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Abstract

The key pharmacokinetic/pharmacodynamic (PK/PD) efficacy index for β-lactam antibiotics is the percentage of time
that free drug concentrations exceed the minimum inhibitory concentration (MIC) of bacteria during each dosing inter-
val (f T>MIC). Ceftaroline fosamil, the prodrug of the β-lactam ceftaroline, was initially approved for administration as
60-minute intravenous (IV) infusions. Population PK analyses comparing exposure and PK/PD target attainment for
5-minute and 60-minute IV infusions, described here, have supported ceftaroline fosamil labeling updates to include vari-
able infusion durations of 5 to 60 minutes in adults and children aged ≥2 months. A 2-compartment disposition PK
model for ceftaroline fosamil and ceftaroline was used to predict steady-state ceftaroline exposures (maximum plasma
concentrations [Cmax,ss] and area under the plasma concentration–time curve over 24 hours [AUCss,0-24]) and prob-
ability of target attainment in simulated adult and pediatric patients with various degrees of renal function receiving
standard doses of ceftaroline fosamil as 5-minute or 60-minute IV infusions. Across age groups and renal function cat-
egories, median ceftaroline AUCss,0-24 values were similar for 5-minute and 60-minute infusions, whereas Cmax,ss was
up to 42% higher for 5-minute infusions. Both infusion durations achieved >99% probability of target attainment based
on PK/PD targets for Staphylococcus aureus (35% f T>MIC) and Streptococcus pneumoniae (44% f T>MIC) at European
Committee on Antimicrobial Susceptibility Testing/Clinical and Laboratory Standards Institute MIC breakpoints (1 mg/L
and 0.25/0.5 mg/L, respectively). These findings support administration of standard ceftaroline fosamil doses over 5 to
60 minutes for adults and children aged ≥2 months, providing added flexibility to clinicians and patients.
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Ceftaroline, the active metabolite of the prodrug
ceftaroline fosamil, is a β-lactam antibiotic with
in vitro activity against Gram-positive bacteria, in-
cluding Staphylococcus aureus (methicillin-susceptible
and -resistant strains) and Streptococcus pneumoniae,
and common Gram-negative pathogens that do not
express extended-spectrum β-lactamase enzymes.1–3

Ceftaroline fosamil is rapidly converted to active cef-
taroline by plasma phosphatases upon intravenous (IV)
administration. Ceftaroline exhibits linear pharma-
cokinetics (PK) with plasma clearance in healthy
subjects of 10 L/h, renal clearance of 4 to 7 L/h, vol-
ume of distribution of 30 to 40 L, and half-life of
≈2.6 hours.3–5 Elimination is via the renal route, with
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dose adjustments required for patients with moderate
or severe renal impairment.6–8 In population PK mod-
els, renal function, age, and presence of infection had
significant effects on ceftaroline clearance; ceftaroline
clearance is unaffected by race/ethnicity or sex.7,8

For β-lactam antibiotics, including ceftaroline, the
percentage of a dosing interval that free drug concen-
trations exceed the minimum inhibitory concentration
(MIC) of target bacteria (%fT>MIC) is considered the
pharmacodynamic (PD) index most closely associated
with clinical efficacy.9,10 Hence, to optimize probability
of target attainment (PTA), frequent dosing with pro-
longed infusions or continuous infusions have been rec-
ommended for severely ill patients undergoing β-lactam
treatment.11–13

For ceftaroline fosamil, standard doses are given
every 8 or 12 hours, with product labeling originally
specifying a 1-hour infusion duration. Population PK
modeling and Monte Carlo simulations based on pa-
tient PK data from the adult and pediatric ceftaroline
fosamil clinical development programs have shown that
standard ceftaroline fosamil doses administered by 1-
hour infusion are expected to achieve >90% PTA in
adults and pediatric patients aged ≥2 months against
target pathogens including S. aureus and S. pneumo-
niae based on pathogen-specific fT>MIC targets.6–8

Population PK modeling and Monte Carlo simula-
tions have also supported the use of ceftaroline fos-
amil (standard doses) in neonates and young infants
<2 months in Europe and the United States,14 and
high-dose recommendations for treatment of adults
and children aged ≥2 months with complicated skin
and soft skin infections (cSSTI) caused by rare S. au-
reus isolates with ceftaroline MICs of 2 to 4 mg/L in
Europe.8,15

Shorter IV infusions of antibiotics can provide clin-
ical and practical advantages over longer infusions,
for example, in the emergency department, in fluid-
restricted patients, in ambulatory patients requiring
IV treatment, and in the context of intravenous fluid
and/or fluid bag supply shortages.16–19 Based on well-
established principles, for a given dose of a drug with
linear PK, the impact of a varying IV infusion dura-
tion would be on the magnitude of maximum plasma
concentration (Cmax) and shape of the concentration–
time curve during administration and the distribution
phase; net area under the plasma concentration–time
curve (AUC) andmean steady-state concentration (Css)
during the dosing interval would remain unchanged.20

For shorter infusions of β-lactams, an important con-
sideration is whether the shape of the concentration–
time profile (arising from the higher Cmax and earlier
time to maximum concentration) is shifted such that
fT>MIC is changed to an extent that affects PK/PD
target attainment. Moreover, the potential for adverse

effects arising from more rapid infusions and higher
Cmax values should also be considered.

This report summarizes the results of the modeling
and simulations to support the use of a variable IV infu-
sion duration of 5–60 minutes for standard ceftaroline
fosamil doses in patients aged ≥2 months (approval in
the United States in 2015 and in Europe in 2019).

Methods
Population PK Models
Predictions of ceftaroline steady-state exposures and
PTA simulations for pediatric patients and adults with
normal renal function were performed using a pre-
viously reported population PK model for ceftaro-
line fosamil and ceftaroline.6 The model included data
from 525 adult and pediatric patients with community-
acquired pneumonia or cSSTI and 195 healthy sub-
jects, contributing 6633 measurable concentrations
(1799 for ceftaroline fosamil and 4834 for ceftaroline).6

Concentrations were measured using validated liquid
chromatography–tandem mass spectrometry bioana-
lytical methods.7,21,22 Samples with concentrations be-
low the lower limit of quantificationwere excluded from
the analyses.6 To compare exposures and PTA in renally
impaired pediatric patients with those in adults with
mild, moderate, or severe renal impairment, a sepa-
rate, previously unreported population PKmodel com-
prising data from 227 adult patients and 219 healthy
subjects was used for simulations of adults with renal
impairment. The data set for the adult renal impair-
ment model included 17 phase 1 to 3 clinical trials,
including a single-dose study of 5- and 60-minute IV
infusions in healthy subjects. Further details of the pop-
ulation PK models and analyses are provided in the
Supplemental Methods.

Pharmacokinetic/Pharmacodynamic Targets
PK/PD targets for ceftaroline against S. aureus were
determined from preclinical models including a neu-
tropenic murine thigh infection model, an in vitro
single-compartment dilutional PK model, and an in
vitro hollow fiber infection model.8,9,23,24 Cumulatively,
24 molecularly diverse S. aureus isolates with ceftaro-
line MICs ranging from 0.12 to 4 mg/L were studied.
Mean fT>MIC values derived from these studies were
27% for bacterial stasis, 31% for 1-log10 colony-forming
units/mL reduction in bacterial density, and 35% for
2-log10 reduction. A ceftaroline PK/PD target of 44%
fT>MIC for S. pneumoniae (associated with 1-log10
bacterial killing) was derived from studies using a neu-
tropenic murine thigh and lung infectionmodel, involv-
ing S. pneumoniae isolates with ceftaroline MICs of
0.008 to 0.12 mg/L.9
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Figure 1. Model-predicted ceftaroline concentration–time profile at steady state for a typical adult patient with normal renal function
(nCrCL ≥80 mL/min/1.73 m2) receiving ceftaroline fosamil 600 mg every 12 hours as 5-minute (solid lines) and 60-minute (dashed
lines) intravenous infusions. Y-axis in linear (left panel) and logarithmic (right panel) scale. Typical adult patient with body weight 70 kg.
nCrCL, body surface area-normalized creatinine clearance.

Monte Carlo Simulations
Monte Carlo simulations using the final population
PK models, appropriate covariate distributions, and a
predefined level of parameter uncertainty, were per-
formed to predict ceftaroline Cmax,ss and AUCss,0-24

and to calculate PTA by MIC based on the above
PK/PD targets for various ceftaroline fosamil dosage
regimens (5-minute and 60-minute IV infusions), age,
and renal function groups. Comparisons between the
5-minute and 60-minute infusion durations were based
on ceftaroline plasma exposures at steady state and
achievement of 35% fT>1 mg/L for S. aureus and
44% fT>0.5 mg/L for S. pneumoniae, respectively. For
S. aureus, the PK/PD target corresponds to the current
European Committee on Antimicrobial Susceptibility
Testing (EUCAST) and Clinical and Laboratory Stan-
dards Institute (CLSI) MIC susceptible breakpoint for
standard-dose ceftaroline fosamil.25,26 For S. pneumo-
niae, the EUCAST ceftaroline susceptible breakpoint
(MIC ≤0.25 mg/L) differs from that of CLSI (MIC
≤0.5 mg/L); the current analysis used the higher CLSI
breakpoint.25,26 For pediatric patients, 100 simulations
were performed for each dosage regimen and renal
function category, with 600 (300 male and 300 female)
patients in each 1-month age group from ≥2 months
to <18 years (60 000 simulated patients total per age
group/regimen). For adults, 300 patients were simulated
for each dosage regimen and renal function category
for each of the 100 simulated data sets (30 000 simu-
lated patients total per renal function group/regimen).

Target attainment simulations were adjusted for plasma
protein binding of ceftaroline, assumed to be 20%.

Results
Predicted Ceftaroline Exposures
Model-predicted median steady-state ceftaroline ex-
posures in pediatric and adult patients with normal
renal function are shown in Table 1, and plasma
concentration–time profiles for a typical adult with nor-
mal renal function receiving 5-minutes and 60-minutes
infusions are shown in Figure 1. Predicted ceftaroline
exposures in adults and pediatric patients with mild,
moderate, or severe renal impairment are provided in
Tables S1 through S3, respectively.

Predicted ceftaroline AUCss,0–24 values were simi-
lar for the 5-minute and 60-minute infusions across all
age groups and renal function categories. Given that
within these groups, the same doses were given and
only the duration of infusion varied, the AUCss,0-24 is
expected to be the same or similar for 5-minute and
60-minute infusions. For adult and pediatric patients
(aged≥2 months to<18 years) with normal renal func-
tion, predicted Cmax,ss values were 27% and 30% to 42%
higher for the 5-minute vs 60-minute infusions (Table 1).
Corresponding relative Cmax,ss increases for patients
with mild, moderate, or severe renal impairment were
18% to 26% and 17% to 39% (Tables S1–S3). The high-
est predicted median Cmax,ss value across all age, dose,
and renal function groups was in pediatric patients aged
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Table 1. Model-predicted Median (90% Prediction Interval) Steady-State Ceftaroline Exposure Parameters for Simulated Patients
With Normal Renal Function (nCrCL ≥80 mL/min/1.73 m2) Receiving Ceftaroline Fosamil as 5-Minute and 60-Minute IV Infusions

Age Group
Dosage
Regimena

IV Infusion
Duration Weight (kg)b Cmax,ss (mg/L)b

Cmax,ss

Ratioc
AUCss,0–24

(mg • h /L)b
AUCss,0–24

Ratioc %fT>1 mg/Lb

Adults 600 mg
every 12 h

60 min 77.6
(52.2-105)

20.8
(11.7-36.4)

1.27 97.5
(59.1-164)

1.00 64.5
(45.0-93.4)

5 min 26.5
(13.8-52.0)

97.2
(58.6-164)

60.3
(41.3-90.1)

>12 to <18 y 12 mg/kg
every 8 h

60 min 52.9
(36.8-75.3)

19.7
(11.0-34.2)

1.30 122
(72.7-201)

1.00 84.0
(59.3-100)

5 min 25.7
(13.1-50.7)

122
(78.3-203)

79.0
(53.1-100)

≥6 to <12 y 12 mg/kg
every 8 h

60 min 28.5
(19.3-46.5)

27.6
(16.4-43.3)

1.36 157
(99.7-245)

1.00 85.2
(61.7-100)

5 min 37.4
(20.0-69.2)

157
(99.7-247)

79.0
(55.6-100)

≥2 to <6 y 12 mg/kg
every 8 h

60 min 15.8
(11.8-22.2)

27.1
(16.8-41.8)

1.42 144
(92.6-225)

1.00 75.3
(54.3-98.8)

5 min 38.4
(21.2-68.7)

144
(92.2-222)

70.4
(49.3-97.5)

18 to <24
mo

8 mg/kg
every 8 h

60 min 11.7
(9.81-14.1)

18.8
(11.8-29.1)

1.39 107
(69.0-165)

1.00 71.9
(51.9-97.5)

5 min 26.3
(14.7-46.8)

107
(69.2-166)

66.7
(46.9-93.8)

12 to <18
mo

8 mg/kg
every 8 h

60 min 10.4
(8.60-12.7)

19.1
(11.9-29.4)

1.38 113
(71.8-174)

0.99 75.3
(54.3-98.8)

5 min 26.4
(14.9, 47.5)

112
(71.9, 174)

69.1
(48.1, 96.3)

6 to <12 mo 8 mg/kg q8h 60 min 8.43
(6.55-10.7)

19.6
(12.2-30.0)

1.36 120
(78.3-188)

1.01 80.2
(58.0-100)

5 min 26.6
(14.9-46.9)

121
(78.1-188)

75.3
(53.0-98.8)

2 to <6 mo 8 mg/kg
every 8 h

60 min 5.75
(4.12-7.66)

19.2
(12.1-29.7)

1.31 134
(86.6-208)

1.00 92.6
(66.7-100)

5 min 25.1
(14.4-44.0)

134
(86.5-209)

87.7
(60.5-100)

%fT>MIC, percentage of time that free drug concentrations are above the minimum inhibitory concentration (MIC) of the bacteria during a dosing
interval; AUCss,0-24, area under the plasma concentration–time curve over 24 hours at steady state; Cmax,ss, maximum plasma concentration for a
dosing interval at steady state; IV, intravenous; nCrCL, body surface area-normalized creatinine clearance.
a
All every 8 hours pediatric dosage regimens were up to a maximum of 400 mg based on weight.

b
Values are median and 5th and 95th percentiles (corresponding to 90% prediction intervals) based on summary of 100 simulation trials.

c
Ratios are for 5-minute to 60-minute IV infusions.

≥2 to <6 years with mild renal impairment (39.3 mg/L,
Table S2).

In adults with normal renal function, predicted me-
dian Cmax,ss values were 20.8 mg/L (60-minute infu-
sion) and 26.5mg/L (5-minute infusion), a ratio of 1.27.
Across all pediatric age groups and renal function cat-
egories, predicted median Cmax,ss ratios did not exceed
1.42.

Probability of Target Attainment Simulations
Results of the simulations estimating PTA for PK/PD
targets of 35% fT>MIC of 1 mg/L for S. aureus
and 44% fT>MIC of 0.5 mg/L for S. pneumoniae are

shown in Table S4. Ceftaroline fosamil 5-minute and
60-minute IV infusions achieved similar PTA (≥99%)
against S. aureus and S. pneumoniae at the respective
PK/PD targets in all simulated age groups and renal
function categories.

Discussion
β-Lactams, such as ceftaroline fosamil, demonstrate
time-dependent PD properties, with fT>MIC of the
target organism being the PK/PD index most closely
associated with antimicrobial efficacy.27,28 For time-
dependent antibiotics, the duration of infusion may
affect fT>MIC, and thus the probability of PK/PD
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target attainment could theoretically be impacted.27,29

Population PKmodeling andMonte Carlo simulations
of exposure and PTA have extensive applications in an-
timicrobial drug development.30–32 For ceftaroline fos-
amil, modeling and simulations have supported adult
and pediatric dose selection, dose adjustments for re-
nal impairment, and determination of susceptibility
breakpoints.6–8,33 Our PK/PD analysis of a reduced IV
infusion duration for standard doses of ceftaroline fos-
amil demonstrated negligible impact on PTA against 2
key target pathogens at their respective MIC suscepti-
bility breakpoints.

Reducing infusion duration has also been evaluated
for other time-dependent antibiotics. A study evaluat-
ing the effect of a 5-minute IV infusion duration vs
standard 30-minute infusions on the exposures of ap-
proved doses of meropenem, cefepime, and aztreonam
demonstrated negligible effects on PTA.34 However,
ceftaroline is one of a few antibiotics to have been so
extensively evaluated from a clinical pharmacology per-
spective using modern modeling and simulation tech-
niques. Health authority approval of 5- to 60-minute
variable IV infusions for standard ceftaroline fosamil
doses in part reflects the extensive PK data accrued dur-
ing clinical development and the robust iterative popu-
lation PK modeling and simulations undertaken, both
in adults and more recently in children.

The current analysis, comparing exposures and
PK/PD target attainment for ceftaroline fosamil
administered as 5-minute and 60-minute IV infusions
in adults and pediatric patients, used population PK
modeling and exposure simulations based on an exten-
sive adult and pediatric PK data set.6,8 The simulation
results suggest that the standard ceftaroline fosamil
dosage regimens achieved predicted plasma ceftaroline
exposures associated with clinical efficacy in adults and
pediatric patients when administered as 5-minute or
60-minute IV infusions.

In previous population PK analyses reported byRic-
cobene et al,6 which supported the initial pediatric ap-
provals for standard ceftaroline fosamil doses, PK/PD
targets of 36% and 44% for 1-log10 reduction in bac-
terial density of S. aureus and S. pneumoniae, respec-
tively, were used to determine PTA. The PK/PD target
of 36% for 1-log10 reduction for S. aureus was derived
from a single neutropenic murine thigh infection study
using S. aureus isolates with ceftarolineMICs of 0.12 to
1 mg/L.6,9 A subsequent analysis by Das et al8 included
additional studies carried out byMacGowan et al23 and
Singh et al24 using an in vitro single-compartment di-
lutional PK model and an in vitro hollow-fiber model,
respectively, to derive ceftaroline S. aureus PK/PD
targets of 27% for stasis, 31% for 1-log10 cfu/mL re-
duction in bacterial density, and 35% for 2-log10 re-
duction. Collectively, these 3 studies included S. aureus

isolates with a wider range of ceftaroline MICs (0.12-
4 mg/L) and genotypes relative to the single in vivo
study alone.8,9,23,24 Hence, 35% fT>MIC can be con-
sidered a robust PK/PD target.

Our PTA analysis for 5-minute and 60-minute
IV infusions used the most recently characterized
PK/PD targets8 at MIC values corresponding to EU-
CAST/CLSIMIC susceptible breakpoints for S. aureus
(≤1 mg/L) and S. pneumoniae (≤0.25 and 0.5 mg/L,
respectively).25,26 At these MIC values, simulated adult
and pediatric patients with mild, moderate, and se-
vere renal impairment receiving standard ceftaroline
fosamil doses as 5-minute IV infusions achieved very
high PTA (≥99%); although median Cmax,ss values
were up to 42% higher for 5-minute infusions, the
similar AUCss,0–24 values ensured exposures were ad-
equate to maintain high PTA. Interpretative criteria
for antimicrobial susceptibility (breakpoints) such as
those published by CLSI and EUCAST are typically
derived from a combination of data including MIC
distributions of target pathogens (wild-type and re-
sistant strains); molecular characterization of re-
sistance mechanisms; PK/PD targets from animal
models and in vitro studies; and patient data including
PK exposures and clinical outcomes.35 As such, break-
points are regularly reviewed and can be updated to re-
flect new data, or changes in dosing or administration
regimens. The CLSI and EUCAST breakpoints used in
the current analysis are based on extensive microbio-
logical, PK/PD, and clinical data6–9,23,24; nonetheless,
as with all antimicrobial therapies, ceftaroline fosamil
should only be used in line with approved labeling and
for pathogen(s) known or suspected to be susceptible
based on contemporary breakpoints.

Extensive reviews of ceftaroline PK, PD, and clin-
ical outcomes have been previously reported.3,4 In
general, ceftaroline fosamil exhibits a favorable safety
profile and is well tolerated.36 There were no ma-
jor safety concerns reported in the phase 3 ceftaro-
line clinical trials, including in the high-dose study in
adults with cSSTI (600 mg every 8 hours by 2-hour
IV infusions) where the total daily dose (1800 mg)
was 50% higher than the standard total daily dose
(1200 mg).36,37 For simulated adults with normal renal
function, themagnitude of the elevated ceftarolineCmax

for ceftaroline fosamil standard doses given as 5-minute
IV infusions (median, 26.5 mg/L vs 20.8 mg/L for
60-minute infusions) is substantially lower than the
mean ceftaroline Cmax (81.4 mg/L) in a phase 1 single-
dose QT study in which healthy adults received ceftaro-
line fosamil 1500 mg 60-minute IV infusions.22

For children, as the highest predicted median Cmax,ss

values in our analysis are comparable to the high-
est observed ceftaroline concentrations from sparse
sampling in (1) a phase 2/3 study investigating the
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safety, tolerability, efficacy, and PK of standard-dose
ceftaroline in pediatric patients with acute bacterial
skin and skin structure infections38; (2) a phase 4,
high-dose ceftaroline fosamil study in pediatric patients
with complicated community-acquired pneumonia39;
and (3) a phase 4 single-dose study evaluating PK,
safety, and tolerability of ceftaroline fosamil in chil-
dren (aged 0 to ≤12 years) with suspected or con-
firmed infection,6 in which no serious adverse events
were related to high exposure (10 mg/kg up to a
maximum of 600 mg, 60-minute IV infusions), it is
plausible to expect that safety would be maintained
with a 5- to 60-minute variable infusion duration.
While faster infusions may theoretically increase lo-
cal tolerability adverse events (eg, phlebitis), there was
no difference in local tolerability adverse events in a
phase 1 study of standard ceftaroline fosamil doses
(60-minute IV infusions) administered in reduced infu-
sion volumes in adults.17

In conclusion, these data provide assurance that
standard ceftaroline fosamil doses can be administered
over a variable infusion duration of 5 to 60 minutes in
patients aged ≥2 months without compromising expo-
sure and PK/PD target attainment for S. aureus and
S. pneumoniaewithMICs within current EUCAST and
CLSI susceptible breakpoints. Ongoing real-world ex-
perience will help to establish the patient populations
and treatment settings in which ceftaroline fosamil ad-
ministered by shorter IV infusions might provide clini-
cal and economic advantages.
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