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Abstract

Background: The epithelial-to-mesenchymal transition (EMT) has been linked to the regulation of glioma progression.
However, the underlying signaling mechanisms that regulate EMT are poorly understood.

Methods: Quantitative real-time PCR (RT-qPCR) and western blot were performed to detect the expression of MeCP2
in glioma tissues and cell lines. MeCP2 functions were tested with cell immunofluorescence staining and western blot.
For in vivo experiments, mouse xenograft model was used to investigate the effects of MeCP2 on glioma. ChIP and
Co-IP were used to detect the relationships among MeCP2, miR-200c and Suv39H1.

Results: In this study, we found that MeCP2 was frequently up-regulated in human glioma tissues and cell lines.
MeCP2 knockdown remarkably induced cell epithelial phenotype and inhibited mesenchymal marker ZEB1 and ZEB2
in vitro and in vivo. In addition, MeCP2 in glioma tissues was negatively correlated with miR-200c expression, and miR-
200c overexpression partially abrogated mesenchymal phenotype induced by MeCP2. More importantly, we showed
that MeCP2 recruited H3K9 to the promoter of miR-200c by interacting with SUV39H1, resulting in EMT of glioma cells.

Conclusions: This study for the first time reveals MeCP2 as a novel regulator of EMT in glioma and suggest
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that MeCP2 inhibition may represent a promising therapeutic option for suppressing EMT in glioma.

Background

Gliomas are the most common primary brain tumor
characterized by highly infiltrative growth. Base on the
pathological characteristics, gliomas can be classified into
four clinical grades. (Glioblastoma multiforme, GBM) is
one of the most aggressive types of brain tumors, and
despite the combination of multiple treatments, including
surgery, chemotherapy and radiation, patients often still
develop refractory recurrence [1]. In general, GBM
patients have a median survival time of no more than 16
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months after optimal treatment [2]. GBM are classified
into four molecular subtypes including mesenchymal,
classical, proneural and neural subtypes based on gene ex-
pression-based molecular classification [3].The mesenchy-
mal GBM subtype has recently been shown to be the
most malignant with resistance to radiotherapy and
chemotherapy. This pathogenic phenotype has been asso-
ciated with the epithelial-to-mesenchymal transition
(EMT). The EMT is a key biological process that is
normally involved in embryonic development and have
been reported to regulate invasion and metastasis of
tumor [4, 5]. In GBM, members of the ZEB-family, e.g.,
ZEB1 and ZEB2, known as the activators of EMT, can
promote the invasiveness of GBM cells [6, 7]. Therefore,
understanding the molecular mechanism of EMT is essen-
tial for the development of novel and effective therapeutic
strategies for gliomas.
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Methyl CpG-binding protein 2 (MeCP2) is a member of
the methyl-CpG-binding domain (MBD) family of pro-
teins [8]. MeCP2 has been found to have two functional
domains, a 104-amino-acid transcriptional repression
domain (TRD) and an 85-amino-acid MBD. MBD binds
DNA sequences methylated at cytosine in the dinucleotide
5'-CpG and TRD acts as a transcriptional repressor by
recruiting histone deacetylase complex (HDAC) [9, 10].
MeCP2 has been reported to be implicated in a number of
molecular functions, such as transcription regulation,
RNA splicing, and chromatin organization [11, 12]. Loss-
of-function mutations in MeCP2 causes Rett syndrome
(RTT), whereas the duplications of MeCP2-containing loci
may result in spectrum of phenotypes ranging from aut-
ism to intellectual disabilities and mood disorders [13, 14].
Recently, it has been reported that a non-neuronal role for
MeCP2 has emerged in tumorigenesis, such as prostate
cancer, breast cancer and gastric cancer [15, 16]. However,
little is known about its biological characteristics and
molecular mechanisms in human glioma.

MicroRNAs, known as small noncoding RNAs, are
involved in regulation of downstream gene expression at
the posttranscriptional level [17]. Most importantly, the
complex regulatory network not only allows one gene by
the combination of multiple microRNAs, but also modu-
lates the expression of several genes via one microRNA
[18, 19]. Recently, numerous deregulated miRNAs have
been reported to be associated with human cancers
progression [20, 21]. The miR-200 family (miR-200c/
miR-141 and miR-200a/miR-200b/miR-429 clusters) is a
tumor-suppressive group of miRNAs that is implicated
in suppressing EMT process [22, 23]. Recent reports
have suggested that the repression of miR-200s expres-
sion occurs due to epigenetic modification, such as DNA
methylation and histone methylation [24-26]. In
addition, our previous study showed that miR-141
methylation mediated by DNMT1 in glioma. However,
the association of MeCP2 with miR-200s dysregulation
is still unknown.

In this paper, we found that MeCP2 knockdown
repressed EMT process of glioma cells, and expression
of ZEB1 and ZEB2. Additionally, MeCP2 regulated the
expression of microRNA-200 family targeting ZEB1 and
ZEB2 transcripts through epigenetic modification. The
present work reveals epigenetic regulatory network
between miRNA and methylation, which will provide a
novel therapy strategy for guarding against EMT of
gliomas via targeting MeCP2 and its downstream
miR-200c.

Materials and methods
Patients and tissue samples
Resected brain tumors were collected from the
Department of Neurosurgery of The Second Affiliated
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Hospital of Anhui Medical University (Hefei, China)
after obtaining all patient’s or their client’s informed
consent. Tissue samples included 12 normal brain
tissues and 65 glioma tissues. All cases were pathologic-
ally graded as low grade (WHO I/II, n =22) and high
grade (WHO III/IV, n =43) according to the WHO
criteria, and the information about the essential charac-
teristics of these tumors was placed in Additional file 1:
Table S1. Samples were preserved in liquid nitrogen and
stored in — 80 °C. This experiment was approved by the
Research Ethics Committee of The Second Affiliated
Hospital of Anhui Medical University.

TCGA data assay

The Cancer Genome Atlas (TCGA) assay was carried
out by website http://cancergenome.nih.gov/ as previous
described [27]. This TCGA cohort include normal
tissues (n =207), low grade (n =518) including all low-
grade gliomas, and GBM (n = 163), and genes expression
were analyzed. In addition, GBM subtypes expression
data according to their molecular classification (classic,
proneural, neural, mesenchymal) were obtained and the
relationship between the expression of genes in glioma
was analyzed by in this database.

Cell culture

Glioma cell lines (U251, LN18, A172, and U87) and
normal human astrocytes (NHAs) were obtained from
the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China) and Sun Yat-Sen University, respect-
ively. Cells were grown in DMEM and supplemented
with 10% fetal bovine serum (FBS, Gibco, USA), 100 U/
ml penicillin/streptomycin (Sigma), in the presence of
5% CO, at 37 °C.

Immunofluorescence staining

Cells were inoculated into the 6-well plate comprising
slide and cultured overnight. After that, cells were fixed
with 4% paraformaldehyde (Beyotime Biotechnology,
ST476). Cells were permeated with 0.5% Triton X-100
(Beyotime Biotechnology, ST795) in PBS and blocked
with 5% bovine serum albumin (BOSTER, AR0004) and
incubated with B-tubulin (cell signaling,cat#2146), ZEB1
(Abcam, ab245283) and ZEB2 (Abcam,ab138222) anti-
body overnight at 4°C.FITC conjugated secondary
antibody was used to detect primary antibody, and then
DAPI was used to incubate cells for counterstaining.
Images were acquired using a DP71 fluorescence micro-
scope with a digital color camera (Olympus, USA).

Cell transfection

The human MeCP2-WT gene and other constructs of
MeCP2 truncations MeCP2N, and MeCP2%C were
generated according to manufacturer’s instructions. Sh-
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MeCP2 (5'-TGCTTAAGCAAAGGAAATCTCTCGAG
AGATTTCCTTTGCTTAAGCTTTTTTC-3") was pro-
vided by GenePharma (Shanghai, China), and its corre-
sponding non-targeting sequence (sh-control). si-SUV39H1
and nonspecific control siRNA (si-NC) were synthesized
(Genepharma, Shanghai, China). Plasmid was transfected
into U251 and LN18 glioma cells respectively by using
Lipofectamine 2000 (Invitrogen, USA) according to the
manufacturer’s protocol. MiR-200c mimics and miR-200c
negative control (NC) were purchased from RiboBio
(Guangzhou, China), and transfected into cell lines accord-
ing to the manufacturer’s protocol.

RNA extraction and quantitative real-time PCR

Total RNAs from tissues and cultured cells were
extracted using Trizo reagent (Invitrogen, USA) accord-
ing to the manufacturer’s protocol. cDNA was reversely
transcribed by using PrimeScriptTM RT Master Mix
(Perfect Real Time) (TaKaRa Biotechnology, China). All-
in-One™ miRNA First-Strand ¢DNA Synthesis Kit
(Genecopoeia, China) was used for miRNA reverse
transcription and RT-qPCR was performed using All-in-
One™ miRNA qPCR Kit (Genecopoeia, Guangzhou,
China) of miR-200a (Cat#HmiRQP0298), miR-200b
(Cat#HmiRQP0300), miR-200c¢ (Cat#HmiRQP0302), miR-
141(Cat#HmiRQP0184), miR-429 (Cat#HmiRQP0497)
and U6 (Cat#HmiRQP9001). Real-time PCR was per-
formed with SYBR Green detection chemistry (TaKaRa
Biotechnology, China) on ABI 7500 Real-Time PCR
System (Applied Biosystems). For relative quantification,
224C was calculated, with U6 RNA as a reference in
miRNA analysis and GAPDH as a reference in the analysis
of protein coding genes. The indicated primers were
placed in Additional file 2: Table S2.

Western blotting

Tissues and cells were treated with RIPA lysis buffer
(Beyotime, China). Total protein extracts (20 or 40 pg)
were subjected to 8% or 12% SDS PAGE separation and
then transferred to PVDF membrane (MilliporeCorp,
U.S.A.). Membranes were probed with targeted primary
antibodies: Anti-B-actin (Abcam, ab179467), Anti-MeCP2
(Abcam, ab195393), anti-ZEB1 (Abcam, ab203829) and
anti-ZEB2 (Abcam, ab138222). Following blots were
washed three times in TBS/Tween-20 and then incubated
with appropriate horseradish peroxidase (HRP)-conju-
gated secondary antibody at a 1:10000 dilution in TBS/
Tween-20 containing 5% milk. Proteins were visualized
using an ECL chemiluminescence kit (ECL-plus, Thermo
Scientific).

Co-immunoprecipitation (co-IP) assay
Co-IP assays were performed to examine the interaction
between MeCP2 and SUV39H1 according to the
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manufacturer’s protocol, and complexes were precipi-
tated with protein A/G agarose (Bimake, B23201). Then,
complexes were subjected to western blot analysis using
anti-MeCP2 (Abcam, ab195393), anti-SUV39H1 (Abcam,
ab12405).

Chromatin immunoprecipitation (ChIP)

ChIP assays were performed according to previously
described Protocols [28]. In brief, ChIP was performed
using the EZ-Magna ChIP Chromatin Immunoprecipi-
tation Kit (Millipore). The antibodies were obtained
from Abcam: anti-H3K9 (ab8898) and anti-SUV39H1
(Abcam, ab12405). The DNA was detected through
RT-qPCR and primers were provided in Additional file
2: Table S2.

Tumor formation study in vivo

All mouse experiments were approved by the Animal
Research Committee of Anhui Medical University. LN-
18 glioma cells infected with lentiviral vectors (Gene-
ChemCo.Ltd., Shanghai, China) containing sh-MeCP2
and sh-con were suspended in 200 ul PBS and subcuta-
neously injected in BALB/c female nude mice (5 x
10°cells/mouse). Tumor size was measured every 7 days
using an electronic caliper, and the tumor volume was
determined with the formula:V =0.5xL (length) x w2
(width) [29]. Mice were sacrificed after 6 weeks at cell
inoculation, and tumors were excised and evaluated for
volume.

Immunohistochemistry

Samples were fixed in 4% paraformaldehyde, and then
were dehydrated, embedded in paraffin, and sectioned.
Immunohistochemistry staining was performed accord-
ing to the manufacture’s protocol using antibodies
against ZEB1 and ZEB2 (Abcam, USA). Images were
visualized using florescence microscope. Results of im-
munohistochemical (IHC) staining was analyzed by
Image proPlus6.0.

Statistical analysis

Data are presented as mean + SD of three independent
experiments, in which each assay was performed in
triplicate. Statistical analysis was performed using the
GraphPad Prism 5 software. The correlation between
the expression of MeCP2, miR-200c, ZEB1 and ZEB2 in
tissues was analyzed with Pearson’s correlation. A p-
value < 0.05 was considered statistically significant.

Results

Increased MeCP2 levels in gliomas tissues and cells

To evaluate MeCP2 expression in glioma samples and
cell lines, MeCP2 expression were detected by RT-
qPCR. As shown in Fig. 1a, MeCP2 mRNA expression
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was markedly increased in glioma tissues compared
with normal brain tissues. To determine whether the
expression of MeCP2 is linked to the pathogenesis of
glioma, MeCP2 expression in glioma tissues with
different histopathologic grades was observed. A signifi-
cant increase was observed in low grade glioma sam-
ples, whereas a slight increase in high grade glioma
samples (Fig. 1b). Interestingly, MeCP2 expression is
significantly increased in mesenchymal glioblastoma as
compared with classical subgroup as divided after
Verhaak et al. [3] (Fig. 1c). To confirm the changes of
MeCP2 expression in gliomas, immunoblotting analysis
was performed. MeCP2 protein expression was in-
creased in glioma tissues compared with that in normal
brain tissues (Fig. 1d-e). Moreover, we also measured

MeCP2 levels in a panel of glioma cell lines and a nor-
mal human astrocytes (NHA). Compared with NHA,
MeCP2 expression levels were significantly increased in
LN-18 and U251 glioma cell lines (Fig. 1f). Therefore,
we chose LN-18 and U251 glioma cells for further
functional studies.

MeCP2 knockdown induces epithelial phenotype in vitro

To investigate the effect of MeCP2 on EMT in gliomas,
LN-18 and U251 glioma cells were transfected sh-
MeCP2 and sh-con. Decreased expression of MeCP2
after transfection of sh-MeCP2 was confirmed in LN-18
and U251 glioma cell lines (Fig. 2a-c). In addition, obvi-
ous cell morphology change was observed in the second
weeks after MeCP2 knockdown, and cells morphology
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were changed from mesenchymal morphology to epithe-
lial morphology (Fig. 2d and Additional file 3: Fig. Sla).
Staining microtubules by p-tubulin antibody was used to
detect the morphological changes. As shown in Fig. 2e
and Additional file 3: Fig. S1b-c, MeCP2 overexpression
increased spindle shaped morphology compared with
vector. To determine whether MeCP2 regulate EMT in
glioma, the expression of EMT markers was analyzed.
We found that knockdown of MeCP2 increased mRNA
expression levels of epithelial markers E-Cadherin, and
decreased mesenchymal markers, ZEB1, ZEB2, and
TWIST1 in LN18 and U251 glioma cells (Fig. 3a-b).

Because MeCP2 could wupregulate ZEB1, ZEB2,
TWIST1 and E-Cadherin, we next examined whether
MeCP2 is coexpressed with ZEB1, ZEB2, TWIST1 and
E-Cadherin in human glioma samples. TCGA database
analysis showed that ZEB1, ZEB2 and TWIST1 expres-
sion (Fig. 3c-e), but not E-Cadherin (Additional file 3:
Fig. S1d), were increased in glioma. As shown in Fig. 3f-
g, expression of ZEB1 and ZEB2 was significantly
increased in glioma tissues compared with normal tis-
sues. In addition, MeCP2 expression was positively cor-
related with ZEB1 and ZEB2 expression in the TCGA
cohort (Fig. 4a-b), but not correlated with TWIST1 and
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E-Cadherin (Additional file 3: Fig. S1). When measured
by western blotting, the expression of ZEB1 and ZEB2
protein was reduced in both LN18 and U251 glioma
cells with knockdown of MeCP2 (Fig. 4c-f). All these re-
sults indicate a potent role for MeCP2 in the acquisition
of mesenchymal phenotype in gliomas.

MeCP2 knockdown suppresses EMT phenotype in a
mouse xenograft model

To determine the potential impact of MeCP2 expression
on EMT in glioma, a xenograft model was used. Sh-
MeCP2 resulted in a significant growth reduction com-
pared with sh-con (Fig. 5a). Moreover, ZEB1 and ZEB2

staining were used to detect the EMT in xenografted
tumor tissues. As shown in Fig. 5b-c, knockdown of
MeCP2 had fewer ZEB1 and ZEB2 positive cells compared
with sh-con cells. These data suggested that MeCP2
knockdown in vivo functions similarly as in vitro.

MeCP2 represses miR-200c in glioma

The miR-200 family can directly target ZEB1 and ZEB2,
which served as a pivotal mediator of the EMT process
[30]. Therefore, we postulate that MeCP2 may regulate
EMT process by miR-200 family. As shown in Fig. 6a-b,
expression of miR-200c, but not the other members of
miR-200 family, was markedly reduced in MeCP2
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J

overexpression glioma cells compared with vector. Add-
itionally, MeCP2 knockdown induced miR-200c expres-
sion in glioma cells (Additional file 4: Fig. S2a). To
investigate whether a relationship exists between MeCP2
expression and miR-200c, miR-200c expression was ex-
amined in human glioma samples. The downregulation
of miR-200c expression was observed in glioma samples
in comparison with normal brain tissues (Fig. 6¢). To ex-
plore whether expression of miR-200c was related to

MeCP2, the expression levels of MeCP2 and miR-200c
were analyzed in glioma tissues. The correlation of high
MeCP2 expression with low miR-200c expression in gli-
oma tissues supports our finding that MeCP2 can down-
regulate miR-200c in glioma cells (Fig. 6d).

miR-200c is involved in MeCP2 mediated-EMT in glioma
To explore whether MeCP2 exerts biological functions
via miR-200c, a rescue experiment was performed. As
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shown in Fig. 7a and Additional file 4: Fig. S2b, MeCP2
overexpression increased spindle shaped morphology,
whereas miR-200c markedly reduced spindle shaped
morphology induced by MeCP2. Because ZEB1 and
ZEB2 is target genes of miR-200c, we wondered whether
MeCP2 could modulate ZEB1 and ZEB2 by miR-200c.
Ectopic expression of MeCP2 increased ZEB1 and ZEB2
mRNA expression, whereas miR-200c abrogated this in-
crease (Fig. 7b and Additional file 4: Fig. S2c). Additionally,
ectopic expression of MeCP2 increased positive ZEB1 and
ZEB2 staining, miR-200c abrogated this increase (Fig. 7c
and Additional file 4: Fig. S2d). These results may imply
that MeCP2 regulate EMT of glioma in part by miR-200c.

MeCP2 as a regulator of miR-200c transcriptional
repression

MeCP2 can mediate transcriptional repression of genes
by binding specifically to methylated DNA of genes [31].

To explore the mechanism how MeCP2 repress miR-
200c expression in a similar manner, we predicted CpG
of miR-200c promoter via using MethPrimer. Pyrose-
quencing results showed that methylation of miR-200c
promoter was not significant change in MeCP2 overex-
pression compared with vector (Additional file 5:
Fig. S3a). Previous study showed that MeCP2 can recruit
histone methyltransferase that methylate local H3 lysine
9 (H3K9) are involved in gene silencing [32]. To explore
whether MeCP2 represses the level of miR-200c expres-
sion via H3K9me3 modification in glioma cells, and the
results found that a significant enrichment of H3K9me3
in the miR-200c promoter was observed in MeCP2-over-
expressed glioma cells compared with vector cells
(Fig. 8a-c). As expected, no alteration in IgG was ob-
served in the miR-200c promoter region (Fig. 8d-e).

To understand how MeCP2 regulates H3K9me3 en-
richment in the promoter of miR-200c, we constructed
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WT, MBD and TRD plasmids to transfect into glioma
cells. We found that in lysates of glioma cells, H3K9me3
enrichment in the promoter of miR-200c was signifi-
cantly increased in MBD and MeCP2 group, but not
TRD, compared with vector group (Fig. 8f-g). In
addition, we found that miR-200c expression was mark-
edly reduced by expression of either WT or MBD trun-
cated form of MeCP2 (Fig. 8h), suggesting that MBD is
capable of exerting transcriptional repression activity as
WT MeCP2.

MeCP2 mediated H3K9me3 of miR-200c via its interaction
with SUV39H1

MeCP2 initiates silencing with selective methylation on
H3K9, thus creating a high-affinity binding site for
suppressor of variegation 39H1(SUV39H1) proteins
[33].To investigate the interaction between MeCP2 and
SUV39H1, coimmunoprecipitation(Co-IP) experiments
was used to perform in glioma cells. Endogenous MeCP2
coimmunoprecipitated with endogenous SUV39H1 in
glioma cells (Fig. 9a). The interaction of SUV39H1 with
MeCP2 was further confirmed via reverse endogenous
coimmunoprecipitation of SUV39H1 with MeCP2 (Fig.
9b), supporting a physical SUV39H1-MeCP2 interaction
in vitro. These data prompted us to investigate whether
SUV39HL1 is involved in H3K9me3 of miR-200c mediated
by MeCP2, ChIP analysis was performed in MeCP2-over-
expressing glioma cells. We found that MeCP2 enhanced

the binding of SUV39H1 to the promoters of miR-200c
(Fig. 9c-d). However, no increase in SUV39H1 binding to
the promoters of GAPDH, a gene not mediated by
SUV39H1, was observed (Fig. 9c-d). These results
indicated that MeCP2 is related to SUV39H1 occupancy
at miR-200c promoter. To further confirm whether
SUV39H1 mediated epigenetic repression of miR-200c,
we examined miR-200c expression after transfection of si-
SUV39H]1 to glioma cells (Additional file 5: Fig. S3b). As
shown Fig. 9e-g, SUV39H1 knockdown reduced
H3K9me3 occupancy at the promoter of miR-200c and
resulted in the increase of miR-200c expression. Collect-
ively, these results revealed that SUV39H1 might be im-
plicated in the function of MeCP2 as an epigenetic
repressor of miR-200c in glioma cells.

Discussion

Emerging evidences indicate MeCP2 as a pivotal onco-
gene in tumorigenesis. MeCP2 as a frequently amplified
oncogene has observed in cancer [34-36]. Recently,
overexpression of MeCP2 have found in diverse types of
cancers, including gastric cancer, endometrial cancers,
and prostate cancer, whereas MeCP2 knockdown re-
pressed the proliferation of tumor cells [35, 37, 38].
However, the role of MeCP2 in glioma is still largely
unknown. Here, we showed that the expression of
MeCP2 was increased in glioma tissues and associated
with pathological grade. Interestingly, MeCP2 expression
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are highly in mesenchymal GBM subtype, suggesting
that MeCP2 may be involve in EMT of glioma. Recently,
Li et al. found that MeCP2 promoted EMT by epigeneti-
cally silencing BMP7 in endothelial cells [39]. Here, we
found that knockdown of MeCP2 significantly induced
epithelial phenotype in vitro, whereas overexpression of
MeCP2 exerted the opposite effect. These results indi-
cate that MeCP2 may play a key role in the regulation of
EMT in gliomas.

EMT is a cellular mechanism that is known to pro-
mote a developmental transdifferentiation program
[40]. In addition, during EMT, epithelial cells lose their
polarity, which will increase express mesenchymal
markers, such as ZEB1 and ZEB2, and then leading to
acquire invasive potential [41, 42]. This phenomenon

has also been related to tumor progression, during
which epithelial cells lose signs of differentiation, and
obtain enhanced migratory abilities, which results in
invasion and metastasis [43, 44]. ZEBI increases loss of
cell—cell contact and therefore fosters increased motil-
ity in glioma [45]. Additionally, ZEB2 knockdown
inhibited proliferation, migration, invasion, and in-
creased cell death in glioma-derived cell cultures [46].
Here, we found that inhibition of MeCP2 markedly im-
paired expression of the EMT player ZEB1 and ZEB2 in
vitro and in vivo. These results indicated that MeCP2
can function as a transcriptional activator of ZEB1 and
ZEB2 in glioma. In this paper, though some important
discoveries were disclosed, a subcutaneous tumor
model was used in our study, which may result in the
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consequences that we may not be able to perfectly
simulate the microenvironment of intracranial tumor
growth in vivo.

Previous study showed that MeCP2 is best known for its
role as a transcriptional repressor in the regulation of gene
expression in mammalian cells. MeCP2 was associated
with the methylated of TFPI-2 promoter, and the loss of
MeCP2 in TFPI-2 promoter resulted in gene reactivation
in human glioma cells [47]. Recently, it was found that
dysregulation of miRNA in cancer is due to the transcrip-
tional repression function of MeCP2 [48, 49]. MiR-200s
family have been reported to play a central role in
suppressing EMT marker ZEB1 and ZEB2. Therefore, we
speculate that MeCP2 may mediate a transcriptional
activator of ZEB1 and ZEB2 by repressing miR-200s

family. Here, we showed that MeCP2 repressed expression
of miR-200c, but not other member of miR-200 family, in
glioma cells, and MeCP2 expression was negatively associ-
ated with miR-200c in glioma tissues. In addition, miR-
200c was involved in MeCP2-mediated EMT in glioma.
These results suggest that MeCP2 may regulate EMT, at
least in part, by miR-200c in glioma.

MeCP2 is believed to exert the function of transcrip-
tional inhibition via binding to methylated CpG dinucle-
otides [50]. Unexpectedly, we found that overexpression
of MeCP2 not changed the methylation of miR-200c
promoter. As a master regulator of gene expression,
MeCP2 also acts as a transcriptional repressor by
recruiting corepressors and epigenetic regulator, to the
promoter regions to suppress a variety of genes
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expression [51]. The association of MeCP2 with H3K9
methylation has been reported in the region of IL-6 gene
[32]. A direct correlation between the binding of MeCP2
and the presence of H3K9me in promoter of the IxBa
gene and the BDNF gene also has been described [52,
53]. Our ChIP results showed, for the first time, that
MeCP2 represses expression of miR-200c by regulating
H3K9 methylation of miR-200c promoter. The associ-
ation of MeCP2 with histone H3 methyltransferase
activity is primarily mediated by methyl-CpG-binding
domain (MBD), represents a specific epigenetic mark for
transcriptional repression [51].

Here, we showed that MeCP2 mainly exhibit tran-
scriptional repression of miR-200c in glioma depends on
its MBD domain, but not TRD domain. As an oncogene,
whether MeCP2 exerts its effect in the control of glioma
by interacting with other miRNA is still unclear, which
is the field we will focus on in subsequent study.

Lunyak et al. reported that MeCP2 initiates silencing
with selective methylation on H3K9 via interactions with
SUV39H1 proteins [33].The molecular mechanism

underlying its role in epigenetic regulation is yet un-
known. Here, we showed that MeCP2 interacts with
SUV39H1 to mediate methylation-based epigenetic tran-
scriptional silencing. Our observation showed that
MeCP2 is associated with SUV39H1, and aids in the re-
cruitment of SUV39H1 to the promoter. Then,
SUV39H1 recruitment induced in the accumulation of
H3K9, which represses miR-200c expression at the
transcriptional levels. In consistent with the previous
study of MeCP2 interacted with SUV39HI1 to regulate
their target genes suggests that this pattern of mechan-
ism may be more general.

Conclusions

In summary, our findings demonstrated that the inter-
action of MeCP2 with SUV39H1, and deliver H3K9 to
the promoter of miR-200c, resulting in the transcrip-
tional repression of the miR-200c, and then activates
EMT in glioma (Fig. 10). These results suggest that
MeCP2 as an attractive therapeutic target, the inhibition
of which may potentially downregulate the expression of
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Fig. 10 Schematic diagram showing the mechanism of the interaction of MeCP2 with SUV39H1, and increased the accumulation of the
repressive marks H3K9 in the promoter of miR-200c, resulting in the transcriptional repression of the miR-200c, which induced EMT in glioma

Epithelial

Mesenchymal

miR-200c, resulting in subsequent suppression of the
EMT. Hence, our study not only reveals a novel mech-
anism underlying the epigenetic regulation of EMT in
glioma but also provides a novel therapeutic target of
glioma. Moreover, identification of MeCP2-specific
inhibitor could potentially create a new paradigm in
the discovery and development of molecular target
therapy for glioma.
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