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Revealing inscriptions obscured 
by time on an early‑modern lead 
funerary cross using terahertz 
multispectral imaging
Junliang Dong1,2,5, Ana Ribeiro3, Aurélien Vacheret4, Alexandre Locquet1,2 & D. S. Citrin1,2*

The presence of a corrosion layer on lead art and archæological objects can severely impede the 
interpretation of inscriptions, thus hampering our overall understanding of the object and its context. 
While the oxidation of lead that dominates corrosion may be chemically reversible via reduction, 
potentially providing some access to inscriptions otherwise obscured by time, corrosion damage is 
overall neither entirely reversible nor is the reduction process in all cases easy or feasible to carry 
out. In this study, by taking advantage of the unique penetration ability of terahertz radiation and 
the abundant frequency bands covered by a single‑cycle terahertz pulse, we perform nondestructive 
terahertz multispectral imaging to look under the corrosion on a sixteenth century lead funerary cross 
(croix d’absolution) from Remiremont in Lorraine, France. The multispectral images obtained from 
various terahertz frequency bands are fed into a judiciously designed post‑processing chain for image 
restoration and enhancement, thus allowing us for the first time to read obscured inscriptions that 
might have otherwise been lost. Our approach, which brings together in a new way the THz properties 
of the constituent materials and advanced signal‑ and image‑processing techniques, opens up new 
perspectives for multi‑resolution analysis at terahertz frequencies as a technique in archæometry 
and will ultimately provide unprecedented information for digital acquisition and documentation, 
character extraction, classification, and recognition in archæological studies.

Since prehistoric times, objects have been included in burials to facilitate the passage to the next world. Such 
practices persisted through the Middle Ages in Europe where a number of types of grave goods have been found 
specifically addressing the Christian’s passage (hopefully) to heaven. In particular, cross-shaped plaques, cut 
from thin lead (Pb) sheets have been found at a number of sites in France, Germany, and  England1, with a con-
centration in Lorraine, France (now within the Région du Grand Est) where the practice continued to modern 
times (eighteenth century). These Pb crosses were found on the deceased’s chest within the coffin. The crosses 
themselves typically contain a prayer and/or information about the deceased incised into the cross, and the puta-
tive purpose was to seek absolution from sin. A particularly large  find2 was in Remiremont in Département des 
Vosges, and this study involves a Pb funerary cross dating from the sixteenth century (cross No. 28 as reported 
in Ref.2). An abbey was founded in Remiremont in the seventh century and extensive burials connected with 
the abbey were excavated in 1843 at which time the Pb cross studied here was found.

The Pb cross investigated in this study is shown in Fig. 1a. The dimensions are ∼11.5 cm by ∼11.5 cm and 
∼ 2 mm thick. The whitish appearance of the cross is due to the formation of corrosion products of Pb, which 
are probably lead  carbonates3 [such as cerussite PbCO3 , hydrocerussite Pb3(CO3)2(OH)2 or plumbonacrite Pb5
O(OH)2(CO3)3 ] or lead  oxides3,4 [such as massicot β-PbO ([orthorhombic lead (II) oxide])]. Some reddish areas 
may be due to the presence of a second phase, α-PbO [trigonal lead (II) oxide (litharge)]. The presence of a text is 
suggested by incised features in the whitish areas with a few characters barely readable in the greyer region where 
the corrosion layer is not as well-formed. When documented in 1904, Chevreux notes that only a small part of 
the text could be read and he remarks about this cross, “Très peu lisible”2, which means in effect “very hard to 
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read”. In the corroded state under which the cross arrived in our laboratory, the inscription was indeed almost 
unreadable. While the lead carbonates and oxides can be reduced in CO to metallic Pb, the overall damage due 
to corrosion is not itself reversible. Also, in fragile objects and/or objects that must remain in situ, this process 
may not be feasible. Noninvasive and noncontact imaging modalities operating at various frequencies, such as 
infrared  photography5, multispectral (between 550 nm and 950 nm)  imaging6, as well as X-ray fluorescence 
 imaging7, are under active research to improve the legibility of ancient inscriptions. However, such modalities 
are not suitable for the investigation of corroded Pb objects, because conventional optical frequencies cannot 
penetrate the corrosion layer; X-rays are strongly absorbed by Pb and may not be able to distinguish the corro-
sion products from the underlying Pb.

Recently, imaging with terahertz (THz)  radiation8 has attracted considerable attention due to its unique 
ability to penetrate many electrically insulating materials that are opaque to conventional optical frequencies. 
The THz frequency range spans from 100 GHz to 10 THz, straddling the boundary between microwaves and 
infrared light. In particular, unlike X-rays, THz radiation is nonionizing and thus presents no health  risks9. Until 
now, THz time-domain  imaging10 has been explored to characterize the structure and chemical composition 
of objects of archæological11 and art-historical12 interest, such as  paintings13,14,  ceramics15,  stones16,  bronzes17, 
 seals18,  manuscripts19,20, as well as  mummies21,22. In this study, we investigate the potential of THz pulsed imag-
ing in reflection mode to reveal the obscured inscriptions under corrosion on the sixteenth century Pb funerary 
cross. By exploiting the broadband nature of a single-cycle THz pulse, we are able to acquire THz multispectral 
 images23–26 from different frequency bands, in turn allowing us to characterize the surface and subsurface features 
of the Pb cross with different spatial resolutions. In particular, our results demonstrate that the features associated 
with the inscriptions can only be identified in the high-frequency band, and the additional information provided 
by the low-frequency band can be input into our judiciously designed image post-processing chain to enhance 
the visibility of the inscriptions. Our strategy can be applied to a wide range of cultural heritage objects and 
provide invaluable information for archæological studies, as well as potentially for documentation, conservation, 
and restoration. Our work thus brings together in a novel combination the science of THz-materials interactions 
with signal and image processing, to bear on a problem in archæological science.

Results
Experiment. The Pb cross sample shown in Fig. 1a was investigated via THz pulsed imaging based on a typi-
cal THz time-domain spectroscopy system (see “Methods”). THz pulsed imaging involves launching roughly 
single-cycle THz pulses to access both the surface and subsurface information of the Pb cross, here applied 

Figure 1.  (a) Photograph of the Pb cross under investigation in this study. The dimensions of the cross are ∼
11.5 cm by ∼11.5 cm with a thickness of ∼ 2 mm. The whitish appearance is due to corrosion. The presence of 
a text is suggested by incised features in the whitish areas with several characters readable where the corrosion 
is less well-formed. This is the condition in which the cross arrived in our laboratory. The horizontal arm of the 
cross is selected as the region of interest for THz imaging. (b) The THz reference signal in our system, which is 
recorded by setting a metal plate at the sample position. (c) The power spectrum of the reference THz pulse. The 
full spectrum of a broadband THz pulse is divided into six frequency bands with a bandwidth of ∼0.5 THz. THz 
multispectral images are obtained based on the frequency components in each frequency band.
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in a reflection geometry. The variations in THz reflections, corresponding to the irregularities/discontinuities/
roughness of the air/corrosion and corrosion/Pb interfaces, contains the information we seek related to the 
inscription. Figure 1b displays the reference THz pulse of our system, recorded by setting a metal plate at the 
sample position. The THz pulse exhibits a power spectrum extending from ∼ 60 GHz to 3.0 THz, as shown in 
Fig. 1c. The THz spot size is frequency-dependent27 and its full-width at half-maximum (FWHM) intensity is 
∼2.42 mm at 1 THz. We selected the horizontal arm of the Pb cross as the region of interest, shown in Fig. 1a, 
which was raster-scanned with a set of motorized stages moving in the X and Y directions with a 0.2-mm step. 
After the raster-scans, a 3D volume of reflected data was acquired.

Corrosion thickness mapping. In principle, the incident THz pulses are partially reflected at the air/
corrosion interface, but a portion of the power will transmit into the corrosion layer to be reflected from the cor-
rosion/Pb interface. Therefore, the received THz signals are the superposition of the two echoes reflected from 
the air/corrosion and corrosion/Pb interfaces with a relative time  delay28. A typical THz reflected signal at pixel 
(250, 190) is shown in Fig. 2a. We use the frequency-wavelet domain deconvolution (FWDD) algorithm (see 
“Methods”) to process the THz reflected signals in order to accurately measure the time delay between the two 
echoes. As shown in Fig. 2b, after performing the FWDD, two positive peaks are clearly identified, correspond-
ing to the locations of the air/corrosion and corrosion/Pb interfaces. The optical thickness of the corrosion at 
such a given position can be acquired by measuring the optical delay between the two peaks, and the physical 
thickness of the corrosion can be further calculated upon the knowledge of the refractive index of the corrosion 
in the THz regime.

As visually evident in Fig. 1a, the corrosion layer is inhomogeneous, with a spatially varying composition 
and thickness. The refractive indices of various lead carbonates and oxides at THz frequencies have not yet been 
reported. A value for the refractive index of ground massicot pigment in an animal-glue binder is ∼1.5029. This 
is an effective value for the dried paint, and the actual value for massicot is likely substantially larger. At optical 
frequencies, the value for the refractive index is  2.5530. In view of the uncertainty, we assume a representative 
value of 2.5 for the estimation of the corrosion thickness; the results shall show that this assumption, if not ideal, 
provides a working value leading to successful reading of the sub-corrosion inscription. After processing the 3D 
volume THz reflected data, the distribution of corrosion thickness across the Pb cross is estimated and displayed 
in Fig. 2c. There are some areas in which the thickness is not successfully acquired, because the signal-to-noise 
ratio (SNR) there is quite low, in turn hampering our effort to detect a valid second echo. We note that no features 

Figure 2.  (a) The THz reflected signal acquired at pixel (250, 190). The THz reflected signal mainly 
contains two echoes corresponding to the reflections from the air/corrosion and corrosion/Pb interfaces. (b) 
Deconvolved signal after performing the FWDD algorithm. The two positive peaks indicate the location of 
the interface, and the optical delay between the two peaks corresponds to the corrosion thickness. (c) The 
distribution of the corrosion thickness across the Pb cross.
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associated with the inscriptions can be identified in the map of corrosion thickness. This is because the time-
domain information cannot provide enough spatial resolution to reveal subtle features.

THz multispectral images. Based on the broadband nature of a single-cycle THz pulse, we are able to 
characterize the Pb cross with different spatial resolutions using different THz frequency components. THz 
multispectral images can be obtained by taking the Fourier transform of the reflected THz signal E(t) at each 
pixel, and integrating the magnitude of the frequency components within various bands. The imaging contrast 
mechanism C at a specific pixel is defined as

where fl and fh are the limits of the exploited frequency band, and FFT represents the fast Fourier transform. 
In our study, we divide the full bandwidth provided by the THz pulse into six frequency bands, each of which 
has a bandwidth of ∼0.5 THz, as shown in Fig. 1c. Based on Eq. (1), THz multispectral images achieved from 
six frequency bands are plotted in Fig. 3. It is clear that THz multispectral images are effective in revealing the 
surface roughness, as well as evidence of subsurface features. In the presence of irregularities at the interface, 
enhanced scattering of THz signals ensues, and consequently leading to a weaker specular signal. As shown in 
Fig. 3, markings corresponding to the incised inscriptions start to appear in the frequency band above 1 THz and 
become more obvious as the frequency increases, whereas images in the lower frequency bands mainly reveal 
the surface morphology of the cross. This is because higher frequency components, corresponding to shorter 
wavelengths, bring out small and subtle features associated with the inscriptions.

Image post‑processing chain. Based on the achieved THz multispectral images, we find out that, 
although observable in the high-frequency bands, the inscriptions suffer from severe degradation due to cor-
rosion; in addition, the image contrast of the inscriptions is not high due to the relatively low spatial resolution 
provided by THz measurements. Therefore, digital image restoration and enhancement are required to improve 
the legibility of the inscriptions. In principle, the image of such a corroded Pb cross can be considered as a 
combination of several superimposed layers of information, including the background layer, the inscription 
layer, and the degradation layer. The latter is assumed to have been mixed with the background and inscription 
layers during the corrosion process. In particular, the background and inscription layers can be separated in the 
THz multispectral images shown in Fig. 3, because the information related to the inscriptions mainly resides 

(1)C =

∫ fh

fl

|FFT(E(t))|df ,

Figure 3.  THz multispectral images obtained based on the components in frequency bands within (a) 0.1 and 
0.5 THz, (b) 0.5 THz and 1.0 THz, (c) 1.0 THz and 1.5 THz, (d) 1.5 THz and 2.0 THz, (e) 2.0 THz and 2.5 THz, 
(f) 2.5 THz and 3.0 THz. Features associated with the inscriptions start to appear in the frequency bands above 
1 THz, and images from the low frequency bands mainly reflect the surface morphology of the cross. All the 
images are normalized to their maximum pixel values.
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in the high-frequency bands (above 1 THz) and thus, is isolated from the low-frequency bands (below 1 THz). 
In our study, we consider the THz spectral image in the frequency band between 0.5 and 1 THz (Fig. 3b) as the 
’background’ layer Rbg (x, y) , and the one in the frequency band between 2.5 THz and 3.0 THz (Fig. 3f) as the 
’inscription’ layer Rin(x, y) . Here, we propose a post-processing strategy for image restoration and enhancement, 
which is able to enhance the features associated with the inscriptions in Rin(x, y) while removing undesirable 
artifacts based on the information provided by Rbg (x, y) . Our image post-processing chain contains four steps: 

(1) Correction of intensity variations. Variations in surface morphology of the corroded Pb cross have a 
strong impact on THz reflections. As shown in Fig. 3, such variations in intensity can be seen in all THz 
multispectral images. Despite the difference in spatial resolutions, the background image Rbg (x, y) shown 
in Fig. 3b can be considered as a good estimate of the intensity variations due to surface morphology, in 
which the influence of the inscriptions is excluded. Based on the information provided in Rbg (x, y) , the 
intensity variations in Rin(x, y) shown in Fig. 4a can be corrected using the following  model31 

 where µbg is the global mean value of the intensity in Rbg (x, y) . In this model, the factor µbg/Rbg (x, y) 
aims to mitigate the bright pixel if µbg < Rbg (x, y) , and enhance the dark pixel if µbg > Rbg (x, y) , in turn 
leading to a decrease in the intensity variations. The image after intensity correction is shown in Fig. 4b, in 
which intensity variations due to the surface morphology are successfully removed.

(2) Image inpainting. The objective of inpainting is to reconstruct missing regions in an image. As shown in 
Fig. 4b, the image after intensity correction contains some black areas with an intensity of zero. This is 
because the SNR in these areas is low, then the division of small values in the correction model leads to 
the generation of high spike values, which we have to force to zero. Here, we implement the total variation 
(TV) inpainting  algorithm31 to fill the missing areas based on the image information available outside. 
To simplify the notations in the next formulæ, we use u0 and u to represent the images before and after 
inpainting. The TV inpainting algorithm aims at minimizing the function 

 where � is a binary mask indicating the missing areas to be filled in. In our study, � is generated by detect-
ing the areas in which Rin(x, y)/Rbg (x, y) is larger than 2. α is the regularization parameter, which controls 
the tradeoff between these two terms. To minimize the energy in Eq. (3), we solve the Euler-Lagrange 

(2)Rcorr
in = µbg

Rin(x, y)

Rbg (x, y)
,

(3)E = �(u− u0)
2
+ α|∇u|,

Figure 4.  The output images from each step of the post-processing chain. (a) The input image Rin(x, y) . (b) The 
image after intensity correction. (c) The image after inpainting. (d) The image after blind deconvolution. (e) The 
image after contrast enhancement. All the images are normalized to their maximum pixel values.
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differential equation for E with a gradient-descent method and a discretization using finite differences. 
The iterative update  formula31 can be expressed as 

 where ux and uy denote the row and column derivative of u. n is the number of iteration and the subscripts 
i and j indicate the pixel position. �t denotes the time step between temporal samples of u (any small 
constant makes the iteration stable). In our study, we choose α=100, �=0.01, and n=100. The image after 
the implementation of inpainting is shown in Fig. 4c.

(3) Resolution enhancement. The spatial resolution of the achieved image can be further improved by decon-
volution. Image deconvolution algorithms aim at removing the blurring present induced by the limited 
spot size of the THz beam. In general, an imaging system is assumed linear and spatially shift invariant. 
The relationship between the original image o(x, y) and the output image of the system u(x, y) follows the 
2D deconvolution theorem 

 where ⊗ denotes the convolution operator. h(x, y) represents the point spread function (PSF) of the system 
and n(x, y) denotes the random spatial distribution of noise. When PSF is known, the Richardson-Lucy (RL) 
 algorithm32 developed based on Bayes’ theorem can be applied, and its iterative representation is given by 

 The initial estimation of the object is set as u(x, y) to start the iteration. When PSF is unknown, it refers 
to a blind deconvolution regime and thus, two similar RL deconvolution  iterations33 are required. At the 
n-th iteration, the PSF can be estimated from one iterative branch and then is substituted into the other 
branch to find the estimated image. Such iteration representations are shown as 

 where a uniform illumination can be used as the initial guess of PSF. In our study, we use 100 times of 
iterations and a deblurred image with higher spatial resolution is achieved, as shown in Fig. 4d.

(4) Contrast enhancement. An intuitive way to enhance the contrast of the inscriptions is to set the intensity 
of the areas considered as inscriptions to zero. Here, we propose to use Niblack’s  method34 to enhance 
the contrast, which is a pioneering adaptive thresholding method for document image binarization. This 
method provides a local threshold value TNiblack(x, y) for each pixel, 

 where µ(x, y) and σ(x, y) are the mean and standard variation of the intensity on a sampling window 
around the pixel at (x, y). Any pixel is labelled as an inscription pixel if u(x, y) < TNiblack(x, y) , and is 
assigned an intensity value of zero. The size of sampling window is critical and actually depends on the 
average distance between the distinct sites of information, corresponding to the width of the strokes of the 
inscriptions. In our study, the sampling window is a neighborhood of 3× 3 size around the given pixel at 
(x, y). The parameter k controls the behavior of the method and a negative value of − 0.8 is used to allow the 
method to capture the weakened parts of the strokes. The image finally achieved after the post-processing 
chain is shown in Fig. 4e.

Discussion
The final THz image achieved after post-processing indeed reveals a significant portion of features associated with 
the inscription. To verify our results to the extent possible, the corrosion on the Pb cross was subsequently elec-
trochemically reduced (see “Methods”), and we compare the THz image with the optical images acquired before 
and after reversed the corrosion, as shown in Fig. 5. It is clear that the THz image (Fig. 5b) is able to uncover 
almost all the features that can be observed after removing the corrosion (Fig. 5c). In particular, as shown in the 
highlighted regions in Fig. 5, the THz image successfully reveals some inscriptions that were barely observable 
from the original Pb cross (before removing the corrosion, as shown in Fig. 5a). Based on the observed features, 
we can tell that the inscriptions were engraved in cursive Carolingian minuscule and the language is Latin. Still, 
reading the inscription requires specialists. Specifically, our co-author from the Musée Charles de Bruyères has 
identified the Latin words ‘tuum fiat voluntas tua’ and part of ‘quotidianum’, based on the THz features in the 
top right red rectangular boxes, and a portion of ‘dimittimus’ and ‘tentationem’, based on the THz features in the 
bottom left boxes, respectively. All these words come from the Pater Noster (Lord’s Prayer) and their reading 
is confirmed by the examination of the cross after the corrosion products have been removed. Pater Noster is 

(4)u
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[n]
ij +�t
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(5)u(x, y) = h(x, y)⊗ o(x, y)+ n(x, y),

(6)on+1(x, y) =

[

u(x, y)

h(x, y)⊗ on(x, y)
⊗ h(−x,−y)

]

on(x, y).

(7)hn+1(x, y) =

[

u(x, y)

hn(x, y)⊗ on(x, y)
⊗ o(−x,−y)

]

hn(x, y),

(8)on+1(x, y) =

[

u(x, y)

o(x, y)⊗ hn+1(x, y)
⊗ hn+1(−x,−y)

]

on(x, y),

(9)TNiblack(x, y) = µ(x, y)+ kσ(x, y),
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not obviously an absolution prayer, as noted in Ref.2, none of the crosses in the Remiremont collection contain 
obvious absolution formulæ. Consequently, specialists also refer to these plaques as des croix d’identités as many 
of their inscriptions refer to the deceased. Our results demonstrate the effectiveness of THz imaging for the 
visualization of obscured inscriptions on a corroded Pb cross in a nondestructive and noncontact manner. It is 
noteworthy that the success of revealing obscured inscriptions relies on the extraction of the high-frequency com-
ponents of a broadband THz pulse. At the same time, even though the low-frequency bands lack the resolution 
to fully capture the detail of the inscription itself, these bands were needed to remove confounding extraneous 
features from the image. Images based on time-domain information, such as peak values of the reflected signals, 
appear to be entirely useless for the perspective of our aim to uncover the inscriptions.

In summary, we have explored the potential of THz multispectral imaging as an archæometric approach to 
reveal the inscriptions on a sixteenth century Pb funerary cross from Remiremont. We have demonstrated that, 
by taking advantage of the broadband nature of a THz pulse, we are able to characterize the Pb cross at various 
spatial resolutions and visualize the inscriptions in a nondestructive and noncontact fashion under an obscur-
ing corrosion layer. In particular, our results have also shown that the legibility of the inscriptions achieved 
by physical measurements can be further improved by digital image restoration and enhancement. Our THz 
images reveal major aspects of the inscriptions are hitherto undocumented and thus will contribute not only to 
the understanding of this cross but also to the sixteenth century Lorraine ecclesiastic epigraphy. As a personal 
remark, our contribution required a truly multidisciplinary effort, with the collaborations of museums, con-
servation laboratories, medieval historians, and engineers. The cross studied is one of a large collection of such 

Figure 5.  Comparison between the optical and THz images regarding the visualization of inscriptions. (a) 
Photograph of the original Pb cross. (b) Final THz image of the Pb cross after post-processing. (c) Photograph 
of the Pb cross after chemically removal of the corrosion. Typical regions are highlighted, in which inscriptions 
are revealed in the THz image but are barely visible in the optical image before removing the corrosion. As can 
be read from the THz image (b) and confirmed after removal of corrosion (c), the inscriptions in the top right 
boxes are ‘tuum fiat voluntas tua’ and part of ‘quotidianum’; the ones in the bottom left boxes are a portion of 
‘imittimus’ and ‘tentationem’, respectively.
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objects from the Musée Charles de Bruyères in Remiremont. Other large collections are held elsewhere, notably 
in the Tresor de la Cathedrale Saint-Étienne in Metz, France. Many objects in these collections are still in their 
corroded state. It is worth noting that, Pb was widely used for archæological objects, such as sarcophagi and for 
plaques on monuments, not to mention plumbing, where it may sometimes not be feasible to reduce corrosion 
layers on some of these artifacts. Therefore, the proposed THz imaging modality can be considered as an effective 
alternative for the interpretation of inscriptions and details on the surface of Pb objects obscured by a corrosion 
layer. Our approach can also be applied for a broad range of archæological objects and is envisioned to provide 
unprecedented information for art-historical studies, as well as documentation, restoration, and conservation.

Methods
THz imaging system. A typical THz time-domain system (Teraview TPS Spectra 3000) operating in a 
reflection geometry was employed in this study. The incident angle of the THz beam was ∼10◦ C. The GaAs 
photoconductive antenna was excited by an ultrafast laser to produce roughly single-cycle THz pulses with 
bandwidth extending from 60 GHz to 3 THz. The maximum peak of its power spectrum was located at about 0.3 
THz. Each recorded temporal reflected THz waveform contains 4096 data points, and the data sampling period 
was set to 0.011634 ps. The signal was averaged over 10 shots per pixel to enhance signal to noise. The scanning 
of the sample was conducted in a temperature-controlled laboratory at 22 ◦ C. The humidity in the laboratory 
was held about 38%.

FWDD algorithm. FWDD  algorithm35 was employed in order to accurately measure the optical delay 
between the echoes from the air/corrosion and corrosion/Pb interfaces. In the time domain, the reflected THz 
signal r(t) is the convolution of the incident THz pulse i(t) with the impulse-response function h(t), which cor-
responds to the structure and properties of the sample at a given position. Ideally, h(t) can be retrieved by the 
inverse Fourier transform based on the convolution theorem. However, successful deconvolution cannot be 
expected by directly applying the inverse Fourier transform, since division by small numbers in the frequency 
domain will give rise to large spikes in the high frequency  region36, in turn leading to severe ringing in the time 
domain. Therefore, frequency-domain filtering is introduced to suppress the high-frequency noise. Then h(t) 
can be expressed as:

where f(t) corresponds to the filter function in the time domain. In this study, a von Hann window function is 
chosen as the filter function f(t), and its frequency spectrum F(ω) can be expressed as,

where t0 corresponds to the arrival time of the THz main peak in time and fc is the cut-off frequency. The selec-
tion of fc is a compromise between the time resolution and frequency-domain filtering. Usually, a relatively high 
value of fc is selected ( fc = 4 THz in this study) in order to achieve a high resolution in time. However, in this 
case, a satisfactory signal-to-noise ratio in time cannot be guaranteed. Therefore, stationary wavelet shrinkage 
is applied to further attenuate the residual noise in time. The symlet (sym4) wavelets are chosen in this study. A 
maximum level of 7 is used for the wavelet decomposition as no significant improvement can be observed for 
higher levels to justify the extra computational  expense37. Quite often, the signal after FWDD contains slow fluc-
tuations corresponding to the low-frequency noise, due to the THz source being inefficient in the low frequency 
region. This kind of noise can be cancelled by subtracting the baseline of the deconvolved signal.

Electrolytic reduction of lead corrosion products. The electrolytic  treatment3,38 applied to the lead 
cross consists in polarizing the lead structure as a cathode to obtain the reduction of corrosion products. The 
electrolyte used is neutral and composed of 2 % sodium sulfate in tap water. The electric potential of the cross 
has been monitored throughout the treatment. At the end of the treatment, the surface appears metallic, slightly 
grayish, the reliefs and decorations are preserved and more easily visible. Of note, in addition to cleaning, con-
solidation is obtained thanks to the reduction of the lead oxides which crack the structure.
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