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Abstract

The utilization of radiotherapy (RT) serves as the principal approach 
for managing nasopharyngeal carcinoma (NPC). Consequently, it is 
imperative to investigate the correlation between the radiation mi-
croenvironment and radiation resistance in NPC. PubMed and China 
National Knowledge Infrastructure (CNKI) databases were accessed 
to perform a search utilizing the English keywords “nasopharyn-
geal cancer”, “radiotherapy”, and “microenvironment”. The search 
time spanned from the establishment of the database until January 
20, 2023. A total of 82 articles were included. The post-radiation tu-
mor microenvironment (TME), or the radiation microenvironment, 
includes several components, such as the radiation-immune micro-
environment and the radiation-hypoxic microenvironment. The radia-
tion-immune microenvironment includes various factors like immune 
cells, signaling molecules, and extracellular matrix. RT can reshape 
the TME, leading to immune responses with both cytotoxic effects (T 
cells, B cells, natural killer (NK) cells) and immune escape mecha-
nisms (regulatory T cells (Tregs), macrophages). RT enhances im-
mune responses through DNA release, type I interferons, and immune 
cell recruitment. Radiation-hypoxic microenvironment affects metab-
olism and molecular changes. RT-induced hypoxia causes vascular 
changes, fibrosis, and vessel compression, leading to tissue hypoxia. 
Hypoxia activates hypoxia-inducible factor (HIF)-1α/2α, promoting 
angiogenesis and glycolysis in tumor cells. TME changes due to hy-
poxia also involve immune suppressive cells like myeloid-derived 
suppressor cells (MDSCs), tumor-associated macrophages (TAMs), 
and Tregs. The radiation microenvironment is involved in radiation 
resistance and holds a significant effect on the prognosis of patients 
with NPC. Exploring the radiation microenvironment provides new 
insights into RT and NPC research.
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Introduction

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy 
that occurs mainly in the upper and lateral regions of the naso-
pharyngeal cavity. Current consensus suggests that its occur-
rence and development are mainly associated with factors such 
as Epstein-Barr virus (EBV) infection, genetic susceptibility, 
as well as environmental factors [1]. Owing to the unique pa-
thology, biological behavior, and anatomical structure of NPC, 
radiotherapy (RT) is considered the primary treatment option 
[2]. However, in the case of patients diagnosed with late-stage 
NPC, changes in the tumor microenvironment (TME) after 
RT can result in tumor resistance to treatment, leading to poor 
prognostic outcomes or tumor recurrence after treatment.

The TME encompasses a range of factors that are in close 
contact with tumor cells, such as neighboring blood vessels, 
immune cells, fibroblasts, bone marrow-derived inflammatory 
cells, various signaling molecules, and extracellular matrix 
(ECM) [3]. RT can remodel the TME [4], which is involved 
in local and systemic immune regulation and influences tu-
mor progression. This remodeled environment is termed the 
radiation microenvironment and includes a radiation-immune 
microenvironment in which RT can induce different immune 
responses. For example, T cells, B cells, and associated se-
cretory factors can have a cytotoxic effect on the tumor, and 
macrophages, Treg cells, and Th2 cells can mediate immune 
escape [5]. The hypoxic radiation microenvironment is another 
aspect where post-radiation vascular exhaustion can exacer-
bate hypoxia, leading to the signaling of hypoxia-inducible 
factor (HIF)-1α and promoting angiogenesis through vascular 
endothelial growth factors (VEGFs) [6]. Furthermore, RT can 
affect immune cell infiltration by altering the vascular struc-
ture of the tumor tissue. Hence, RT can trigger a series of inter-
related processes within the TME, leading to tumor resistance 
or recurrence.

Methods

PubMed and China National Knowledge Infrastructure 
(CNKI) databases were accessed to perform a search utiliz-
ing the English keywords “nasopharyngeal cancer”, “radio-
therapy”, and “microenvironment”. The search time spanned 
from the establishment of the database until January 20, 2023. 
A total of 7,855 English articles and 3,798 Chinese articles 
were retrieved. The present study employed specific inclusion 
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criteria, which included 1) studies on RT progress for NPC and 
2) studies on the progress of the TME. The exclusion criteria 
were conference abstracts, Chinese theses, and other informal-
ly published documents.

Radioimmune Microenvironment

The tumor immune microenvironment, which encompasses 
TME immune components while excluding other stromal and 
extracellular components, primarily comprises T and B lym-
phocytes as well as myeloid cells [7, 8]. Within this microen-
vironment, two functional subtypes of cells can be differenti-
ated: one that directly exerts cytotoxic effects on tumor cells, 
which include T and B cells, as well as natural killer (NK) 
cells, and another that enables tumor immune evasion, pre-
venting tumor destruction, including regulatory T cells (Tregs) 
and macrophages. There is a delicate balance between these 
two; therefore, RT can reshape the immune microenvironment 
through key mechanisms that involve the activation of immu-
nostimulatory and inhibitory signaling pathways. This leads 
to tumor cell destruction and promotes immune evasion, ulti-
mately resulting in tumor recurrence and metastasis [9].

According to research, the utilization of RT has been found 
to potentially enhance the double-stranded DNA (dsDNA) re-
lease in the nucleus, elevate the permeability of the outer mem-
brane of mitochondria, and trigger mitochondrial DNA (mtD-
NA) exposure in the cytoplasm, thus enhancing the immune 
response [10]. For instance, dsDNA and mtDNA can initiate the 
transcription of type I interferons (IFNs) [11]. Signals from type 
I IFNs can enhance cytotoxic T-cell activation, exerting a direct 
cytotoxic impact on tumor cells [12]. In contrast, dsDNA ac-
cumulation in tumor-derived exosomes post-RT also enhances 
dendritic cells (DCs) recruitment and directly triggers DC type 
I IFN responses, which additionally promotes CD8+ T-cell re-
cruitment [13] and provides signals to activate T cell. Therefore, 
RT changes the phenotype of tumor cells besides promoting the 
production of damage-related molecular patterns and also im-
mune responses. Moreover, RT promotes not only the tumor 
cell sensitivity to T-cell-mediated anti-tumor effects but also the 
tumor cell recognition and elimination. The immune microenvi-
ronment of NPCs includes multiple immune cells, including T 
and B lymphocytes, NK cells, as well as myeloid-derived sup-
pressor cells (MDSCs) [14].

In NPC, the most common infiltrates are EBV-negative 
CD3 T lymphocytes [15], which lack an effective immune re-
sponse. Therefore, B lymphocytes are immune cells with poten-
tial anti-NPC properties. B lymphocytes represent the second 
most abundant and varied cell type within the NPC microenvi-
ronment. An increase in the abundance and diversity of B lym-
phocytes is associated with EBV positivity [16, 17]. According 
to previous studies, B cells in NPC can be recruited to tertiary 
lymphoid structures by PD-1+ exhausted CD4+ T cells of tumor 
origin via the CXCL13/CXCR5 axis. Additionally, a positive 
correlation has been observed between CD19+ B cells and EBV-
positive NPC patients [18]. This finding suggests that NPC-in-
filtrating B cells may have an anti-NPC immune function.

Along with T and B cells, NK cells were demonstrated to 

possess a cytotoxic impact on tumors. NK cells are a type of 
immune cell that holds the ability to directly trigger the death 
of tumor and virus-infected cells without specific immunity. 
RT can lead to an overexpression of stress-induced activation 
ligands in tumor cells, thus increasing NK cell-mediated cyto-
toxic effects [19]. NK cells perform various biological func-
tions. Effective NK cell anti-tumor activity has been shown 
to be a prerequisite for T-cell-mediated anti-tumor immune 
responses [20]. NK cells, including cytotoxic T cells, exert 
control over tumors by secreting perforin-containing cytotoxic 
granules [21] or through ligands binding to death receptors 
in target cells, which include tumor necrosis factor (TNF)-
associated apoptosis-inducing ligand (TRAIL) and Fas ligand. 
Moreover, NK cells also produce multiple cytokines, including 
those that promote inflammatory responses and immune sup-
pression, that include interleukin (IL)-10 and TNF-α, or growth 
factors, including a colony-stimulating factor of macrophage 
granulocytes (GM-CSF) and granulocyte colony-stimulating 
factor (G-CSF) [22]. Some immune mechanisms of NPCs have 
been shown to be downregulated, leading to immune evasion, 
but NK cells can secrete cytokines or directly lyse tumor cells 
[23]. NK cells were found to be involved in the prevention of 
EBV-associated malignancy progression arising from primary 
immunodeficiencies. These immunodeficiencies are character-
ized by genetic mutations that impact the function of genes 
contributing to NK cell differentiation and activation. A recent 
study has revealed that the immune features specific to NK 
cells in tumors are correlated to a favorable NPC prognosis. 
This suggests that NK cells present in the TME contribute to 
the regulation of the progression of EBV-associated epithelial 
tumors [24]. In conclusion, NK cells, including T and B cells, 
participate in the immune response process in different ways 
and undergo functional maturation to achieve cytotoxic effects 
on tumor cells.

In immunogenesis, tumor cells develop resistance to ra-
diation due to the induction of anti-immune mechanisms by 
RT. The repetitive irradiation of tumor cells can result in the 
expression of IFN-stimulated genes and chronic type I IFN, 
which can promote radiation resistance and metastasis via in-
hibitory pathways [5]. IFN-γ and type I IFNs are accountable 
for programmed death ligand 1 (PD-L1) overexpression in tu-
mor cells, leading to the induction of T-cell exhaustion and 
resistance to anti-tumor immunity [25]. Research data indicate 
that NPC radiosensitivity can be further enhanced by utiliz-
ing potential immunotherapy targets in conjunction with PD-1/
PD-L1 blockade [26].

Recent in-depth research on exosomes has also revealed 
their role in suppressing tumor immunity and promoting tumor 
growth and metastasis. Exosomes are small vesicles between 
30 and 150 nm in size and are considered key factors in in-
tercellular communication [27]. Exosomes were found to be 
involved in mediating the TME through the level transfer of 
proteins, mRNA, and miRNAs [28]. Exosomes mediate cell 
communication and transfer components to recipient cells. 
NPC cells infuse exosomes containing LMP1 (NPC-Exo) and 
miRNAs into the TME, leading to the evasion of the immune 
system from host surveillance [29]. According to a recent 
study, methyltransferase 3 (METTL3), methyltransferase 14 
(METTL14), and WT1-associated protein (WTAP) modify the 
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effect of m6A on radiosensitivity and invasive metastasis of 
NPC. Exosome production within the NPC microenvironment 
may have increased, which is one possible explanation [30].

Furthermore, Tregs also affect the impact of RT on tu-
mors. Tregs survive in RT and inhibit the proliferation of ef-
fector cells [31], and by overexpressing cytotoxic T-lympho-
cyte-associated protein 4 (CTLA4), they block the activation 
of T lymphocytes, achieving an immune suppression effect. 
Research has found that functional analysis at the cellular and 
animal levels for NPC confirms that Tregs are recruited into 
the TME by tumor-secreted substances, assisting tumors in 
escaping immune surveillance [32]. Thus, RT also induces 
immune resistance, leading to tumor recurrence and metas-
tasis.

In addition to epithelial cells in the immune microen-
vironment, stromal cells constitute a considerable portion, 
mainly composed of tumor-associated macrophages (TAMs) 
and MDSC. MDSC directly enhances immune tolerance [33]. 
MDSCs, a heterogeneous group of pathologically activated 
myeloid cells, can enhance tumor cell metastasis by infiltrat-
ing primary tumors and suppressing immune function to ac-
celerate tumor progression [34]. MDSCs can negate the as-
sociated immune response during RT [35]. Clinical data show 
that the percentage of monocytic MDSCs among the total live 
cells is significantly increased in high-risk groups after NPC 
chemotherapy, limiting the growth of MDSCs, which is vital 
for patient treatment [36]. TAMs are the primary components 
of immune infiltration in solid tumors [37]. Current research 
suggests that TAMs in the TME originate mainly from bone 
marrow-derived monocyte precursor cells recruited to tumor 
sites, affected by TGF-β, CCL2, IL-1/4, and other cytokines, 
chemokines, and even microorganisms in the tumor tissue, po-
larizing toward the M2 phenotype, thus inducing immune in-
filtration [38, 39]. Relevant reports show that TAM infiltration 
exhibited a close correlation to the poor prognosis of EBV-in-
fected NPC [40], and it was experimentally proven that EBV-
infected NPC cells could recruit monocytes through VEGF 
and activate monocytes in TAMs in a manner dependent on 
GM-CSF- and nuclear factor kappa B (NF-κB)-dependent 
manner. Gleichzeitig TAM promotes tumor metastasis and 
NF-κB activation [41].

In recent years, immune checkpoints have become a hot-
spot. These immune checkpoint molecules, such as PD-1, 
PD-L1, and CTLA-4, are fundamentally a component of the 
immune system’s regulatory apparatus. They assist in main-
taining equilibrium between a robust immune response when 
necessary and the ability to prevent typical tissue damage and 
destruction. Immune checkpoint inhibitors are medications 
used in the treatment of cancer that are developed to prevent 
these interactions. By obstructing the inhibitory signals given 
by these checkpoint molecules, the immune system is better 
able to target and eliminate cancer cells. However, the immune 
checkpoints are a significant contributor to immune tolerance 
[42] and radiation resistance during the onset and progression 
of tumors. Recent research based on different immune sub-
types in NPC has demonstrated the predictive power of the 
immune checkpoint inhibitor (ICI) response and has increased 
sensitivity to RT [43]. Therefore, the application of ICIs can 
inhibit tumor immune evasion and enhance tumor killing by 

the immune system through various pathways and mecha-
nisms, thereby increasing radiosensitivity.

In summary, RT places the body’s immune microenviron-
ment in a very delicate balance between killing tumors and 
immune suppression. RT has the potential to enhance the pres-
entation of tumor antigens, trigger immunogenic cell death 
of tumor cells, activate pathways that mimic viral responses, 
and overexpress chemokines, ultimately promoting tumor cell 
death by T cells. Conversely, RT was found to be involved in 
promoting immune evasion mechanisms such as PD-L1 over-
expression, immunosuppressive chemokine release, and exo-
some activation, thereby impeding the activation and function 
of T cells and similar cells.

Radiation-Hypoxic Microenvironment

During tumor growth, tumor vessels provide tumor cells with 
abundant nutrients and oxygen and remove metabolic waste, 
which enables the tumor to grow rapidly and potentially in-
vade and metastasize [44]. However, tumor cells have high 
metabolic activity and require considerable energy. When de-
mand exceeds supply, hypoxic areas form, altering metabolic 
capacity [45]. Furthermore, when tumor cells are stimulated 
by hypoxia, a series of changes occur at the molecular and cel-
lular levels. Acid waste produced by anaerobic glycolysis can 
improve tolerance to hypoxia and resistance to external dam-
age, thus disrupting the TME [46]. RT, a key measure against 
tumors, has been shown to elicit stress responses, repair dam-
age, and restores cellular homeostasis [47]. Radioactive hy-
poxia is a part of the microenvironment after RT in tumor cells. 
The tumor cell resistance to RT can be attributed to their ca-
pacity for DNA damage repair and tolerance. Therefore, the 
impact of a hypoxic microenvironment on radiation resistance 
is a significant environmental factor. The etiology of hypoxia 
can be succinctly categorized into two components: a decrease 
in tumor angiogenesis and an increase in destruction.

Substantial research has been conducted on the mecha-
nisms of angiogenesis. VEGF specifically enhances endotheli-
al cell growth and increases the permeability of newly formed 
vessels [48]. VEGF overexpression is common in NPC [49], 
and VEGF secretion is highly correlated with NPC angiogene-
sis, metastasis, and poor prognosis. One study emphasized the 
relationship between JAK2, STAT3, and VEGF expression and 
NPC development and progression [50]. Recently, a method of 
angiogenesis that is different from endothelial-derived angio-
genesis, namely vascular mimicry (VM), has been discovered. 
VM is a vascular network pattern that is formed by highly in-
vasive tumor cells and replaces endothelial cells and has been 
confirmed in various tumors [51], including lung, stomach, and 
ovarian cancers [52-54]. However, there is little research on 
NPC, with only a few studies reporting that Foxq1 can regulate 
VM to promote NPC metastasis [55] and the synergistic effect 
of anti-VM and anti-VEGF treatment in NPC [56]. To sum-
marize, the hypoxic environment of solid tumors is strongly 
related to the synergistic action of VEGF and VM [56]. RT can 
induce endothelial cell apoptosis, leading to vessel destruction 
and endothelial cell aging. Aging endothelial cells cause en-
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dothelial dysfunction, thus inhibiting angiogenesis and induc-
ing oxidative stress and inflammation [57], ultimately leading 
to the formation of a hypoxic microenvironment.

Furthermore, non-tumor cell components and functions 
in the tumor region were validated to also undergo significant 
changes, especially the activation and proliferation of ma-
trix cells (such as cancer-associated fibroblasts (CAFs)) and 
an increase in matrix components (such as fibrin), leading to 
morphological tumor remodeling [58]. As a result, vessels 
are compressed or aggregated, and fibrin clots block vessels 
[59], causing damage to blood circulation, insufficient oxy-
gen supply, and increased tissue hypoxia. In a recent study, 
a degradable magnesium alloy (Mg) with anticancer activity 
was designed by reducing cancer cell proliferation. This ex-
periment verified that the physiological functions of elements 
such as Mg can change with changes in the hypoxic environ-
ment. Magnesium has been observed to promote angiogenesis 
in normoxic conditions, while conversely, it has been found to 
impede angiogenesis in hypoxic conditions [60]. Many factors 
can lead to the formation of a hypoxic microenvironment. Hy-
poxia has a close correlation cancer cell proliferation, migra-
tion, invasion, and angiogenesis, interacts with other cells and 
pathways, and has a significant impact on the TME.

Research has found that hypoxia and HIF-1α/2α play im-
portant roles in tumor angiogenesis [61]. Post-RT vascular 
injury can lead to significant activation of HIFs [62]. Under 
hypoxic conditions, enzymes involved in HIF degradation are 
deactivated, allowing HIF to enter the cell nucleus, where it 
participates in angiogenesis, anaerobic glycolysis, inhibition 
of apoptosis, and transcription of other genes. This increases 
oxygen delivery and normalizes tumor vessels [63]. Addition-
ally, the endogenous PI3K-AKT-mTOR pathway activation 
induces an increase in the HIF pathway, resulting in a com-
parable hypoxic microenvironment [64]. Both exogenous and 
endogenous hypoxia disrupt autophagy mechanisms by upreg-
ulating metabolic processes, DNA repair, and anti-apoptotic 
pathways, thereby enhancing the radiation resistance of tumor 
cells. Clinical studies revealed that 100% of primary NPC cas-
es and 58% of neck lymph node metastases contain hypoxic 
areas and HIF-1α overexpression and risks of metastasis and 
eventual death [65]. Thus, HIF-1α has emerged as a significant 
prognostic factor for NPC and a promising therapeutic target. 
Moreover, research has shown that hypoxia can regulate CAFs, 
which are spindle-shaped cells that can synthesize collagen in 
connective tissues and also contribute to wound healing, tissue 
fibrosis, and inflammatory processes [66]. HIF was suggested 
to be involved in the metabolic reprogramming of CAFs and 
mediates their tumor-promoting effects [67]. It has been found 
that CAFs induce radiation resistance and promote the survival 
of NPC cells post-RT through the IL-8/NF-κB pathway to de-
crease radiation-induced DNA damage. The administration of 
trabectedin, a CAF inhibitor, has the potential to restrict the 
survival of NPC cells induced by CAF and mitigate the impact 
of radiation [68].

It is well known that under cellular hypoxia, cells reduce 
their dependence on mitochondrial oxidative phosphorylation 
and preferentially use the anaerobic glycolysis pathway, which 
does not rely on oxygen consumption, to maintain sufficient 
ATP production to meet body energy needs [69]. Consequent-

ly, the metabolic feature of most tumors is increased glycoly-
sis, which is caused by hypoxia, forcing tumor cells to switch 
from oxidative phosphorylation to glycolysis. These changes 
are mediated by HIF-1α-driven transcription, resulting in 
upregulating glucose transporter proteins and glycolysis-in-
volved genes [70]. This phenomenon promotes tumor cell sur-
vival and metastasis under hypoxic conditions. This glycolysis 
is observed in various cells, and recent research has discovered 
a new circular RNA that can directly bind and stabilize ubiq-
uitinated mRNA, thereby inhibiting the glycolysis process and 
NPC proliferation and migration through ubiquitination and 
upregulation of protein levels [71], thus demonstrating the im-
pact of glycolysis on NPC proliferation and migration.

Hypoxia also has a significant impact on alterations in the 
immune microenvironment. This is because hypoxia can im-
prove the immune attack resistance of tumor cells, resulting 
in immune evasion [72]. Research has shown that hypoxic re-
gions in solid tumors are infiltrated by high levels of immune 
suppressive cells, including MDSCs, TAMs, and Treg cells 
[73]. As mentioned previously, MDSCs can directly promote 
immune tolerance, making them one of the main components 
of the immunosuppressive network that leads to tumor T-cell 
defects, with direct evidence that HIF-1α can regulate MDSC 
function and differentiation in a hypoxic microenvironment. 
TAMs, a significant constituent of immune infiltration in solid 
tumors [37], were found to tend to be situated primarily in hy-
poxic regions, and HIF-1α-induced under hypoxic conditions 
has an inhibitory effect on cytotoxic T cells [74]. Treg cells 
can also be driven by HIF-1α-dependent transcription factors 
(FoxP3) or attracted by the cytokine spectrum in the tumor 
bed microenvironment [75]. Recent research suggests that ICI 
not only causes T-cell attacks on tumor cells but might also 
regulate the TME through the normalization of tumor vessels 
[76, 77]. The novel interaction has the potential to offer op-
portunities for immunotherapies aimed at decreasing tumor 
hypoxia and enhancing radiosensitivity. Unfortunately, there 
is no strong evidence that biomarkers for ICIs in NPC have 
been identified.

Conclusion and Future Perspectives

Numerous studies have shown that, despite continued im-
provements in the efficacy and safety of RT, tumor recurrence 
after RT remains an issue, and the TME plays a critical role 
in this process. The activation of the immune system and the 
immune suppression induced by RT are delicately balanced. 
The process of metabolic reprogramming and the induction of 
angiogenesis within the TME is crucial for the effective elimi-
nation of tumor cells by cytotoxic T cells and other immune 
cells. The composition of multiple cells and the ECM within 
this particular environment has demonstrated a capacity to 
mitigate the immune responses of the host toward malignant 
neoplastic cells. The proliferation of tumors is facilitated by 
various mechanisms, including the secretion of immunosup-
pressive cytokines, metabolic alterations, and other factors. 
Conversely, TMEs that are hypoxic and acidic have been ob-
served to provide radioresistance by impeding the prolifera-
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tion of anti-tumor cells, including CD8 T lymphocytes and NK 
cells, while promoting the proliferation of tumor-tolerant cells 
such as MDSCs and Treg cells [78].

These characteristics of the TME may be helpful in NPC 
treatment. For example, potential immune therapy targets 
could be used in combination with the PD-1/PD-L1 blockade 
to further increase the radiosensitivity of NPC [79]. The het-
erogeneity of the NPC TME can identify biologically differ-
ent immune subtypes, predict prognosis, and predict immune 
therapy responses [43]. EBV-infected NPC cells can secrete 
cytokines and exosomes containing viral products to modulate 
the function of matrix cells in the TME, thus promoting NPC 
progression and avoiding host immune attack [80].

In summary, RT induces remodeling of the TME, with hy-
poxia and immunity being the two most critical aspects. The 
two are interrelated and inseparable. Most malignant tumors 
create a hypoxic microenvironment that is conducive to their 
development, thus suppressing immune responses. Currently, 
the immune stimulation process is inseparable from the stimu-
lation of HIFs, thereby immunogenically activating key pro-
gressions.
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