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Abstract

The scientific literature represents a rich source for retrieval of knowledge on associations between biomedical concepts
such as genes, diseases and cellular processes. A commonly used method to establish relationships between biomedical
concepts from literature is co-occurrence. Apart from its use in knowledge retrieval, the co-occurrence method is also well-
suited to discover new, hidden relationships between biomedical concepts following a simple ABC-principle, in which A and
C have no direct relationship, but are connected via shared B-intermediates. In this paper we describe CoPub Discovery, a
tool that mines the literature for new relationships between biomedical concepts. Statistical analysis using ROC curves
showed that CoPub Discovery performed well over a wide range of settings and keyword thesauri. We subsequently used
CoPub Discovery to search for new relationships between genes, drugs, pathways and diseases. Several of the newly found
relationships were validated using independent literature sources. In addition, new predicted relationships between
compounds and cell proliferation were validated and confirmed experimentally in an in vitro cell proliferation assay. The
results show that CoPub Discovery is able to identify novel associations between genes, drugs, pathways and diseases that
have a high probability of being biologically valid. This makes CoPub Discovery a useful tool to unravel the mechanisms
behind disease, to find novel drug targets, or to find novel applications for existing drugs.
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Introduction

A wealth of knowledge concerning the function of genes and

their role in biological processes is present in the biomedical

literature, embodied in full text articles or the Medline abstract

database. Various text mining approaches have been developed to

extract information on gene function from this body of literature

[1,2] and these have been successfully applied to annotate genes

and proteins [3–7] and the interpretation of experimental results

[8–14].

A common method to establish relationships between biome-

dical concepts such as genes and pathways is co-occurrence [15].

This method is built on the assumption that biomedical concepts

occurring in the same body of text are in some way biologically

related. Co-occurrence-based methods can also be used to

discover new, hidden relationships, assuming that if A and C

both are connected with B, A and C might also have a

relationship, even if there is no published relationship between A

and C (Figure 1). Swanson has provided a classic example in his

study in which he found that fish-oil intake is beneficial for patients

suffering from Raynaud’s disease, a finding that was confirmed

experimentally a few years later [16,17]. Hidden literature

relationships can be used to confirm a hypothesis about a

relationship between A and C in a so called closed discovery

process [18–20]. In this process the user provides the hypothesis

that A is related to C, which is then tested by mining the literature

for shared biomedical concepts (B) that support the hypothesis

(Figure 1). Hidden relationships can also be used to generate novel

hypotheses about a relationship between A and C, in a so-called

open discovery process [18,19,21–23]. In this process the user

provides a starting point A (e.g. a disease) and examines the

literature for hidden relationships with other biomedical concepts

(C; e.g. genes, drugs) that are bridged by intermediates (B) that

share co-occurrences with A and C (Figure 1).

The tools that are currently available for performing open

discovery experiments are often limited to certain biomedical

domains, have only limited number of keywords describing the

biomedical terms, or retrieve hidden relationships formed by

uninformative concepts, such as ‘‘in vitro’’ or ‘‘microarray’’ which

are biologically less interesting [19,22,24]. Moreover, a bottleneck

with all open discovery tools is to identify true, biologically

informative, hidden relationships from spurious hits.

In a previous paper we described CoPub [25], a database of co-

occurrences of ,250.000 keywords (including gene names and

symbols) in Medline abstracts. CoPub is a database in which the

statistical relevance of all co-occurrences is pre-computed, which

makes it possible to perform statistical analyses of the significance

of the retrieved hidden relationships between biomedical concepts.

In addition, CoPub contains several categories of controlled

vocabularies such as genes, drugs, or diseases etc. As such, this

database is ideally suited for use in the discovery of hidden

relationships.
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In this paper we describe CoPub Discovery, a method that uses

the CoPub database for the open and closed discovery of hidden

literature relationships. Statistical analysis of the results using

ROC curves show that with CoPub Discovery true hidden

relationships can be distinguished from true negatives. Application

of this method in open ended retrieval of hidden relations yielded

novel hypotheses about gene-disease, drug-disease and drug-

biological process relationships which were validated bibliogra-

phically. Moreover, we used CoPub Discovery to identify two

novel compounds that would interact with cell proliferation.

Experimental validation showed that these compounds dose

dependently inhibited T-cell proliferation.

Results

CoPub Discovery performance evaluation
As described above the challenge in the discovery of hidden

relationships is to robustly discriminate true, biologically relevant,

relationships (TP) from spurious, false positive hits (FP). We used

Receiver Operating Characteristic (ROC) curve analyses to

evaluate the ability of CoPub Discovery to distinguish TP from

FP hidden relationships using literature partitioning as described

in detail in the Materials and Methods section and outlined in

Figure 2. All the ROC curves had AUCs (Area Under the Curve)

higher than the AUC of the curve for no discrimination (Figure 3).

High AUC’s were obtained for all types of hidden relationships

and a wide range of combinations of settings for inclusion of the

intermediates. Re-running the analysis with alternative scoring

schemes, such as the average instead of the minimal R-scaled

scores between A and B, and B and C or using the average of only

the 5 top scoring intermediates or using drugs rather than genes as

intermediates yielded similar results (data not shown). As an

additional measure of performance of CoPub Discovery, we

calculated the time lag between the average publication date of all

A–B and B–C intermediates and compared this date with the date

of first appearance of A and C in the literature (Figure 4). The

average time lag was 6.5 years, which is an indication to which

extent discoveries can be accelerated when this type of hypothesis

generation is used.

Taken together, these results show that CoPub Discovery is a

robust method that can be applied to quickly detect a variety of

biologically relevant hidden relationships.

Case studies
After the formal validation with ROC curves we used CoPub

Discovery to study a number of cases in an open discovery

approach. We now used all Medline abstracts published before May

1, 2007 to find hidden relationships between genes, pathways, drugs

and diseases. For each hidden relationship an inferred R-scaled

score (Ri) was calculated. The biological rationale of the hidden

relations with the highest Ri were studied in more detail using the

Figure 1. ABC-principle of hidden relationships in literature. Hidden relationships in literature between biomedical concepts (e.g., genes,
diseases, drugs), for which A and C have no direct relationship, but are connected indirectly via B-intermediates, can be analyzed in a closed discovery
or open discovery setting. The inferred R-scaled (Ri) score between A and C, which is a measure for the strength of a hidden relationship, is calculated
by summation of the R-scaled scores of the weakest links (i.e. lowest R-scaled score), divided by the number of intermediates.
doi:10.1371/journal.pcbi.1000943.g001

Author Summary

The biomedical literature is an important source of
knowledge on the function of genes and on the
mechanisms by which these genes regulate cellular
processes. Several text mining approaches have been
developed to leverage this rich source of information by
automatically extracting associations between concepts
such as genes, diseases and drugs from a large body of
text. Here, we describe a new method that extracts novel,
not yet recognized associations between genes, diseases,
drugs and cellular processes from the biomedical litera-
ture. Our method is built on the assumption that even if
two concepts do not have a direct connection in literature,
they may be functionally related if they are both
connected to an overlapping set of concepts. Using this
approach we predicted several novel connections be-
tween genes, diseases, drugs and pathways. Our results
imply that our method is able to predict novel relation-
ships from literature and, most importantly, that these
newly identified relationships are biologically relevant. Our
method can aid the drug discovery process where it can
be used to find novel drug targets, increase insight in
mode of action of a drug or find novel applications for
known drugs.

CoPub Discovery: A Literature-Based Discovery Tool
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Figure 2. CoPub Discovery validation by literature-partitioning. A literature-partitioning analysis was performed to evaluate CoPub
Discovery’s ability to filter true positive (TP) from false positive (FP) hidden relationships in literature. Abstracts published in the year 2000 up to May
1, 2007 were used to validate relationships inferred from abstracts published before the year 2000.
doi:10.1371/journal.pcbi.1000943.g002

Figure 3. CoPub Discovery statistical evaluation. Receiver Operating Characteristic (ROC) curve analyses were performed to statistically
evaluate the ability of CoPub Discovery to distinguish true positive (TP) from false positive (FP) hidden relationships in literature. In this figure, ROC
curves are shown of gene-disease, drug-disease and drug-biological process hidden relationship analyses for several intermediate inclusion criteria.
For each tested setting, the false positive rate was plotted against the true positive rate for each inferred R-scaled (Ri) score cutoff.
doi:10.1371/journal.pcbi.1000943.g003

CoPub Discovery: A Literature-Based Discovery Tool
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underlying literature that describes the connecting intermediates, as

provided in the CoPub Discovery output.

Case study 1: Disease-gene hidden relationships. Graves’

disease (GD) is a complex autoimmune thyroid disorder, which is

characterized by hyperthyroidism (i.e. over-production of thyroid

hormones). Auto-antibodies against the thyroid-stimulating

hormone receptor were shown to be responsible for the

hyperthyroidism in GD [26]. The mechanisms behind the onset

of GD are not completely understood, but it is thought that the

development of GD depends on complex interactions among

environmental and genetic factors [27].

CoPub Discovery was used to identify genes that might play a role

in GD, but with no known relationship with GD. The analysis was

conducted allowing only genes as intermediates. Several genes were

found in literature with a hidden relationship with GD that had a Ri

score above the significance cutoff (Table 1a). At the top of the gene

list, connected with 21 genes to GD, is Programmed cell death 1 (PDCD1).

PDCD1 is a cell surface receptor that regulates T-cell

proliferation and activation, which was linked in earlier studies

to autoimmune diseases like type 1 diabetes and rheumatoid

arthritis [28,29]. Genetic studies, published after May 1, 2007

(which was not used for constructing the relationship between

PDCD1 and GD) showed that small genetic effects within PDCD1

contribute to the development of GD [30,31], and confirms that

the proposed association between PDCD1 and GD by CoPub

Discovery is indeed biologically relevant. One of the genes that

was identified as an intermediate between PDCD1 and GD is

Figure 4. Time lag between prediction and first appearance of
hidden relationships in literature. The time lag between the data
needed for prediction of a hidden relationship and its actual assertion in
literature is plotted for 1000 hidden relationships. For each hidden
relationship, the average publication date of all A–B and B–C literature
appearances was calculated and compared with the date on which A
and C were first mentioned in the literature. Note: the data was derived
from the literature-partitioning analysis.
doi:10.1371/journal.pcbi.1000943.g004

Table 1. Prediction of novel relationships between biomedical concepts using the open discovery setting.

a) Graves’ Disease – Gene Hidden Relationships

Gene Intermediates Ri

Programmed cell death 1 (PDCD1) 21 34.3

CD74 molecule, major histocompatibility complex class II (CD74) 20 35.4

TAP binding protein (TAPBP) 19 34.4

CD8b molecule (CD8B) 18 34.6

CD84 molecule (CD84) 17 34.4

b) Milnacipran – Disease Hidden Relationships

Disease/disorder Intermediates Ri

Obsessive-Compulsive Disorder 7 37.3

Serotonin Syndrome 5 45.6

Serotonin Syndrome 5 45.6

Drug withdrawal symptoms 5 36.8

Tardive Dyskinesia 5 36.2

Attention Deficit Hyperactivity Disorder 5 35.4

c) Pitavastatin - Biological Process Hidden Relationships

Biological process Intermediates Ri

Monocyte Activation 26 36.0

Endothelial Cell Differentiation 25 37.2

Osteoblast Differentiation 22 36.6

Adipocyte Differentiation 22 36.0

Intracellular signalling Cascade 19 37.1

The following intermediate inclusion criteria were used to calculate the hidden relationships: minimal number of co-publications between keywords: at least 3; minimal
R-scaled score between keywords: at least 20; intermediates used: genes (A and B), and genes, pathways and biological processes (C); literature: till May 1, 2007. The
significance cutoff of Ri scores were set to a maximum false-positive rate of 0.1, which was set to 34 for disease-gene and drug-disease relationships, and set to 36 for
drug-biological processes hidden relationships, as calculated in the literature partitioning analysis (Figure 2).
doi:10.1371/journal.pcbi.1000943.t001

CoPub Discovery: A Literature-Based Discovery Tool
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Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) (Figure 5a).

CTLA4, like PDCD1, is a negative regulator of T-cell activation

[32], and polymorphisms in this gene are associated with the onset

of GD [33,34]. Studies report that CTLA4 and PDCD1 act as co-

inhibitors of T-cell proliferation and activation [35,36]. This

functional association between PDCD1 and CTLA4 explains the

relationship between PDCD1 and GD, and indicates that the

CoPub Discovery predicted association between PDCD1 and GD

was correctly identified based on biological knowledge.

Case study 2: Drug-disease hidden relationships. Milna-

cipran, a serotonin and noradrenalin reuptake inhibitor (SNRI), is a

regularly prescribed drug to treat depression [37]. SNRIs prevent the

reuptake of serotonin and noradrenalin by pre-synaptic cells, and

thereby increase the extracellular availability of serotonin and

noradrenalin to bind to post-synaptic receptors, which enhances their

biological effect [38].

Depression is often accompanied by chronic pain. Therefore,

antidepressants like milnacipran also become more widely applied

to treat chronic pain [39,40]. Serotonin and noradrenalin act as

key mediators in various biological processes, and therefore

SNRIs, due to their dual action of preventing reuptake of both

serotonin and noradrenalin, are used to treat a range of distinct

disorders.

We used CoPub Discovery to predict new applications for

milnacipran. Several disorders were found by CoPub Discovery

that had a significant, hidden relationship in literature with

milnacipran using genes as intermediates (Table 1b). The top

scoring disorder, connected with 7 gene intermediates, is obsessive

compulsive disorder (OCD).

OCD is a common chronic anxiety disorder that can have

disabling effects on both adults and children. OCD is character-

ized by recurrent obsessions and uncontrolled compulsions such as

repetitive behavioral or mental acts that are performed in response

to an obsession [41]. Marble-burying behavior in mice is

recognized as a model for OCD [42]. In this model, inhibition

of marble burying is correlated with reduction of anxiety, which

can be achieved by treatment with selective serotonin reuptake

inhibitors (SSRIs) [43]. Several studies have shown that in addition

to SSRIs, SNRIs are also promising drug candidates for treatment

of OCD [44,45]. Again, to validate the predicted association

between milnacipran and OCD, we inquired the literature from

May 1, 2007 until present for studies that report on a functional

relationship between milnacipran and OCD. Indeed, in a study

published after May 1, 2007, milnacipran was found to

significantly inhibit marble-burying behavior in mice [46], which

demonstrates that the inferred relationship between milnacipran

and OCD by CoPub Discovery appears biologically valid.

Two genes that connect milnacipran and OCD are the

norepinephrine transporter SLC6A2 and the serotonin transporter

SLC6A4 (Figure 5b). Milnacipran, SLC6A2 and SLC6A4 are

linked in literature by studies that report on the inhibitory effect of

milnacipran on norepinephrine and serotonin uptake [47,48],

whereas susceptibility to OCD was linked in literature to

polymorphisms in SLC6A4 and SLC6A2 [49,50]. These reports

underpin a functional relationship between milnacipran and

OCD, and shows that the predicted relationship between

milnacipran and OCD by CoPub Discovery can be well explained

by the biology of the intermediates.

Case study 3: Drug - biological process hidden

relationship. Pitavastatin is a new synthetic inhibitor of 3-

hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase,

which was shown to be a potent cholesterol-lowering agent [51].

The short-term and long-term lipid-modifying effects of

pitavastatin have already been investigated in subjects with

familial hypercholesterolemia, hypertriglyceridemia and type 2

diabetes mellitus [51], and the drug has been in Phase III trials in

Europe, US and Japan [52].

The primary effect of a drug on its target and on related cellular

processes is in many cases well known, whereas other beneficial,

pleiotropic effects are often less well understood or are not

immediately clear from literature. To predict additional cellular

effects of pitavastatin and to understand its mode of action, CoPub

Discovery was used predict relationships between biological

processes and pitavastatin using genes and biological processes

as intermediates.

It appeared that the four top scoring biological processes

represent cell differentiation processes (Table 1c). To assess

whether pitavastatin indeed affects cell differentiation, we

inspected the literature from after May 1, 2007 that report on

such an association. For adipocyte differentiation, indeed a direct

link between pitavastatin administration and cell differentiation

was reported [53]. In this study, pitavastatin was shown to have an

inhibitory effect on preadipocyte differentiation into mature

adipocytes by attenuating the expression of Peroxisome proliferator

activated receptor gamma (PPARc), a known inducer of adipogenesis

[54,55] and one of the intermediates in the hidden relationship

between pitavastatin and adipocyte differentiation. This indicates

that the predicted linkage between pitavastatin and adipocyte

differentiation by CoPub Discovery is very likely and merits

further research.

Pivastatin is connected to monocyte activation/differentiation

with 26 intermediates (Table 1c). Activation of monocytes induces

monocyte migration to sites of inflammation and induces

differentiation of monocytes into macrophages, dendritic cells

and osteoclasts [56,57]. Inspection of the intermediates identified,

among others, Chemokine (C-C motif) ligand 2 (CCL2, also known as

MCP1) and PPARc (Figure 5c). The literature that links monocyte

activation and differentiation to CCL2 and CCL2 to pitavastatin,

show that CCL2 is an inducer of monocyte activation and

migration [58] and that pitavastatin attenuates gene expression of

CCL2 in smooth muscle and endothelial cells [59,60]. This raises

the hypothesis that pitavastatin is able to block monocyte

activation and migration by downregulation of CCL2 gene

expression in CCL2-secreting cells.

Similarly, the literature shows that pitavastatin downregulates

the expression of PPARc in macrophages [61]. The expression of

PPARc is upregulated in activated monocytes/macrophages and

PPARc plays a role in induction of differentiation of macrophages

into foam cells [62], raising the possibility that by downregulating

PPARc expression, pitavastatin is able to suppress activation and

differentiation of monocytes into macrophages. The hypothesis

that pitavastatin is linked to cell differentiation is in line with

studies on simvastatin, which is also a HMG-CoA reductase

inhibitor, that was shown to affect cell differentiation [63,64].

Altogether, pitavastatin is strongly linked to cell differentiation

by CoPub Discovery. In cardiovascular disease, aberrant differ-

entiation of macrophages into foam cells leads to plaque formation

at vascular endothelium cells and can cause occlusion of blood

vessels [65], whereas over-abundance of adipocytes causing obesity

is considered to be a major risk factor for type II diabetes [66].

Although the beneficial effect of pitavastatin on atherosclerosis and

diabetes has been well recognized [51], the underlying mechan-

isms on how pitavastatin initiates these effects have remained

elusive. Based on the results of CoPub Discovery, it might be

hypothesized that pitavastatin might prevent foam cell formation

by blocking monocyte differentiation via suppression of CCL2 and

PPARc expression. Furthermore, the proposed relationship

between pitavastatin and adipocyte differentiation, which was

CoPub Discovery: A Literature-Based Discovery Tool

PLoS Computational Biology | www.ploscompbiol.org 5 September 2010 | Volume 6 | Issue 9 | e1000943



Figure 5. Novel predicted relationships. Hidden relationships are visualized between a) Graves’ disease and Programmed cell death 1 (PDCD1), b)
milnacipran and obsessive-compulsive disorder, and c) pitavastatin and monocyte activation. A and C biomedical concepts are represented as red
circles (genes) or red squares (disease, drug or biological process), whereas B-intermediates are represented as blue circles (genes) and orange
squares (pathways and biological processes). The edges between nodes represent co-publications in Medline abstracts.
doi:10.1371/journal.pcbi.1000943.g005

CoPub Discovery: A Literature-Based Discovery Tool
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confirmed in the literature [53], may explain the beneficial effect

of pitavastatin on obesity and diabetes [66].

Taken together, the results of CoPub Discovery show that this

tool is well-suited to predict mechanisms of drug action and to

derive hypothesis about the biological pathways that are involved.

Case study 4: Biological process - drug hidden

relationship. To experimentally test a number of predicted

relationships we used CoPub Discovery to search for drugs that

could interfere with cell proliferation, a process for which assays

are readily available. Several drugs were found to have a

significant hidden relationship when using genes as intermediates

with the term ‘cell proliferation’ (Table 2). From this list, two top-

scoring compounds; dephostatin, a protein tyrosine phosphatase

inhibitor [67], and damnacanthal, a protein tyrosine kinase

inhibitor [68], were selected to test their hypothesized

association with cell proliferation in an in vitro cell assay.

Human peripheral blood mononuclear cells (PBMCs) were pre-

incubated with damnacanthal or dephostatin for concentrations

ranging from 0.01 to 10 mM, followed by incubation with CD3/

CD28 antibodies, which triggers T lymphocyte proliferation. Both

damnacanthal and dephostatin inhibited proliferation of PBMCs

for concentrations in the mM-range, with EC50’s of 2.67 mM and

1.96 mM respectively (Figure 6). Cell viability and apoptosis were

not affected by damnacanthal and dephostatin indicating that

damnacanthal and dephostatin specifically inhibit cell proliferation.

An earlier study showed that damnacanthal inhibits Ras

function [69], which provides a mechanism of action of how

damnacanthal might influence cell proliferation, as Ras oncogenes

are involved in cell cycle regulation. A study performed prior May

2007 showed that dephostatin inhibits the growth of Jurkat cells

[70], therefore it can be argued that the inhibitory effect of

dephostatin on cell proliferation was already known. However the

term ‘cell proliferation’ was not mentioned in the abstract of this

paper and therefore CoPub Discovery qualified the relationship

between dephostatin and ‘cell proliferation’ as novel.

These experiments provide evidence that the predicted hidden

relationships with CoPub Discovery of damnacanthal and

dephostatin with cell proliferation were indeed correct.

Discussion

In this paper we described CoPub Discovery, a web-based tool

that mines the Medline database for novel relationships between

genes, diseases, drugs and pathways. The results show that using

hidden relationships, we can successfully identify novel disease-

related genes, generate novel hypotheses on drug mode of action

and predict novel lead compound applications.

Drug discovery is a difficult and time-consuming process.

Despite the strong increase in funding of research and develop-

ment the last decade, the number of drugs that reach the market

each year is lagging behind [71]. Several strategies have been

adopted to bridge this gap. The use of systems biology for gaining

better knowledge on the mechanisms of drug action and toxicity

[72–75] and the use of biomarkers that are predictive for a certain

biological outcome [76–78], are widely used solutions to improve

decision making. In addition, drug repositioning, which is the use

of existing drugs for new applications, is another area that is

gaining much attention as a means to boost drug development

[79]. Several text mining solutions have been developed to assist in

and speed up the above strategies.

In a recent paper, Compillos et al. showed how text mining of

drug labels, can be used to infer whether two drugs share the same

target [80]. Our study identified several novel targets for known

drugs, based on a different algorithm and another text corpus.

This indicates that mining of literature is an interesting and fruitful

approach to identify new drug-target relations, a first step in

developing drugs towards new applications.

Detailed knowledge of the mechanism of action of a drug and

the biological processes that are targeted by a drug is of

importance for fine tuning drugs and biomarker discovery. In an

earlier study, we showed that the application of text mining on

expression data from a toxicogenomics experiment yielded

detailed insight in the mode of toxicity of the tested compounds

[13]. With the hidden relationship algorithm presented in this

paper we provide a text mining tool that is independent of gene

expression data, to improve the understanding of a drug’s

mechanism of action and the pathways targeted by that drug.

Table 2. Prediction of novel links between cell proliferation
and drugs using open discovery.

Drug Name # Intermediates Ri

Dephostatin 22 36.8

Damnacanthal 15 37.2

Aniracetam 14 36.4

Mizolastine 12 36.2

Betaseron 12 36.2

The following intermediate inclusion criteria were used to calculate the hidden
relationships: minimal number of co-publications between keywords: at least 2;
minimal R-scaled score between keywords: at least 20; intermediates used:
genes; literature: till May 1st 2007. The significance cutoff of Ri scores were set to
a maximum false-positive rate of 0.1, which was set to 36 for the used settings,
as calculated in the literature partitioning analysis (Figure 2).
doi:10.1371/journal.pcbi.1000943.t002

Figure 6. In vitro cell proliferation assay validates CoPub
Discovery’s prediction. The predicted influence of damnacanthal
(red line and bullets) and dephostatin (blue line and triangles) on cell
proliferation was tested in an in vitro cell assay. For both damnacanthal
and dephostatin, the percentage of inhibition was measured and
plotted against compound concentration. Both compounds were
shown to inhibit cell proliferation in PBMCs when using concentrations
in the 1 to 10 mM-range. The EC50 was estimated at 1.96 mM for
dephostatin and for damnacanthal at 2.67 mM.
doi:10.1371/journal.pcbi.1000943.g006

CoPub Discovery: A Literature-Based Discovery Tool
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Although CoPub Discovery is successful in identifying novel,

biologically relevant relationships in literature, several improve-

ments may be envisioned. For example, incorporation of

additional evidence for true relationships between concepts from

sources other than literature, such as protein-protein interaction

data or gene co-expression data, could help prioritize relationships

by biological relevance. Furthermore, an additional measure of

confidence could come from analyzing the relationships between

the intermediates that connect A and C. A highly interconnected

set of intermediates could indicate/validate higher biological

relevance compared to a set with few interconnections.

Co-occurrence-based text mining does not capture the type of

the extracted relationships (e.g. A binds, blocks, induces B).

Therefore, in the CoPub Discovery web server the results are

linked to the original abstracts in which the relationships were

found. This enables the scientist to read the facts to uncover the

type of relationship between A and C. A good starting point for

discovery would be to look for intermediate nodes (B) that have the

highest R-scaled scores for both node A and node C, because they

have the strongest link between A and C. After selecting a few of

these nodes, the researcher can perform a detailed analysis on the

functional association between A and C by reading the abstracts in

which A and B, and B and C are mentioned. Additionally,

incorporation of natural language processing in hidden relation-

ship analysis could assist in determining the type and direction of

the relationship between A and C.

In the validation procedure of CoPub Discovery using ROC

curve analysis we define FPs as A–C relationships that are

predicted in the literature before the year 2000 that were not

detected in subsequent literature. It might be well true that a FP is

in fact a novel discovery, but is not yet discovered in subsequent

literature. Furthermore, one can argue that a high area under the

curve (AUC) score indicates that CoPub Discovery discovers very

little that would not have been eventually discovered without it. In

this respect, the 6.5 year time lag between the CoPub Discovery

and the report in literature may be more indicative of the true

value of CoPub Discovery; it significantly speeds up hypothesis

generation, filtering and testing as was demonstrated in case

example 4 in which we exactly followed this approach.

Evaluating the ROC curves in light of the performance of other

text mining tools is hampered by the fact that not all of the tools

are accessible or work on different text corpora or use different

thesauri. Development of tools for discovery of hidden relation-

ships would benefit from the use of expert-curated test and training

sets on well-defined literature corpora, as is done in the

BioCreative text mining challenges.

The statistical underpinning of CoPub Discovery provides a

significant advantage over existing text mining tools applied in the

area of drug development [19,22,24]. It allows confidence level

calculations for hidden relationships and facilitates the discrimina-

tion of biologically relevant from biologically less interesting

hidden relationships. To ensure the quality of the hidden

relationships, several stringencies were placed on the biomedical

concepts used in CoPub Discovery. For example, the biomedical

concepts used in literature mining were all pre-tested for false

positive generation upon inclusion in one of the biomedical

concept thesauri. Furthermore, only genes and biological processes

are allowed as intermediates, which avoid relationships being

formed by non-informative concepts, such as ‘protein’, ‘cell assay’,

etc.

In short, the results in this paper show that CoPub Discovery is

able to identify novel associations between genes, drugs, pathways

and diseases that have a high probability of being biologically

valid. The fact that this is done rapidly, in an automated way,

makes the tool especially useful in areas where large amounts of

data need to be analyzed. A typical use of this tool could be to

quickly rank potential new biomarkers obtained from e.g. a

microarray experiment, based on their relation to diseases and

drugs. CoPub Discovery could also help in drug repositioning in

which list of drugs are clustered and ranked on basis of their

relation with diseases and biological processes of interest.

Materials and Methods

Text mining Medline abstracts
Six thesauri containing human genes, Gene Ontology biological

processes, liver pathologies, diseases, pathways and drugs were

used to search Medline XML files containing title, abstract and

substances (1966 – August 2009, http://www.nlm.nih.gov/bsd/

licensee/2009_stats/baseline_doc.html), as described previously

[13,25]. The keyword thesauri are based on biological items,

which represent an instance of a biological concept (e.g., a gene, a

pathway), and may contain multiple keywords (e.g., a gene is

assigned a full gene name, a gene symbol and gene aliases).

Typical full gene names contain commas and often additional

descriptions in parenthesis, which makes a full gene name an

inadequate direct search term. Therefore, full gene names were

processed by deleting all terms included in parentheses and allow a

white space for each comma in the full name. Two-letter gene

symbols and aliases were removed from the thesaurus and all other

gene symbols were compared to an English dictionary to remove

common English words (such as ‘‘AND’’, ‘‘CELL’’, etc.).

Regular expressions were used to search the compiled Medline

text files for the presence of all keywords (,250.000) from the

biological concept thesauri. For the full gene name descriptions the

characters "] [.-)(,:;" and space were allowed preceding and

following the full gene name and also an optional ‘‘s’’ was

permitted to follow the full gene name. Any white space in the full

gene name was allowed to be a white space or a dash. The same

regular expressions were applied to the non-gene biomedical

concept descriptions (e.g. diseases, biological processes).

Keywords that generated a hit in a Medline abstract were

stored, together with the PubMed identifiers (IDs) of the Medline

records in which the hit occurred. For every biological item the

hits were made non-redundant (note: multiple keywords of a

biological item can occur in the same Medline abstract), resulting

in a PubMed ID-biological item list. Gene symbol hits were

examined for ambiguity. This was done by matching words of the

full gene name in the abstract in which the gene symbol had a hit.

When parts of the full gene name matched in the abstract, the

gene symbol hit was regarded as a true positive; otherwise the gene

symbol hit was discarded. The performance of the thesaurus-based

keyword matching algorithm including the symbol disambiguation

step was evaluated by repeating the human gene normalization

task of the BioCreative II contest (www.biocreative.org). CoPub

reached a recall of 0.78 and a precision of 0.68, resulting in an F-

measure of 0.73. Based on this F-measure, CoPub would have

been ranked 11th out of 21 participants [81].

Co-publication of biological items (e.g. a gene with a biological

process) was retrieved from the database by matching Medline

abstract occurrences. An R-scaled score ranging from 1–100,

which describes the strength of a co-citation between two

biological items given their individual frequencies of occurrence,

was used to assess the significance of a co-occurrence [15]. The R-

scaled score is based on the mutual information measure (MIM)

and was calculated as S = PAB/PA*PB in which PA is the number of

hits for biological item A divided by the total number of PubMed

IDs, PB is the number of hits for biological item B divided by the
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total number of PubMed IDs, and PAB is the number of co-

occurrences between biological item A and biological item B

divided by the total number of PubMed IDs. The relative score R

is produced as a log10 conversion of S (R = 10log S) and the 1–100

scaled-log-transformed relative score (R-scaled score) as R’ = 1+
99 * (R – Rmin)/(Rmax – Rmin), where Rmin and Rmax are the

lowest and highest R values present in the biological item co-

publication list, respectively. A high R-scaled score indicates that if

two biological concepts occur in literature they are often published

together, this in contrast to a low R-scaled score which indicates

that two biological concepts often occur separately in literature

and less often together. Based on previous experiences using

CoPub for the interpretation of microarray data, an R-scaled score

of above 40 can be regarded as biologically significant.

The scoring of hidden relationships between biomedical

concepts was adapted from Wren’s minimal MIM (MMIM)

model [82] where we used an R-scaled score instead of a MIM

score. The strength of the hidden relationship between A and C is

calculated using the R-scaled scores between A and B, and

between B and C. This inferred R-scaled (Ri) score between A and

C is calculated by summation of the R-scaled scores over the

intermediates B, taking the lowest score in each pair (AB, BC), and

dividing by the number of intermediates (Figure 1).

Bibliographic prediction and validation by literature
partitioning

Medline was divided into two sets (Figure 2). One set, the

background set, contained abstracts published before the year

2000. The second set, the test set, contained abstracts published

from the year 2000 up to May 1, 2007. Biomedical concept pairs

were formed from the background set, using the following criteria:

1) The members of the pair do not co-occur in any abstract. 2)

Each member of the pair occurs in at least 10 distinct abstracts. 3)

The members share at least 5 intermediates.

The test set was then used to evaluate whether the pairs from

the background set had a true relationship or not. A true

relationship for a pair (TP) was defined using the following criteria:

1) The pair should have at least 3 co-occurrences in the test set. 2)

The R-scaled score for this pair should be .40. All other pairs (FP)

were regarded as not having a true relationship. CoPub Discovery

was then evaluated for the ability to predict TPs from the

background set.

To this end an inferred R-scaled (Ri) score was calculated for

each pair of the background set and the performance of CoPub

Discovery of separating TP from FP relationships was measured

with ROC curves generated by varying the Ri threshold. The area

under the curve (AUC) of the ROC curve is equal to the

probability that a method will rank a randomly chosen positive

instance higher than a randomly chosen negative one [83].

To allow comparison of CoPub Discovery with other literature-

based discovery tools we have made the validation data of CoPub

Discovery (ROC curve analyses) available in supplementary Table

S1. Furthermore, we provide a web service with which the thesauri

and publication data can be downloaded. The web server and web

service implementation of the method described in this paper,

CoPub Discovery, is available at http://www.copub.org.

In vitro cell proliferation, viability and apoptosis assays
Damnacanthal (3-Hydroxy-1-methoxyanthraquinone-2-alde-

hyde), Merck Biosciences, Cat.No. 251650. 3,4-Dephostatin

(3,4-Dihydroxy-N-methyl-N-nitrosoaniline), Merck Biosciences,

Cat.No. 263202. Cell proliferation assays were performed with

human peripheral blood mononuclear cells (PBMCs), stimulated

with CD3 (OKT3)/CD28 (pelicluster CD28 clone CLB-CD28/1,

Sanquin, the Netherlands) antibodies at a concentration of 125

ng/ml and 250 ng/ml respectively in the presence or absence of

compounds. Proliferation was determined after 3 days via 3H-

thymidin incorporation for 24 hours. Viability of PBMCs was

measured by Alamar Blue cell viability assay (Molecular Probes/

Invitrogen, Eugene, OR). Apoptosis of PBMCs was measured

using caspase GLO 3/7 activity assay (Promega, Madison, WI).

Supporting Information

Table S1 ROC curve data used to validate CoPub Discovery -

This supplementary table contains the raw data of the ROC curve

analysis to validate CoPub Discovery for Disease-Gene, Drug-

Disease and Drug-Biological Process hidden relationships, for

several B-node inclusion criteria. The true positive rate (TPR) was

calculated as: TPR = TP/TP+FN, and the false positive rate (FPR)

was calculated as: FPR = FP/FP+TN (TP = True positive,

FN = False negative, FP = False positive and TN = True negative).

Found at: doi:10.1371/journal.pcbi.1000943.s001 (0.17 MB XLS)
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