipase D) was reported to enhance tumor cell 

motility, survival and proliferation [32]. In fact, expression of autotaxin and lysophosphatidic acid was 

reported to contribute to the initiation and progression of breast cancer in a mice model [33]. 

2.6. Acylcarnitines  

The higher hydrolysis rate of glycerophospholipids was associated with a higher level of 

acylcarnitines in the plasma sample of breast cancer patients compared with healthy controls. In this 

study, acylcarnitine C4 was selected as a differentiating metabolite. In addition, several other 

acylcarnitines (such as acylcarnitines C18, C18:2, C3 and C5) were detected at a higher concentration 

in breast cancer patients with p-values lower than 0.05 (p = 0.034 for C18, 0.037 for C18:2 and 0.015 

for both C3 and C5). The increased acylcarnitine concentration indicates higher fatty acid  

beta-oxidation in breast cancer patients, which is consistent with recent studies that indicate that 

lipolysis and lipid oxidation are upregulated in cancer cells [34,35]. Fatty acids can be consumed 

through beta-oxidation to provide key substitute energy for cancer cell survival [36]. In some types of 

cancers, such as prostate cancer, fatty acid oxidation was proposed to be a dominant bioenergetic 

pathway [34]. The increased concentration of several acylcarnitines was also observed in kidney 

cancer patients and in those patients with high cancer grades, suggesting that acylcarnitine concentration 

could be a promising marker of cancer status and tumor grade [37]. 

2.7. Sphingomyelins 

All five differentiating sphingomyelins (SMs), including SM (OH) C22:2, SM (OH) C14:1, SM 

(OH) C16:1, SM (OH) C22:1 and SM C20:2, were detected at higher levels in breast cancer patients. 

SM is an abundant constituent of cellular membranes [38] and is preferentially concentrated in the 

outer leaflet of the plasma membrane of most mammalian cells. SM plays an important role in the 

regulation of cell growth and differentiation through the SM cycle [39]. Some signaling metabolites, 

such as ceramides, sphingosines and sphingosine 1-phosphate (S1P), are involved in the cycle [40]. 

Many studies suggest that ceramide is an important signaling molecule in the cancer cells’ apoptotic 

response to inducers, such as the FAS/FAS ligand, tumor-necrosis factor-α (TNFα), growth factor 

withdrawal, hypoxia, hyperthermia and DNA damage [41]. In fact, higher levels of ceramide synthases 

and ceramide were detected in breast cancer tissues compared with those in adjacent normal ones [42]. 

S1P is another biologically active lipid derived from SM, which is reported to regulate cancer cell 
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growth, survival and migration through both intracellular and receptor-mediated mechanisms [43]. 

Recently, Nagahashi and colleagues showed the importance of sphingosine kinase 1-produced S1P to 

breast cancer-induced hemangiogenesis and lymphangiogenesis in a mouse model [44]. Our results of 

increased circulating levels of the SMs may be an indication of dysfunction of the SM cycle in breast 

cancer patients, which may regulate cancer cell growth and metastasis.  

Interestingly, all five sphingomyelins containing hydroxyl fatty acids were significantly higher in 

breast cancer patients (four were selected as differentiating metabolites, the other one was SM (OH) 

C24:1 with a p-value of 0.014 and an adjusted q-value of 0.050). Although the accurate position of the 

hydroxyl group in the fatty acids was unclear by this analysis, 2-hydroxy fatty acid has been widely 

reported in mammalian sphingomyelins (see review [45]). The fatty acid was catalyzed by fatty acid  

2-hydroxylase and converted to 2-hydroxy fatty acid (hFA) and then incorporated into hFAceramide 

and complex hFA-sphingolipids [45]. A recent study showed that upregulation of fatty acid  

2-hydroxylase could inhibit dibutyryl-cAMP-induced cell cycle exit in D6P2T Schwannoma cells [46]. 

The higher levels of hFA-sphingolipids indicate a higher expression level of fatty acid 2-hydroxylase, 

which may affect cancer cell growth in breast cancer patients.  

The concentrations of some SMs, such as SM (OH) C22:1, SM (OH) C22:2, SM (OH) C24:1 and 

SM C26:0, were detected to be higher in the early stages of breast cancer and showed a continuous 

decrease from stage I to stage IV breast cancer patients (Figure 4). SM (OH) C22:1, SM (OH) C24:1 

and SM C26:0 were only significantly elevated in those breast cancer patients with early stage cancer 

(stage I and stage II, with a p-value (Student’s t-test) of 2.13 × 10−4, 2.28 × 10−4 and 0.03, respectively), 

but not in breast cancer patients at advanced stages (stage III and stage IV, with a p-value higher than 

0.05) compared with healthy controls. These results indicate that some SMs markers are more affected 

in early stage patients. To the best of our knowledge, the underlying mechanism for decreased levels of 

those SMs in late stage patients compared to early stage patients remains to be elucidated. 

3. Experimental Section  

3.1. Sample Information 

A total of 53 breast cancer patients and 25 healthy controls were collected from the City of Hope 

Comprehensive Cancer Center. To avoid the influence of age difference between breast cancer (BC) 

patients and healthy controls, the samples were divided into a training group and a testing group. In the 

training group, the average age is 41.3 (25–56) for the breast cancer group (30 subjects) and 38.2  

(28–40) for the healthy control group (20 subjects), with no significant difference in age between the 

two groups (p = 0.111, Student’s t-test). More detailed information is provided in Table 2. To avoid 

the influence of food, all the blood samples were obtained before breakfast. The protocol was approved 

by the Institutional Review Board from the City of Hope Comprehensive Cancer. All participants 

signed informed consent before they were recruited for the study. 
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Figure 4. Bar plots of four characteristic sphingomyelins showed an elevated level in 

plasma samples in stage I caner as compared to controls and a decreasing trend in the 

plasma samples from stage I to stage IV breast cancer patients. (A) SM (OH) C22:1;  

(B) SM (OH) C22:2; (C) SM (OH) C24:1; and (D) SM C 26:0. 

 

Table 2. Clinical information and characteristics of human subjects. BC, breast cancer. 

 Training group Validation group 

 Control (n = 20) BC (n = 30) Control (n = 5) BC (n = 23) 

Age (mean, range) 38.2 (28–40) 41.3 (25–56) 34.8 (21–39) 56.2 (40–67) 
Stage      

TNM-I / 4 / 4 
TNM-II / 11 / 8 
TNM-III / 11 / 7 
TNM-IV / 4  / 4 

3.2. Sample Treatment and Metabolite Analysis 

Our targeted metabolomics approach was based on electrospray ionization mass spectrometry  

(ESI-MS/MS) measurements using the AbsoluteIDQTM p180 kit (BIOCRATES Life Sciences AG, 

Innsbruck, Austria). The kit allows simultaneous quantification of 40 acylcarnitines (Cx:y),  

90 glycerophospholipids (14 lysophosphatidylcholines (lyso PCx:y) and phosphatidylcholines (38 

PCaa x:y and 38 PC ae x:y)), 15 sphingolipids (SMx:y or SM (OH)x:y) and 1 hexose. Cx:y represents 

the lipid side chain composition, where x indicates the number of carbons in the side chain, while y 

indicates the number of unsaturated chains. There are two types of side chain bonds in the glycerol 
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moiety in the glycerophospholipids, ester (a) and ether (e). PC aa indicates that glycerol is bound to 

two fatty acid residues, while PC ae indicates the presence of a fatty acid residue and a fatty alcohol 

residual. The assay procedures and quality controls followed the user kit’s manufacturer instructions. 

The samples were analyzed on a 4000 QTRAP mass spectrometer (AB science) coupled with an 

Agilent 1200 series HPLC.  

3.3. Data Analysis 

Quantification of metabolite concentrations and quality assessment was performed with the MetIQ 

software package (BIOCRATES Life Sciences AG, Innsbruck, Austria). Internal standards serve as the 

reference for the metabolite concentration calculations. An xls file was exported, which contained 

sample names, metabolite names and metabolite concentration with the unit of μmol/L of plasma. The 

data was imported into SIMCA-P software (SIMCA-P 12.0, Umetrics, Umeå, Sweden) for multivariate 

analysis. Principle component analysis (PCA) and orthogonal partial least squares-discriminant 

analysis (OPLS-DA) were carried out to discriminate the metabolic patterns between breast cancer 

patients and healthy controls after mean centering and unit variance scaling. PCA is an unsupervised 

statistical analysis used to describe associations and patterns among a set of variables. R2X and Q2 are 

two measures of PCA model quality. R2X is the goodness of fit, which is the sum of squares of the 

entries of X explained by all extracted components. Q2 is the predictive power of the model, which is 

the fraction of the total variation of the entries of X that can be predicted by all extracted components, 

as estimated by cross validation. To guard against model over-fitting, the default 7-fold cross-validation 

was applied. The variable importance in the projection (VIP) values of all the metabolites from the  

7-fold cross-validated OPLS-DA model were taken as a criterion for differentiating the metabolite 

selection. Those variables with VIP > 1.0 were selected as relevant for group discrimination [47]. 

Additionally, the nonparametric univariate method, the Student’s t-test, was applied to all metabolites.  

A classical one stage method of false discovery rate (FDR) was performed to adjust the p-value [48,49]. 

Differentiating metabolites were selected with VIP > 1 and p < 0.05 (adjusted p-value). The corresponding 

up- and down-regulated trend (fold change) showed how these selected differentiating metabolites 

varied between breast cancer patients and healthy controls and were used for subsequent metabolic 

pathway analysis. To further simplify the diagnostic model, all the selected differentiating metabolites 

were imported to SPSS software (v20, IBM, Chicago, IL, USA) for logical regression. Binary logical 

regression was performed with a forward method. Scatter plots were used to visualize the y-values 

calculated from the established equation in the SPSS software (v20, IBM, Chicago, IL, USA).  

To further investigate the association between metabolite concentration and the pathological stages 

of breast cancer, all the samples in the training dataset and validation dataset were pooled together to 

enlarge the sample size (especially for stage I and stage IV patients). A Student’s t-test was performed 

between patients with early stages or advanced stages of breast cancer and the healthy controls. Bar 

plots were used to visualize the differences of the mean value of breast cancer patients at each stage 

and healthy controls using the Microsoft Excel package. Standard derivations of those metabolites in 

each stage were used to show the variation within each group.  
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4. Conclusions  

In this study, we analyzed a panel of lipids in plasma samples from 55 breast cancer patients and 25 

healthy controls using a targeted and quantitative metabolomics approach. The OPLS-DA model 

showed a distinct separation in lipid profiles between breast cancer patients from healthy controls 

using a training dataset composed of 30 patients and 20 healthy controls and successfully predicted 

breast cancer cases versus controls in the validation dataset. The selected differentiating metabolites 

(including 39 lipids) revealed lower levels of lysophosphatidylcholines and higher levels of 

sphingomyelins and acylcarnitines in breast cancer patients. A diagnostic equation using three 

metabolites (lysoPC a C16:0, PC ae C42:5 and PC aa C34:2) was established, which successfully 

separated breast cancer patients from healthy controls with a sensitivity of 98.1% and a specificity of 

96.0%. One limitation for the current study is that the samples size is relatively small, especially for 

the healthy controls in the validation dataset. We will collect more samples to validate the diagnostic 

equation in our future work.  

Conflict of Interest 

The authors declare no conflict of interest. 

References 

1. Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 2012, 62,  

10–29. 

2. Stotter, A.T.; McNeese, M.D.; Ames, F.C.; Oswald, M.J.; Ellerbroek, N.A. Predicting the rate and 

extent of locoregional failure after breast conservation therapy for early breast cancer. Cancer 

1989, 64, 2217–2225. 

3. U.S. Preventive Services Task Force. Screening for breast cancer: Recommendations and 

rationale. Ann. Intern. Med. 2002, 137, 344–346. 

4. Warner, E. Breast-Cancer Screening. N. Engl. J. Med. 2011, 365, 1025–1032. 

5. Astley, S.M. Computer-based detection and prompting of mammographic abnormalities.  

Br. J. Radiol. 2004, 77, S194–S200. 

6. Li, J.; Zhang, Z.; Rosenzweig, J.; Wang, Y.Y.; Chan, D.W. Proteomics and bioinformatics 

approaches for identification of serum biomarkers to detect breast cancer. Clin. Chem. 2002, 48, 

1296–1304. 

7. Misek, D.E.; Kim, E.H. Protein biomarkers for the early detection of breast cancer. Int. J. 

Proteomics 2011, 2011, 343582. 

8. Chan, D.W.; Beveridge, R.A.; Muss, H.; Fritsche, H.A.; Hortobagyi, G.; Theriault, R.; Kiang, D.; 

Kennedy, B.J.; Evelegh, M. Use of Truquant BR radioimmunoassay for early detection of breast 

cancer recurrence in patients with stage II and stage III disease. J. Clin. Oncol. 1997, 15,  

2322–2328. 

9. Vander Heiden, M.G. Targeting cancer metabolism: A therapeutic window opens. Nat. Rev. Drug 

Discov. 2011, 10, 671–684. 



Int. J. Mol. Sci. 2013, 14 8059 

 

 

10. Qiu, Y.P.; Cai, G.X.; Su, M.M.; Chen, T.L.; Zheng, X.J.; Xu, Y.; Ni, Y.; Zhao, A.H.; Xu, L.X.; 

Cai, S.J.; et al. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and 

UPLC-QTOFMS. J. Proteome Res. 2009, 8, 4844–4850. 

11. Chen, T.; Xie, G.; Wang, X.; Fan, J.; Qiu, Y.; Zheng, X.; Qi, X.; Cao, Y.; Su, M.; Xu, L.X.; et al. 

Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular 

carcinoma. Mol. Cell. Proteomics 2011, 10, doi:10.1074/mcp.M110.004945. 

12. Cao, M.D.; Giskeodegard, G.F.; Bathen, T.F.; Sitter, B.; Bofin, A.; Lonning, P.E.; Lundgren, S.; 

Gribbestad, I.S. Prognostic value of metabolic response in breast cancer patients receiving 

neoadjuvant chemotherapy. BMC Cancer 2012, 12, 39. 

13. Vermeer, L.S.; Fruhwirth, G.O.; Pandya, P.; Ng, T.; Mason, A.J. NMR metabolomics of MTLn3E 

breast cancer cells identifies a role for CXCR4 in lipid and choline regulation. J. Proteome Res. 

2012, 11, 2996–3003. 

14. Martineau, E.; Tea, I.; Akoka, S.; Giraudeau, P. Absolute quantification of metabolites in breast 

cancer cell extracts by quantitative 2D (1) H INADEQUATE NMR. NMR Biomed. 2012, 25, 

985–992. 

15. Hilvo, M.; Denkert, C.; Lehtinen, L.; Muller, B.; Brockmoller, S.; Seppanen-Laakso, T.; 

Budczies, J.; Bucher, E.; Yetukuri, L.; Castillo, S.; et al. Novel theranostic opportunities offered 

by characterization of altered membrane lipid metabolism in breast cancer progression.  

Cancer Res. 2011, 71, 3236–3245. 

16. Hasija, K.; Bagga, H.K. Alterations of serum cholesterol and serum lipoprotein in breast cancer of 

women. Indian J. Clin. Biochem. 2005, 20, 61–66. 

17. Franky Dhaval, S.; Shilin Nandubhai, S.; Pankaj Manubhai, S.; Patel, H.R.;  

Prabhudas Shankerbhai, P. Significance of alterations in plasma lipid profile levels in breast 

cancer. Integr. Cancer Ther. 2008, 7, 33–41. 

18. Cummings, B.S.; McHowat, J.; Schnellmann, R.G. Phospholipase A2s in cell injury and death.  

J. Pharmacol. Exp. Ther. 2000, 294, 793–799. 

19. Dong, Q.; Patel, M.; Scott, K.F.; Graham, G.G.; Russell, P.J.; Sved, P. Oncogenic action of 

phospholipase A2 in prostate cancer. Cancer Lett. 2006, 240, 9–16. 

20. Laye, J.P.; Gill, J.H. Phospholipase A2 expression in tumours: A target for therapeutic 

intervention? Drug Discov. Today 2003, 8, 710–716. 

21. Yamashita, S.; Yamashita, J.; Sakamoto, K.; Inada, K.; Nakashima, Y.; Murata, K.; Saishoji, T.; 

Nomura, K.; Ogawa, M. Increased expression of membrane-associated phospholipase A2 shows 

malignant potential of human breast cancer cells. Cancer 1993, 71, 3058–3064. 

22. Yamashita, J.; Ogawa, M.; Sakai, K. Prognostic significance of three novel biologic factors in a 

clinical trial of adjuvant therapy for node-negative breast cancer. Surgery 1995, 117, 601–608. 

23. Denizot, Y.; de Armas, R.; Caire, F.; Pommepuy, I.; Truffinet, V.; Labrousse, F. Platelet-activating 

factor and human meningiomas. Neuropathol. Appl. Neurobiol. 2006, 32, 674–678. 

24. Aoki, J. Mechanisms of lysophosphatidic acid production. Semin. Cell Dev. Biol. 2004, 15,  

477–489. 

25. Cuendet, M.; Pezzuto, J.M. The role of cyclooxygenase and lipoxygenase in cancer 

chemoprevention. Drug Metabol. Drug Interact. 2000, 17, 109–157. 



Int. J. Mol. Sci. 2013, 14 8060 

 

 

26. Meyer, A.M.; Dwyer-Nield, L.D.; Hurteau, G.J.; Keith, R.L.; O’Leary, E.; You, M.;  

Bonventre, J.V.; Nemenoff, R.A.; Malkinson, A.M. Decreased lung tumorigenesis in mice 

genetically deficient in cytosolic phospholipase A2. Carcinogenesis 2004, 25, 1517–1524. 

27. Cummings, B.S. Phospholipase A2 as targets for anti-cancer drugs. Biochem. Pharmacol. 2007, 

74, 949–959. 

28. Bougnoux, P.; Chajes, V.; Lanson, M.; Hacene, K.; Body, G.; Couet, C.; Le Floch, O. Prognostic 

significance of tumor phosphatidylcholine stearic acid level in breast carcinoma. Breast Cancer 

Res. Treat. 1992, 20, 185–194. 

29. Abel, S.; De Kock, M.; van Schalkwyk, D.J.; Swanevelder, S.; Kew, M.C.; Gelderblom, W.C. 

Altered lipid profile, oxidative status and hepatitis B virus interactions in human hepatocellular 

carcinoma. Prostaglandins Leukot. Essent Fatty Acids 2009, 81, 391–399. 

30. Taylor, L.A.; Arends, J.; Hodina, A.K.; Unger, C.; Massing, U. Plasma lyso-phosphatidylcholine 

concentration is decreased in cancer patients with weight loss and activated inflammatory status. 

Lipids Health Dis. 2007, 6, doi:10.1186/1476-511X-6-17. 

31. Xie, Y.; Meier, K.E. Lysophospholipase D and its role in LPA production. Cell Signal. 2004, 16, 

975–981. 

32. Umezu-Goto, M.; Kishi, Y.; Taira, A.; Hama, K.; Dohmae, N.; Takio, K.; Yamori, T.;  

Mills, G.B.; Inoue, K.; Aoki, J.; et al. Autotaxin has lysophospholipase D activity leading to 

tumor cell growth and motility by lysophosphatidic acid production. J. Cell Biol. 2002, 158,  

227–233. 

33. Liu, S.; Umezu-Goto, M.; Murph, M.; Lu, Y.; Liu, W.; Zhang, F.; Yu, S.; Stephens, L.C.; Cui, X.; 

Murrow, G.; et al. Expression of autotaxin and lysophosphatidic acid receptors increases 

mammary tumorigenesis, invasion, and metastases. Cancer Cell 2009, 15, 539–550. 

34. Liu, Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate 

Cancer Prostatic Dis. 2006, 9, 230–234. 

35. Nomura, D.K.; Long, J.Z.; Niessen, S.; Hoover, H.S.; Ng, S.W.; Cravatt, B.F. Monoacylglycerol 

lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010, 140, 49–61. 

36. Zhang, F.; Du, G. Dysregulated lipid metabolism in cancer. World J. Biol. Chem. 2012, 3,  

167–174. 

37. Ganti, S.; Taylor, S.L.; Kim, K.; Hoppel, C.L.; Guo, L.; Yang, J.; Evans, C.; Weiss, R.H. Urinary 

acylcarnitines are altered in human kidney cancer. Int. J. Cancer 2012, 130, 2791–2800. 

38. Ullman, M.D.; Radin, N.S. The enzymatic formation of sphingomyelin from ceramide and 

lecithin in mouse liver. J. Biol. Chem. 1974, 249, 1506–1512. 

39. Hannun, Y.A. The sphingomyelin cycle and the second messenger function of ceramide.  

J. Biol. Chem. 1994, 269, 3125–3128. 

40. Ogretmen, B.; Hannun, Y.A. Biologically active sphingolipids in cancer pathogenesis and 

treatment. Nat. Rev. Cancer 2004, 4, 604–616. 

41. Pettus, B.J.; Chalfant, C.E.; Hannun, Y.A. Ceramide in apoptosis: An overview and current 

perspectives. Biochim. Biophys. Acta 2002, 1585, 114–125. 

42. Schiffmann, S.; Sandner, J.; Birod, K.; Wobst, I.; Angioni, C.; Ruckhaberle, E.; Kaufmann, M.; 

Ackermann, H.; Lotsch, J.; Schmidt, H.; et al. Ceramide synthases and ceramide levels are 

increased in breast cancer tissue. Carcinogenesis 2009, 30, 745–752. 



Int. J. Mol. Sci. 2013, 14 8061 

 

 

43. Pyne, N.J.; Pyne, S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer 2010, 10, 489–503. 

44. Nagahashi, M.; Ramachandran, S.; Kim, E.Y.; Allegood, J.C.; Rashid, O.M.; Yamada, A.;  

Zhao, R.; Milstien, S.; Zhou, H.; Spiegel, S.; et al. Sphingosine-1-phosphate produced by 

sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and 

lymphangiogenesis. Cancer Res. 2012, 72, 726–735. 

45. Hama, H. Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim. Biophys. 

Acta 2010, 1801, 405–414. 

46. Alderson, N.L.; Hama, H. Fatty acid 2-hydroxylase regulates cAMP-induced cell cycle exit in 

D6P2T schwannoma cells. J. Lipid Res. 2009, 50, 1203–1208. 

47. Jansson, J.; Willing, B.; Lucio, M.; Fekete, A.; Dicksved, J.; Halfvarson, J.; Tysk, C.;  

Schmitt-Kopplin, P. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One 

2009, 4, e6386. 

48. Pike, N. Using false discovery rates for multiple comparisons in ecology and evolution. Methods 

Ecol. Evol. 2011, 2, 278–282. 

49. Nigam, S.; Muller, S.; Benedetto, C. Elevated plasma levels of platelet-activating factor (PAF) in 

breast cancer patients with hypercalcemia. J. Lipid Mediat. 1989, 1, 323–328. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


