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Abstract

Various feature selection algorithms have been proposed to identify cancer prognostic bio-

markers. In recent years, however, their reproducibility is criticized. The performance of fea-

ture selection algorithms is shown to be affected by the datasets, underlying networks and

evaluation metrics. One of the causes is the curse of dimensionality, which makes it hard to

select the features that generalize well on independent data. Even the integration of biologi-

cal networks does not mitigate this issue because the networks are large and many of their

components are not relevant for the phenotype of interest. With the availability of multi-

omics data, integrative approaches are being developed to build more robust predictive

models. In this scenario, the higher data dimensions create greater challenges. We pro-

posed a phenotype relevant network-based feature selection (PRNFS) framework and

demonstrated its advantages in lung cancer prognosis prediction. We constructed cancer

prognosis relevant networks based on epithelial mesenchymal transition (EMT) and inte-

grated them with different types of omics data for feature selection. With less than 2.5% of

the total dimensionality, we obtained EMT prognostic signatures that achieved remarkable

prediction performance (average AUC values >0.8), very significant sample stratifications,

and meaningful biological interpretations. In addition to finding EMT signatures from differ-

ent omics data levels, we combined these single-omics signatures into multi-omics signa-

tures, which improved sample stratifications significantly. Both single- and multi-omics EMT

signatures were tested on independent multi-omics lung cancer datasets and significant

sample stratifications were obtained.

Introduction

Prognosis prediction is necessary for cancer clinical decision making. Traditionally, cancer

prognosis prediction is based on clinical variables such as tumor stage, age, and disease history,

where the information of a patient is compared against population cancer registries [1].
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However, these clinical parameters are insufficient to accurately predict the risk of patients [2]

as histologically similar tumors can be of completely different diseases at the molecular level

[3, 4]. Therefore, molecular signatures are needed to give more accurate prognosis predictions.

Nowadays we can obtain tumor molecular profiles in greater detail. As one of the large scale

projects, the Cancer Genome Atlas (TCGA) provides access to genomic, transcriptomic, epige-

nomic, and proteomic data from more than 11,000 cases in 33 cancer types and subtypes [5].

Using these data, researchers aim to build better prognosis prediction models. This has been

found as very challenging due to the high dimensionality of omics data, where the number of

features far exceeds the number of samples. This is often addressed as the curse of dimensional-
ity. When the data lie in high dimensions, the samples become very sparse. This can cause the

lack of statistical significance and over-fitting of machine learning models. Fortunately, not all

features are relevant for predicting the phenotype of interest. It is desired to find the molecular

signatures that capture the footprint of the phenotype so that the signatures can be employed

on unseen samples.

Various feature selection methods were proposed to find molecular signatures. Early

reviews categorized them into three categories: filter, wrapper, and embedded methods [6, 7].

Although many important algorithms were introduced, network-based feature selection algo-

rithms were not included. After reviewing the literature, we found three main categories of

network-based feature selection algorithms. The first category involves network-guided search.

An algorithm identifies subnetworks that can best differentiate different phenotype groups.

Each subnetwork is aggregated to produce one feature (called metagene) and eventually the

metagenes are used as features for training predictive models. Different scoring functions were

proposed to rank the subnetworks. For example, [8] used mutual information as the scoring

function and the addition operator to aggregate subnetworks. [9, 10] used the p-value of Cox

PH model in defining the scoring functions. [11] dichotomized features and defined a scoring

function based on information theory. [12] tested the effects of different aggregation operators

on the prediction performance.

The second category of methods uses network-based regularization. Regularization meth-

ods such as Lasso have been widely applied for feature selection. To integrate network infor-

mation, the penalty term takes into account the network connectivity. Adjacency matrix A and

Laplacian matrix L are frequently used to represent a network G to be included in the penalty

term. The majority of methods in this category are based on linear classifiers and can be writ-

ten in the following form:

ŵ ¼ min
w

cðwTX;YÞ þ a penaltyðw;GÞ ð1Þ

For example, in graph Lasso penalty(w, G) = λ||w||1 + (1 − λ)∑i,j Ai,j(wi − wj). This forces

adjacent nodes to have similar weights [13, 14]. Using similar formulations, [15] proposed a

network-constrained regularization and feature selection method on genomic data. [16] added

a network regularization term to the log-likelihood function of the Cox proportional hazard

model. [17] developed a network-constrained support vector machine algorithm, where the

network-based regularization term is added to the objective function of SVM.

The third category of methods involves iterative updates of node importance scores. Fre-

quently used algorithms include network propagation and random walk. [18, 19] adapted

Google’s PageRank algorithm to rank genes in a network. Genes are assigned initial ranks

r½0� 2 RN
. Then the rank of each gene is updated iteratively depending on the ranks of genes
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that are linked to it. For gene j, its rank from r½n� 1�

j to r½n�j is updated as:

r½n�j ¼ 1 � d þ d
XN

i¼1

Ai;jr
½n� 1�

i

degi
; 1 � j � N ð2Þ

where degi is the degree of the ith gene and d is a fixed parameter. By iterating until conver-

gence a gene will be highly ranked if it is linked to other highly ranked genes. [20] used ran-

dom walk kernel to smooth gene-wise t-statistics over the network. This is achieved by

assigning each node an initial score based on t-test and then multiplying it with the random

walk kernel. The p-step random walk kernel is used as a similarity measure to capture the relat-

edness of two nodes in the network. It is defined as:

r½n�j ¼ 1 � d þ d
XN

i¼1

Ai;jr
½n� 1�

i

degi
; 1 � j � N ð3Þ

K ¼ ðaI � LnormÞ
p
¼ ðða � 1ÞI þ D� 1=2AD� 1=2Þ

p
ð4Þ

where Lnorm is the normalized graph Laplacian matrix, α is a constant, and p is the number of

random walk steps. The network-smoothed t-statistic ~t ¼ tTK is used to measure node impor-

tance. Similarly, random walk-based scoring of network components is applied in [21] to pri-

oritize functional networks.

Besides algorithmic difference, various biological networks have been employed in net-

work-based feature selection algorithms. A list of these molecular interactions is given in

Table 1. In these studies, it was shown that superior features could be selected by the integra-

tion of networks. However, recent studies showed that network-based feature selection meth-

ods did not significantly improve prediction performance, but mainly contributed to the

biological interpretations of the signatures [22–24]. [22] compared 14 feature selection meth-

ods, 8 of which integrated network information and 6 of which did not, on 6 breast cancer

datasets with respect to their prediction accuracy, signature stability and biological interpreta-

tions. The results showed that network-based features in most cases could not improve predic-

tion accuracy significantly. [23, 24] showed that when a correction of feature set size was

performed, the stability of network-based features was not higher than single features.

Regardless of whether network information is integrated, finding robust molecular signa-

tures is a challenging task. Due to the high data dimensions, it is easy to find a feature subset

Table 1. Frequently used molecular/gene interaction networks in network-based feature selection studies. We listed below the basic information of the networks as

well as exemplary studies that employed the networks. With STRING database we only considered the edges with confidence scores� 0.9. When a database has informa-

tion of many species, only Homo sapiens was considered. In the 4th and 5th columns, Data means that the network size is dependent on the dimensions of data. App
means that the network size is dependent on the application. GO means that the network size is dependent on gene ontology terms.

Molecular interactions Database Version Number of edges Number of nodes Studies

protein-protein STRING V10.5 547621 19578 [25–27]

protein-protein HPRD Release 9 41327 30047 [9–11, 17]

biological pathways KEGG Release 84.0 App App [15, 28]

biological pathways Pathway Commons V7 1912848 14863 [29]

miRNA-gene miRTarBase V7.0 502651 16822 [26]

transcription factor—target TRANSFAC V7.0 public 1504 1648 [19, 30]

gene co-expression None None Data Data [16, 18]

gene functional linkage Multiple None App App [8, 16, 31, 32]

gene ontology Gene ontology None GO GO [18]

https://doi.org/10.1371/journal.pone.0204186.t001
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that fits the training data very well but hard to have good generalization. Studies showed that

there was hardly considerable overlap among biomarkers identified in different studies for the

same disease [33–35]. Even taking random feature sets gave comparable prediction perfor-

mance [36]. The existence of many feature subsets that perform similarly well on the training

set makes it difficult to identify the true signatures. Note that the randomness of signatures is

also observed when network information is integrated. [23] tested different network-based fea-

ture selection algorithms on six breast cancer datasets in prognosis prediction. They showed

that the randomization of network structure, which destroyed biological information, did not

deteriorate the prediction performance of the selected features. [24] extended the experiments

in [23] by comparing more prognosis signatures. In the end, similar results were observed.

We suppose that the main reason for these counter-intuitive results is the curse of

dimensionality, where selecting molecular signatures is hard given the limited amount of sam-

ples. In principle, molecular signatures should give better predictions than random features,

because it is shown in biological research that certain genes are supposed to be more important

than the others in cancer progression. If we use this information to constrain the feature space

and guide feature selection, we could potentially obtain more robust biomarkers. State-of-the-

art studies have not utilized this knowledge but considered the whole feature space and the

entire biological network. Because both the data and the network are large, the irrelevant infor-

mation may overwhelm the signals. Furthermore, biological networks were typically integrated

with one type of omics data. It would be very interesting to investigate how the prediction per-

formance differs when the networks are integrated with different omics data types, and addi-

tionally what are the relationships among the features selected from different omics data.

To address this issue, we proposed a phenotype relevant network-based feature selection

(PRNFS) framework. It consists of constructing a gene regulatory network (GRN) specific for

the phenotype of interest and selecting features from this network. We demonstrated the supe-

riority of this framework with the application of lung adenocarcinoma (LUAD) prognosis pre-

diction. We constructed a GRN for EMT, which has been demonstrated as highly relevant to

cancer metastasis and prognosis. On this network 4 types of omics data (mRNA-Seq, miRNA-

Seq, DNA methylation, and copy number alteration data) were integrated and 10 feature selec-

tion algorithms were employed. We obtained both single- and multi-omics EMT prognostic

signatures, evaluated their prediction performance, analyzed the biological interpretations,

and performed survival analysis. Furthermore, these signatures were tested on independent

multi-omics LUAD data. We showed that EMT prognostic signatures achieved remarkable

prediction performance on TCGA data. On independent data, both single- and multi-omics

signatures stratified patients into significantly different prognostic groups. Multi-omics signa-

tures were shown to be more robust than single-omics signatures.

Materials and methods

We will first describe the construction of EMT networks. This is followed by the introduction

of 10 feature selection algorithms. Then we explain the details of the experiments.

EMT gene regulatory networks

As an up-to-date EMT GRN is not readily available, we constructed the network by literature

review. The network we constructed has incorporated key transcription factors, miRNAs,

their regulations and interactions with EMT hallmark molecules. Multiple levels of gene regu-

lations such as transcriptional, translational, and post-translational regulations were covered.

The reference for each component in the network can be found in [37] Chapter 2. Since this

EMT-based molecular signatures for lung cancer prognosis prediction
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network covers mainly driver genes, we named it as the core network. A visualization of the

network using igraph package [38] is provided in S1 Fig.

As it is observed, driver genes are often less differentially expressed than the genes they reg-

ulate [35]. If one includes only the driver genes for identifying molecular signatures, one may

have captured only partial information. We therefore extended this network by including the

molecules that directly interact with or being regulated by the molecules in the core network.

NetworkAnalyst tool [39] was employed to find these interactions, which consist of protein-

protein interactions, miRNA-gene interactions, and transcription factor-gene interactions.

The resulting network was named extended network. After constructing this network, we

noticed that many features have a rather low variance among samples; we thus removed these

features and obtained the filtered network. All three networks were employed in our experi-

ments. The three networks contain 74, 455 and 123 nodes respectively. Details of the networks

can be found in [37].

Experiments

We first obtained RNA-Seq, miRNA-Seq, DNA methylation, and CNA data of LUAD from

FIREHOSE Broad Genome Data Analysis Center (GDAC) [40]. The GDAC data version is

2016_01_28. mRNA-Seq and miRNA-Seq data were combined because they both measure

the abundance of transcripts. This resulted in 3 data levels: gene expression, DNA methyla-

tion, and CNA data. These three data levels will be abbreviated as GE, DM, and CNA in the

remaining text. Each data level was normalized feature-wise by subtracting the mean and

dividing by the standard deviation. More details of data pre-processing can be found in

[37, 41].

Since we have obtained 3 EMT networks and 3 data levels, feature selection can be per-

formed on each combination of network and data level. To evaluate whether EMT-based

feature selection can give more robust molecular signatures for prognosis prediction, we

employed 10 representative features selection algorithms to identify signatures from EMT

genes and EMT networks. Table 2 gives an overview of these algorithms. Five of these algo-

rithms integrate network information and the other five algorithms use only omics data. The

underlying methodologies are very different. We suppose that if EMT network is superior for

selecting prognostic signatures, the performance of the selected features from the majority of

these algorithms should show improvements. As mentioned before, state-of-the-art studies

usually use only gene expression data for feature selection. We instead incorporated three

Table 2. Overview of the 10 feature selection algorithms. We listed below their main methodologies, whether network information was integrated, the algorithmic out-

put and reference.

Algorithm Methodology Network Output Reference

t-test t-statistic No feature ranking [28, 42]

Lasso regularized regression No coefficients [43]

NetLasso network-based regularization Yes coefficients [15]

AddDA2 subnetwork scoring and searching Yes subnetworks [8, 12]

NetRank feature importance on network Yes feature ranking [19]

stSVM random walk on network Yes feature ranking [20]

Cox Cox PH model No feature ranking [44, 45]

RegCox regularized Cox PH model No coefficients [46]

MSS random sampling No feature ranking [47]

Survnet subnetwork scoring and searching Yes subnetworks [9]

https://doi.org/10.1371/journal.pone.0204186.t002
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different omics data levels. This gives us the possibility to compare and integrate the signatures

from different data levels.

Note that even the largest EMT network (the extended network) covers only 2.3% of the

original data dimensions. To assess the performance of EMT-based feature selection, we com-

pared the prediction performance of EMT signatures with the features selected out of all fea-

tures from the corresponding data levels. Besides, random networks of the same size and

structure as EMT networks were generated—the nodes in the random networks were ran-

domly chosen from all the features of the corresponding data level. The features selected from

these random networks were compared with EMT signatures. Additionally, we obtained a list

of EMT hallmark genes from the Molecular Signatures Database (MSigDB) [48–50] and used

these features for predictions. This was to examine whether EMT-based feature selection could

outperform conventionally used gene sets. In total, we compared the prediction performance

of EMT signatures with the following 5 groups:

1. Random features. These features were selected from random networks using the same fea-

ture selection algorithms. 150 random networks were generated for feature selection.

2. All EMT features. We included all features in the EMT networks without feature selection.

3. All features from the corresponding data levels. This corresponds to 19,290 GE features,

20,074 DM features, or 21,456 CNA features.

4. Features selected from all data level features by applying Lasso algorithm.

5. 200 EMT hallmark features from MSigDB.

We performed the comparison by selecting features with the training set, using these fea-

tures to train an SVM classifier, and classifying samples on the cross-validation set. Patients

who survived more than 1400 days belong to the good prognosis group and patients who sur-

vived less than 700 days belong to the poor prognosis group. The results from 30 times strati-

fied 10-fold cross-validation were averaged. Within each data level the same cross-validation

folds were used for all the feature selection algorithms on all the comparative groups. The clas-

sification performance was evaluated using three metrics: AUC (the area under the receiver

operating characteristic curve), AUPR (the area under the precision-recall curve) and accu-

racy. To serve a more general audience, we also calculated the average odds ratio for each algo-

rithm using 0.5 cut-off of SVM algorithm.

We chose relatively stringent thresholds for feature selection, this is to reveal more difference

than similarities between the two patient groups. We argue that it becomes harder to find the

signatures if the two groups have more similar samples in terms of the phenotype. For example,

if one uses a single threshold of 3 years, we assume that the molecular profiles of patients who

survived a bit longer than 3 years may be very similar to patients who survived a bit shorter

than 3 years. In this case, it is challenging to find the signatures that can capture the most

important difference between the two groups, given the limited amount of samples and their

heterogeneity. However, we did not omit the influence of thresholds. We tested the perfor-

mance of all feature selection algorithms with four different thresholds, in the order of increas-

ing discrepancy: 3 years,<900 or>1200 days,<700 or>1400 days,<500 or>1500 days.

Besides the above-mentioned evaluation metrics, survival analysis was performed using

the selected features on censored data. The data have much more samples that could not be

included in classification.We think that if the selected features are good signatures, they should

be able to stratify the patients into significantly different survival groups. We performed sur-

vival analysis on both all-stage and early-stage patients. The sample sizes for classification and

for survival analysis (all stage patients) are given in Table 3.

EMT-based molecular signatures for lung cancer prognosis prediction
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Last but not least, we analyzed the biological interpretations of EMT signatures. Instead of

performing gene set enrichment analysis, which could give very significant results due to the

biological context of the EMT networks, we employed association rule mining approach [51].

to infer prognostic association rules. The rules have the advantage to directly associate the

states of the features to the phenotype of interest. We inferred rules using EMT signatures

from individual data levels and also from their different combinations. Our motivation is to

understand whether features from different data levels complement each other and jointly

contribute to patient prognosis.

We were able to show that EMT signatures from different data levels complement each

other in prognostic rules. This inspired us to obtain multi-omics EMT signatures by combin-

ing the signatures on individual data levels (single-omics signatures). Both single- and multi-

omics EMT signatures were evaluated on TCGA data and independent LUAD multi-omics

data using survival analysis. All the data and code for analysis are available at https://github.

com/BorongShao/EMT_prognosis-master.

Results

EMT signatures outperformed comparative groups

First, we show that regardless of the employed feature selection algorithms and evaluation met-

rics, EMT-based feature selection always outperforms feature selection on random networks.

Fig 1 shows the distributions of AUC, AUPR, and accuracy values of EMT signatures and ran-

dom ones, where DM data and core EMT network were used. S2 Fig shows the same compara-

tive groups using GE data with filtered EMT network. In both cases, the advantages of EMT

signatures are very apparent.

Next, we give the average AUC values of EMT signatures on all three data levels in Table 4.

The boxplot of AUC values is given in S3 Fig. The average odds ratios of different algorithms

are given in Table 5. These results show that features selected from GE and DM data obtained

better prediction performance than features selected from CNA data. Depending on the data

levels and network sizes, we find it hard to identify the best-performing feature selection algo-

rithm. In the last three lines of the table we give the results of comparative groups 3, 4, and 5.

This shows that EMT signatures in many cases outperformed EMT hallmark features and the

features selected from all data level features. For example, with Lasso feature selection algo-

rithm, which was applied in both EMT feature space and in the whole feature space, EMT

signatures gave better predictions in more than half of the cases. This indicates that selecting

prognostic signatures from a much smaller phenotype relevant network is a feasible approach.

We also evaluated the performance of the 10 feature selection algorithms with different classifi-

cation thresholds. Both SVM and random forest classifiers are employed. The results are given

in S4 Fig. It shows that regardless of feature selection algorithms, using more discrepant

thresholds tends to obtain higher AUC values. Meanwhile, a few algorithms such as addDA2,

RegCox, and Survnet are more sensitive to the effect of thresholds than the other algorithms.

Table 3. The description of datasets. This table shows the sample sizes for labeled data (thresholds<700 and>1400 days) and censored data.

labeled data censored data

good prognosis poor prognosis total all stages

Level GE 84 99 183 497

Level DM 74 93 167 447

Level CNA 73 76 149 503

https://doi.org/10.1371/journal.pone.0204186.t003
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Fig 1. The AUC, AUPR, and accuracies of EMT features versus random features using DM data with the core EMT network. Gaussian

kernel is used to estimate the density functions based on results from 30 times 10-fold cross-validation. For each cross-validation fold, EMT

features and random features are tested on the same training and cross-validation samples. Each row in the figure corresponds to one feature

selection algorithm. The last row corresponds to using all EMT features. The p-values of paired t-tests are provided in each sub-figure.

https://doi.org/10.1371/journal.pone.0204186.g001
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Frequently selected features further improves predictions

Although EMT signatures were shown to be significantly predictive in the experiments above,

we observed high variance in the AUC values from individual cross-validation tests (shown in

S3 Fig). Some partitions of data into training and cross-validation sets led to good predictions

and some led to poor predictions. Even on the small EMT feature space, this phenomenon is

already frequently observed. This suggests that selecting molecular signatures based on single

cross-validation test or single sample division into training and testing set is highly unreliable.

We think that sample heterogeneity contributed to the high variance in prediction perfor-

mance. Thus, we addressed this issue by employing the frequently selected features (FSFs)

Table 4. The prediction performance of EMT signatures on three data levels. The table gives the average AUC values of EMT signatures on three data levels with each

EMT network. The results from comparative groups 2, 3, 4, and 5 are given in the third row and the last three rows.

Data Level Gene expression DNA Methylation CNA

|V(G)| 74 123 455 74 123 455 70 117 445

EMT 0.662 0.728 0.691 0.698 0.679 0.671 0.616 0.645 0.608

t-test 0.658 0.709 0.677 0.688 0.675 0.669 0.616 0.626 0.621

Lasso 0.616 0.703 0.620 0.697 0.666 0.667 0.615 0.619 0.617

NetLasso 0.659 0.718 0.686 0.700 0.678 0.677 0.619 0.635 0.621

addDA2 0.650 0.675 0.651 0.699 0.661 0.702 0.597 0.626 0.616

NetRank 0.656 0.691 0.668 0.695 0.685 0.693 0.615 0.619 0.610

stSVM 0.651 0.693 0.639 0.669 0.668 0.687 0.608 0.617 0.616

Cox 0.673 0.705 0.712 0.703 0.707 0.696 0.620 0.664 0.675

RegCox 0.648 0.698 0.729 0.696 0.717 0.666 0.645 0.669 0.653

MSS 0.662 0.694 0.659 0.674 0.654 0.640 0.608 0.627 0.625

Survnet 0.646 0.661 0.679 0.702 0.688 0.680 0.626 0.693 0.682

All 0.648 0.652 0.612

All + Lasso 0.643 0.691 0.607

EMT hallmark 0.675 0.627 0.617

https://doi.org/10.1371/journal.pone.0204186.t004

Table 5. The average odds ratios of EMT signatures on three data levels. The table gives the average odds ratios of EMT signatures on three data levels with each EMT

network. The results from comparative groups 2, 3, 4, and 5 are given in the third row and the last three rows.

Data Level Gene expression DNA Methylation CNA

|V(G)| 74 123 455 74 123 455 70 117 445

EMT 3.162 7.021 5.563 4.27 4.263 4.223 1.779 2.766 1.257

t-test 3.974 6.112 8.872 4.767 6.044 8.31 3.086 3.663 4.745

Lasso 5.094 5.6 10.793 4.482 8.213 10.427 4.367 4.494 5.852

NetLasso 3.742 6.418 9.042 4.607 4.772 9.198 2.291 3.211 2.975

addDA2 5.304 4.714 10.716 5.432 6.736 15.647 2.639 5.201 7.297

NetRank 3.881 4.75 6.776 5.302 5.621 7.662 2.731 3.715 2.79

stSVM 4.118 6.238 2.448 3.682 4.22 5.253 2.173 1.63 1.721

Cox 3.685 5.684 7.666 5.083 5.499 4.821 1.398 3.562 4.897

RegCox 3.944 5.924 8.558 5.225 6.576 4.625 3.525 4.165 3.712

MSS 3.098 6.005 4.284 4.516 3.187 2.76 1.421 2.515 1.698

Survnet 2.798 4.159 4.798 5.455 3.694 4.544 3.25 5.394 5.457

All 4.316 2.221 1.233

All + Lasso 3.537 5.385 2.451

EMT hallmark 5.103 1.322 1.227

https://doi.org/10.1371/journal.pone.0204186.t005
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from all 30 times 10-fold cross-validation feature selection. Instead of using 20 features selected

from each training set, we used the top 20 FSFs and tested their performance using the same

evaluation approach. DM data and the extended EMT network were employed for the test, as

this combination was shown in Table 4 to give above-average prediction performance. We

compared the prediction performance of FSFs with that of individually selected features. The

results are given in Fig 2. The density plots and results of statistical tests are given in S5 Fig.

We observed that FSFs significantly outperformed individually selected features, except for

NetRank algorithm. The average AUC values of t-test, Lasso, NetLasso, and addDA2 feature

selection algorithms were 0.773, 0.825, 0.796, and 0.833, respectively. Correspondingly, the

average odds ratios increased to 8.115, 12.631, 11.104, and 13.139. It shows that using FSFs

can mitigate the effect of sample heterogeneity. Recall that we used only <2.5% of the original

dimensionality, namely EMT features, for feature selection and prognosis prediction. The

remarkable results are consistent with biological knowledge that EMT process is highly rele-

vant to cancer prognosis [52–56].

Biological interpretations

After identifying EMT FSFs, we further investigated their biological interpretations, especially

the relationships among FSFs from different omics data levels. We employed association rule

mining approach It is originally defined as the following [57]:

Let I = {i1, i2, . . ., in} be a set of n binary features called items. Let D = {t1, t2, . . ., tm} be a

set of transactions called the database. A rule is defined in the form: X) Y, where X, Y� I.
The itemsets X and Y are called left-hand-side (LHS) and right-hand-side (RHS). In order

to select interesting rules from the set of all possible rules, constraints on various measures of

Fig 2. The comparison of prediction performance between FSFs and individually selected features for different feature selection algorithms. The boxplot is

based on the results from 30 times stratified 10-fold cross-validation.

https://doi.org/10.1371/journal.pone.0204186.g002
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significance and interest are applied. Let a rule X) Y be identified on a set of transactions T.

Commonly used constraints are given below:

• Support. It indicates how frequently the itemset appears in T.

suppðXÞ ¼
jft 2 T;X � tgj

jTj
ð5Þ

• Confidence. It indicates how often a rule has been found to be true.

conf ðX ) YÞ ¼
suppðX [ YÞ
suppðXÞ

ð6Þ

• Lift. It indicates the degree to which X and Y depend on each other.

liftðX ) YÞ ¼
suppðX [ YÞ

suppðXÞ � suppðYÞ
ð7Þ

We first discretized the EMT features to binary values using the mean of each feature. Then

we applied Apriori algorithm [58] to derive rules, with the constraints of confidence� 0.8 and

support� 0.1. The algorithm was implemented in the arules R package [51]. Since we are try-

ing to find molecular patterns for predicting prognosis, we set the RHS of the rules to be the

class labels of prognosis.

The resulting rules show sound biological interpretations according to established findings

in cancer research [59, 60]. Here we interpret two rules identified from the core EMT network:

{LOXL2GE = high, TGFB1GE = high, miR − 34aGE = low}) {prognosis = poor}, with sup-
port = 0.135, confidence = 1, lift = 2.046. This rule applies to all samples that have these 3

gene expression conditions. Biologically, it has been shown that LOXL2 can stabilize SNAI1.

TGFB1 can phosphorylate SMAD2 and SMAD3, which interact with SMAD4 to activate

HMGA2, which then activates SNAI1. When LOXL2 and TGFB1 are highly expressed, it not

only induces SNAI1 gene expression but also stabilizes SNAI1 protein. miR-34a has the role

of repressing SNAI1. When miR-34a has low gene expression, SNAI1 is less repressed. Taken

together, these three conditions point to the direction of the high expression of SNAI1—a

master transcription factor to induce EMT. This contributes to poor prognosis. In contrast,

another rule which has an opposite LOXL2 state indicates good prognosis: {LOXL2GE = low,

ETS1GE = low, LOXL2DM = high}) prognosis = good, with support = 0.105, confidence = 1,

lift = 1.956. In this scenario, LOXL2 has high DNA methylation level and low gene expression

level, and thus not able to stabilize SNAI1. ETS1 gene is known to increase the expression of

ZEB1 which induces EMT. In this rule ETS1 has low expression so it does not contribute to

inducing EMT. These factors can contribute to good prognosis. S1 Table contains more

examples.

From single- to multi-omics signatures

The FSFs above were obtained alternatively from single data levels. Therefore, we name them

as single-omics signatures. To investigate whether molecular signatures incorporating multiple

data levels can be superior, we combined single-omics signatures into multi-omics signatures

and compared their capabilities in stratifying samples into different prognostic groups. Using

EMT-based molecular signatures for lung cancer prognosis prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0204186 January 31, 2019 11 / 20

https://doi.org/10.1371/journal.pone.0204186


these signatures, we clustered the samples into 3 groups with both k-means and spectral clus-

tering algorithms. Survival analysis was performed on the resulting cluster by estimating

Kaplan-Meier survival curves and conducting log-rank tests. The test results based on k-

means algorithm are given in Table 6, where the columns show different data level combina-

tions and the rows correspond to feature selection algorithms. The comparative groups of

using all EMT features and using EMT hallmark gene sets are included. The test results based

on spectral clustering algorithm are given in S2 Table. In both tables we observe that multi-

omics signatures improve sample stratifications significantly. An example is visualized in S6,

S7 and S8 Figs.

Next, we performed survival analysis on early stage patients. The results are given in

Table 7. It shows that EMT-based signatures can still stratify the patients into significantly dif-

ferent prognostic groups.

Last but not least, we tested the performance of two integrative clustering algorithms: SNF

[61] and iCluster [62] with multi-omics EMT signatures. Briefly, SNF algorithm constructs

Table 6. The results of log-rank tests on stratified sample clusters using single- and multi-omics EMT signatures on all-stage samples. K-means algorithm was

employed for clustering the samples into 3 groups. We highlighted all p-values that are lower than 10e-3.

GE DM CNA GE+DM GE+CNA DM+CNA GE+DM+CNA

t-test 7.87e-06 1.12e-01 3.62e-03 7.55e-06 8.75e-04 1.90e-03 8.25e-06

Lasso 4.58e-06 5.56e-02 5.54e-01 1.66e-04 2.28e-07 8.71e-01 1.18e-04

NetLasso 2.71e-01 6.45e-01 7.58e-02 2.96e-02 1.53e-02 4.83e-01 4.34e-01

addDA2 5.20e-10 5.17e-09 1.24e-04 8.99e-18 3.75e-05 1.11e-09 1.35e-07

NetRank 1.13e-07 1.79e-01 2.19e-02 2.50e-07 6.97e-06 7.31e-02 3.28e-06

stSVM 4.14e-02 3.39e-01 8.91e-01 8.86e-01 6.37e-02 5.85e-01 6.83e-01

Cox 2.55e-09 2.91e-03 5.30e-07 3.12e-04 1.70e-06 1.13e-04 6.11e-06

RegCox 1.78e-07 8.52e-03 2.67e-01 2.36e-09 1.52e-10 1.81e-07 2.52e-07

MSS 1.48e-03 5.95e-01 2.78e-01 6.29e-05 2.28e-04 2.59e-01 1.63e-03

Survnet 7.36e-05 6.25e-03 5.19e-03 2.59e-06 1.54e-03 3.77e-05 2.19e-05

Ensemble 2.32e-09 4.72e-02 6.05e-03 1.20e-04 1.62e-05 1.01e-01 1.18e-04

allemt 1.39e-02 4.30e-01 1.07e-01 7.64e-01 1.45e-02 2.07e-01 5.34e-01

EMT hallmark 1.62e-01 9.47e-01 3.09e-01 7.59e-01 5.82e-02 8.96e-01 7.58e-01

https://doi.org/10.1371/journal.pone.0204186.t006

Table 7. The results of log-rank tests on stratified sample clusters using single- and multi-omics EMT signatures on early-stage samples. K-means algorithm was

employed for clustering the samples into 3 groups. We highlighted all p-values that are lower than 10e-2.

GE DM CNA GE+DM GE+CNA DM+CNA GE+DM+CNA

t-test 6.28e-03 9.38e-02 1.93e-01 4.78e-04 8.40e-03 1.55e-01 2.47e-01

Lasso 1.82e-04 1.20e-03 1.01e-01 2.35e-01 1.67e-06 2.51e-03 4.94e-03

NetLasso 7.95e-03 8.56e-01 2.46e-01 2.29e-01 1.01e-01 9.69e-01 9.31e-01

addDA2 2.53e-04 1.98e-05 1.63e-03 6.88e-08 3.52e-02 1.03e-05 8.51e-04

NetRank 9.31e-06 5.39e-01 4.08e-03 3.52e-03 5.35e-04 7.54e-03 8.57e-04

stSVM 3.17e-02 2.99e-01 2.86e-01 4.00e-01 2.16e-02 1.32e-01 8.57e-01

Cox 4.40e-04 2.15e-01 2.42e-02 1.85e-02 3.30e-02 1.10e-02 6.43e-04

RegCox 8.52e-04 3.36e-01 2.33e-02 8.58e-03 2.18e-05 2.03e-03 3.90e-02

MSS 6.51e-02 6.51e-01 2.43e-01 2.34e-02 3.10e-02 9.91e-01 5.91e-02

Survnet 4.16e-03 3.05e-01 6.24e-02 6.78e-02 8.66e-02 2.27e-02 8.08e-03

Ensemble 4.03e-04 1.54e-01 4.54e-02 5.06e-03 4.01e-04 5.79e-04 7.95e-04

allemt 2.59e-01 9.45e-01 7.04e-03 6.31e-01 1.38e-02 4.16e-01 9.73e-01

https://doi.org/10.1371/journal.pone.0204186.t007
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sample similarity networks using individual data levels and then fuses these networks into a

single similarity network, where spectral clustering is used to decide sample clusters. iCluster

employs joint latent variable model to connect different data levels. The latent component is

used to determine sample clusters. Based on the clustering results we performed survival anal-

ysis. The results of log-rank tests are given in S3 Table for SNF algorithm and in S4 Table for

iCluster algorithm. We observed that neither SNF nor iCluster algorithm yielded better sample

stratifications than using k-means algorithm (Table 6).

Test results on independent data

We obtained the test data from [63] including 164 samples with DM data. 121 of these samples

have also mRNA expression data (microarray) available. The patient follow up time ranges

between 2 and 99 months with the median of 44 months. The outcome (event) is defined as

the occurrence of relapse, distant metastasis or death. The time to event is calculated from the

date of surgery. Detailed experimental procedures and the processing of raw data are provided

in [63]. EMT single- and multi-omics signatures consisting of GE and DM data levels were

evaluated on the test data using survival analysis. EMT signatures were extracted from the test

data without any additional training or modifications. Hierarchical clustering, instead of k-

means was employed in order to compare our results with the original study [63].

We have tested the EMT signatures selected by each feature selection algorithm [37]. It is

show that single-omics signatures can already stratify the samples into significantly different

prognostic groups. An example is given in Fig 3. Multi-omics signatures often yielded better

sample stratifications. Fig 4 shows an example where the multi-omics signature from a feature

selection algorithm can significantly stratify the samples while the single-omics signatures can-

not. Compared with the survival analysis results in the original study [63], we achieved more

significant sample stratifications with EMT signatures.

Discussion

Various feature selection algorithms have been proposed to identify biomarkers from Omics

data for predicting the phenotype of interest. Although more and more information such as

biological networks and multiple types of omics data have been integrated in feature selection,

recent studies show the low reproducibility of molecular signatures [22, 24, 35]. Some accredit

this to the existence of a large number of genes that are correlated with the target labels [12].

Given the limited amount of samples, it becomes very hard to differentiate the marker genes

and irrelevant genes. We addressed this issue by constructing a phenotype relevant gene regu-

latory network, integrating multiple types of omics data with the network to select molecular

signatures. We have shown that with lung cancer prognosis prediction, EMT signatures

selected from only 2.5% of the original feature space outperformed the classical feature selec-

tion on the whole feature space. To the best of our knowledge, we for the first time constructed

a phenotype-relevant GRN for lung cancer prognosis prediction.

Previously we employed EMT networks for selecting lung cancer prognostic signatures [41,

64]. However, [64] used mRNA expression and miRNA expression data only. [41] employed

three data levels for feature selection but obtained no significant improvement in predictions.

In this study, we extended the EMT network to incorporate its interacting molecules. Besides,

we reviewed the network used in [41] and removed the edges which denote associations rather

than direct gene regulations. What also distinguishes this study from our previous work is the

employment of 10 representative feature selection algorithms, instead of decomposing the net-

work into network motifs [41, 64]. We have selected EMT signatures on three data levels with

different network sizes, compared with the features selected from the whole data dimensions,
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and derived prognostic rules from EMT signatures. Furthermore, we obtained multi-omics

signatures and showed their superior prediction performance over single-omics signatures.

This shows that signatures from multiple omics data types can complement each other to bet-

ter distinguish different phenotypes.

The potential of EMT molecules in prognosis prediction has also been studied before. [65]

and [66] performed survival analysis using individual EMT hallmark molecules such as E-cad-

herin and vimentin and showed that none of these molecules could separate LUAD or bladder

cancer patients into significantly different prognostic groups. Note that these conclusions were

drawn from mainly univariate analysis. Since the molecules jointly contribute to the pheno-

type, it could be more helpful to use a set of features. This can be seen also from the prognostic

association rules derived from EMT signatures, where EMT molecules are jointly associated

with the phenotype. All in all, we successfully demonstrated that EMT network-based feature

Fig 3. EMT single-omics signatures can stratify test samples into significantly different prognostic groups. The signature is selected by addDA2

algorithm using DM data.

https://doi.org/10.1371/journal.pone.0204186.g003
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selection and data integration can provide advantages in selecting cancer prognostic signa-

tures. We think it would be very interesting to further investigate whether this approach could

be utilized to identify robust molecular signatures for other phenotypes and diseases. This

could potentially improve our understanding of diseases at the molecular level and help

develop more individualized medicine.

Supporting information

S1 Fig. Core EMT network. The names of genes and miRNAs are given on the nodes.

(TIF)

S2 Fig. The AUC, AUPR, and accuracies of EMT features versus random features using

gene expression data with filtered EMT network. Gaussian kernel is used to estimate the

Fig 4. EMT multi-omics signatures can stratify test samples into significantly different prognostic groups, when the corresponding single-omics

signatures cannot. The signature consists of both GE and DM single-omics signatures selected by t-test.

https://doi.org/10.1371/journal.pone.0204186.g004
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density functions based on results from 30 times 10-fold cross-validation. For each cross-vali-

dation fold, EMT features and random features are tested on the same training and testing

samples. The comparisons on five feature selection algorithms together with the comparative

group of using all EMT features are shown. The p-values of paired t-tests are provided.

(TIF)

S3 Fig. The AUC values of 10 feature selection algorithms. The three panels correspond to

three data levels. Within each panel, the AUC values of the 10 algorithms are plotted. Each

algorithm has three boxes of different colors denoting the 3 EMT networks. The blue and red

dotted lines within each panel are the median AUC values of two comparative groups: 1) using

all data level features and 2) Lasso feature selection on all data level features.

(TIF)

S4 Fig. The AUC values of 10 feature selection algorithms using different thresholds for

classification. The data level is DNA methylation data. The network is EMT core network.

(TIF)

S5 Fig. The comparison of FSFs with individually selected features in terms of AUC,

AUPR, and accuracy values. We used DNA methylation data and extended EMT network for

feature selection and SVM classifier for classification. Gaussian kernel is used to estimate the

density functions based on results from 30 times stratified 10-fold cross-validation. For each

cross-validation iteration, individually selected features and FSFs are tested on the same train-

ing and testing samples. The comparison between the two feature groups is shown on five fea-

ture selection algorithms together with the p-values of paired t-tests.

(TIF)

S6 Fig. Patient stratification using GE features from addDA2 algorithm.

(TIF)

S7 Fig. Patient stratification using DM features from addDA2 algorithm.

(TIF)

S8 Fig. Patient stratification using GE and DM features from addDA2 algorithm.

(TIF)

S1 Table. Top 20 prognostic association rules derived from the FSFs using filtered EMT

network. All the following rules have confidence scores of 1.

(PDF)

S2 Table. The p-values of log-rank tests based on the clustering of spectral clustering algo-

rithm for different data level combinations using extended EMT network. We highlighted

all p-values that are lower than 10e-5.

(PDF)

S3 Table. The p-values of log-rank tests based on SNF clustering using different data level

combinations with extended EMT network. We highlighted all p-values that are lower than

10e-5.

(PDF)

S4 Table. The p-values of log-rank tests based on iCluster clustering using different data

level combinations with extended EMT network. We highlighted all p-values that are lower

than 10e-5.

(PDF)
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