
Neural Network-Based Optimization
of an Acousto Microfluidic System for
Submicron Bioparticle Separation
Bahram Talebjedi1, Mohammadamin Heydari 1, Erfan Taatizadeh1, Nishat Tasnim1,
Isaac T. S. Li 2 and Mina Hoorfar1,3*

1School of Engineering, University of British Columbia, Kelowna, BC, Canada, 2Department of Chemistry, The University of British
Columbia, Kelowna, BC, Canada, 3Faculty of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada

The advancement in microfluidics has provided an excellent opportunity for shifting from
conventional sub-micron-sized isolation and purification methods to more robust and
cost-effective lab-on-chip platforms. The acoustic-driven separation approach applies
differential forces acting on target particles, guiding them towards different paths in a label-
free and biocompatible manner. The main challenges in designing the acoustofluidic-
based isolation platforms are minimizing the reflected radio frequency signal power to
achieve the highest acoustic radiation force acting on micro/nano-sized particles and
tuning the bandwidth of the acoustic resonator in an acceptable range for efficient size-
based binning of particles. Due to the complexity of the physics involved in acoustic-based
separations, the current existing lack in performance predictive understanding makes
designing these miniature systems iterative and resource-intensive. This study introduces
a unique approach for design automation of acoustofluidic devices by integrating the
machine learning and multi-objective heuristic optimization approaches. First, a neural
network-based prediction platform was developed to predict the resonator’s frequency
response according to different geometrical configurations of interdigitated transducers In
the next step, the multi-objective optimization approach was executed for extracting the
optimum design features for maximum possible device performance according to
decision-maker criteria. The results show that the proposed methodology can
significantly improve the fine-tuned IDT designs with minimum power loss and
maximum working frequency range. The examination of the power loss and bandwidth
on the alternation and distribution of the acoustic pressure inside the microfluidic channel
was carried out by conducting a 3D finite element-based simulation. The proposed
methodology improves the performance of the acoustic transducer by overcoming the
constraints related to bandwidth operation, the magnitude of acoustic radiation force on
particles, and the distribution of pressure acoustic inside the microchannel.
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1 INTRODUCTION

Contactless manipulation and conversion of biological sample
mixtures to distinct populations is a critical step in many
bioanalytical and biomedical applications such as water
quality assessment (Carugo et al., 2014), disease diagnosis
and prognosis (Talebjedi et al., 2021a), (Antfolk and Laurell,
2017), and public health monitoring (Li et al., 2017). The
majority of traditional particle separation techniques
commonly used in clinical settings require intricate sample
preparation, bulky equipment, and a high volume of samples
(Talebjedi et al., 2021a). Conventional label-free methods are
density gradient-based techniques involving centrifugation;
however, this method has multiple drawbacks, such as low
bioparticles’ recovery rate, viability, and functionality (Yang
et al., 2002). The microfluidics platform offers an accurate and
sensitive sorting of different types and sizes of bioparticles by
decreasing the reaction time, consumed reagents,
manufacturing cost, and experimental time (Zhang et al.,
2016). There have been different microfluidics particle
enrichment methods such as on-chip centrifugation (Yeo
et al., 2018), deterministic lateral displacement (DLD)
(Wunsch et al., 2016), filtration (Liang et al., 2017),
viscoelastic flow (Liu et al., 2016), inertial focusing (Li et al.,
2021) and acoustofluidic (Ramshani et al., 2019), (Dalili et al.,
2019). Among these techniques, acoustic-based microfluidic
devices have attracted extensive attention due to wide-ranging
advantages in throughput, biocompatibility, and compact
device size (Xie et al., 2020). Moreover, the separation is
label-free and only relies on biophysical markers such as
density and compressibility (Ahmed et al., 2018). The
microfluidics acoustic-based devices benefit from acoustic
radiation force for micro/nanoparticle confinement at
predefined locations in a continuous flow. There are two
main acoustic-based separation techniques, bulk acoustic
wave (BAW) based systems (Leibacher et al., 2015), and
surface acoustic wave (SAW) based systems (Wang et al.,
2019a), (Fu et al., 2017). In SAW-based microdevices, a pair
of interdigitated transducers electrodes are patterned at two
sides of the fluidic channel, generating two opposite-direction
surface acoustic waves by the piezoelectric surface actuation.
The constructive and destructive interference of two surface
acoustic waves forms standing surface acoustic waves (SSAW)
and radiates acoustic energy into the flow domain. The
formation of SSAW results in the periodic distribution of
pressure nodes (PNs) and antinodes (ANs) inside the
microchannel. The particles inside the microchannels
migrate laterally in response to acoustic radiation force and
will be pushed towards the minimum or maximum acoustic
radiation pressure lines based on their acoustic contrast factor
(Taatizadeh et al., 2021). The particles with positive acoustic
contrast factor (e.g., cells and vesicles suspended in aqueous
solutions) are pushed towards the pressure nodes and particles
with negative acoustic contrast factor (e.g., some subgroups of
lipoproteins) are pushed to the pressure anti-nodes by the
acoustic radiation force. As the acoustic radiation force is
proportional to the volume of the particles, the amplitude of

the applied acoustic radiation force due to the size difference of
the suspended particles results in different lateral migration
across the channel and makes the separation possible.

There have been several studies in the manipulation and
separation of submicron bioparticles. A study conducted by
Lee et al. (2015), presented an ultrasound transducer for size-
specifically separation of Microvesicles (MVs) with high
separation yield and resolution in a continuous and contact-
free manner. They showed that their acoustic filtering technique
is fast, gentle on vesicles, and compatible with limited sample
volumes compared to conventional isolation methods. Another
study conducted by Wang et al. (2020), introduced an
acoustofluidic platform for size-based isolation of exosomes
from a saliva sample. Compared to conventional isolation
methods (e.g., gold standard, differential centrifugation,
droplet digital RT-PCR analysis), it was seen that the average
yield for the suggested acoustic-based device was 15 times higher.
Zhao et al. (2020) developed a disposable acoustofluidic platform
with unidirectional interdigital transducers for nano/
microparticle separation. The results indicated that the
exposed acoustic radiation force to the particles with the
disposable channel was comparable with the permanently
bonded devices. The suggested unidirectional IDT-based
device could differentiate bacteria from human red blood cells
(RBCs) with 96% purity. In a study conducted by Liu et al. (2021),
the authors developed a microfluidics platform for separating the
blood cells from plasma by using acoustic microstreaming. The
blood plasma separation was performed with 31.8% plasma yield
and 99.9% plasma purity.

Many parameters such as microchannel and IDT geometry,
working voltage, flowrate, etc., are involved in defining the
performance efficiency of the acoustofluidic devices that need
to be tuned and optimized. Two main critical parameters that
drastically influence the performance and cover both electrical
and mechanical characteristics of the acoustofluidic devices are
the reflection coefficient and bandwidth. The acoustofluidic
devices should be designed to show the minimum reflection
coefficient and maximum bandwidth for effective isolation of
particles from a wide size range (from sub-micron to micron)
without significant heat and bubble generation. As the
acoustofluidic devices work under radio frequency signals
(RF), the RF generator and transmission line impedance
should be matched with load for the highest power delivery to
the load. Any impedance mismatch between the source and load
causes the signal to be reflected to the source (Wang et al., 2019b).
The best way to address the impedance matching problem is
designing the impedance of the acoustofluidic device equal to the
source impedance (function generator), which is usually 50Ω.
More information regarding the impedance matching can be
found in the SI document. However, due to the lack of accurate
analytical solutions for correlating the geometrical features of the
acoustic device with its corresponding impedance, statistical
approaches (such as machine learning) can be implemented
for laying-out performance prediction platforms with high
accuracy (Talebjedi et al., 2021b). The machine learning
approach has also been implemented to optimize and
automate acoustic-based separation techniques. However, the
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machine learning techniques have not been extensively applied to
this field, and it is only limited to a handful number of research
articles. In a study conducted by Yiannacou and Sariola (2021), a
machine-vision based particle position measurement combined
with machine learning approach was proposed by frequency
controlling of a single acoustic transducer. They demonstrated
that their methodology is easy to implement and adaptable to
different chip designs, fluid properties and particle sizes. The
other study utilizing the machine learning method conducted by
Turan et al. (2018), proposes a machine learning-based
optimization of a pillar-based microchip for T-cells and B-cells
isolation and detection. The micropillar array was optimized for
trapping leukocytes while letting the remaining blood cells flow
through.

In this study, we leverage a robust machine learning-based
framework for performance prediction and optimization of an
acoustic transducer for a diverse set of IDTs geometrical
configurations. The multi-layer perceptron (MLP) neural
network was developed to create an accurate radio frequency
prediction platform for acoustofluidic devices. As the
geometrical features of the IDTs are the main influential
parameters on the radio frequency response of the SAW
resonator, the electrodes’ length, distance and numbers are
considered as design parameters, and reflection coefficient
and quality factors were taken as output parameters. After
developing the neural networks and performing the accuracy
assessments, two developed neural networks were fed to a multi-
objective genetic algorithm (MOGA) to be optimized for
minimum reflection coefficient and quality factor measures
by establishing a Pareto-optimal front. The sensitivity
analysis on reflection coefficient and bandwidth variation was
carried out by conducting different experimental and numerical
studies. The result of this study shows that optimization of the
power loss and bandwidth of the acoustofluidic device has a
remarkable influence on the amplitude of the acoustic radiation
force and the pattern of the acoustic pressure distribution inside
the microchannel.

2 MATERIAL AND METHOD

2.1 Fabrication Process
Due to perfect optical transparency and high
electromechanical coupling coefficient of lithium niobate
(LiNbO3) over other piezoelectric substrates, A 128° YX cut
LiNbO3 was used for SAW generation. The acoustic
microdevice consisted of a LiNbO3 substrate with gold
interdigitated electrodes patterned on the surface and a
polydimethylsiloxane (PDMS) microchannel bonded
between the area of two IDTs. For fabricating the IDTs on
the substrate, first, a 200 Å of chromium layer followed by
1,000 Å of the gold layer was sputtered on double-side polished
128° YX LiNbO3 substrate by sputtering machine (Angstrom
Engineering Inc.). In the next step, the wafer was spin-coated
with an S1813 positive photoresist (MicroChem Corp.) to form
a 1μm photoresist film on the wafer surface. The electrode
patterning was followed by wafer exposure to the UV light

using a mask aligner (Model 200, OAI). The wet etching
process first started by removing the unwanted photoresist
using MF-319 developing solution (MicroChem Corp.). The
wafer was then rinsed with chromium and gold etchant to
remove the undesirable metal sputtered regions. Finally, the
thin photoresist film on top of the electrodes was removed with
an 1,165 photoresist stripper. The microchannel fabrication
was performed by a standard soft lithography process using a
negative SU8-2025 photoresist (MicroChem Corp.). The
fabricated PDMS microchannel was bonded on the LiNbO3

substrate through oxygen plasma treatment. The oxygen
plasma machine was set for 25 seconds, 25W, 12 sccm
oxygen flowrate and 170mTorr of pressure.

2.2 Experimental Setup
The experimental setup comprised of acoustofluidic microchip
mounted on an inverted fluorescent microscope (REVOLVE 4,
ECHO). The SSAWwas formed by applying a sinusoidal signal to
the IDTs. The function generator (81110A, Agilent Technologies
Inc.) was employed for providing the RF signal, and the output of
the function generator was connected to a power amplifier
(325LA, Electronics & Innovation Ltd.) for amplifying the
transmitted power. The process of monitoring the power
amplification and wave formation was done by an oscilloscope
(DSOX 2024A, Keysight). Two individual syringe pumps (Cole-
Parmer Instrument Company LLC.) controlled the sample and
sheath-flow flowrate. The PTFE microtubes (Fisher Scientific)
with an inner diameter of 0.413mm were used to connect
microchannel inlets with glass syringes. The VNA machine
(E5061A, Agilent) was used to obtain each piezo actuator’s
frequency response. Figure 1 demonstrates the experimental
setup designated for running experimental tests.

2.3 Neural Network Design
The Artificial Neural Networks (ANNs) capability in highly
nonlinear data recognition in multivariate systems makes them
an ideal technique for microfluidics design automation
applications (Rizkin et al., 2019; Honrado et al., 2020;
Lashkaripour et al., 2021). In most of the microfluidic devices,
there are some dominating parameters (such as flowrates, voltage,
geometrical features etc.) that significantly influence the
performance of the micro devices; tuning these parameters for

FIGURE 1 | A view of experimental setup including syringe pump,
microscope, function generator, and RF amplifier.
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the desired application is one of the major challenges of the field.
The prediction capability of the machine learning platforms
makes them an ideal tool for eliminating trial and error in the
design process. This technique could be easily applied for design
automation of different types of active and passive microfluidics
devices (such as micromixers, dielectrophoresis, and optical
microseparators). In this paper, the feedforward
backpropagation neural network based on Levenberg-
Marquardt algorithm is proposed for the quality assessment of
acoustofluidic devices. Levenberg-Marquardt is a supervised
technique for properly tuning the neural network weights,
which fine-tunes the weights according to the gradient of a
loss function calculated in the previous epoch (i.e., iteration).
This method is an adaptive function network that utilizes the
Jacobian matrix and evaluates the network performance as the
mean squared of the error. TheMSEmeasure between the desired
(d) and target (t) output value is shown in Eq. 1.

E(n) � 1
2
∑m
i�1
(ti(n) − di(n))2 (1)

where n and m are training epochs and the number of outputs,
respectively, the general formulation for computing the output in
each hidden layer and the output layer has been expressed in Eq.
2 and Eq. 3.

W(n + 1) � W(n) + ΔW(n) (2)
ΔW(n) � −η zE(n)

zW(n) � −η∇E(n) (3)

where η is the learning rate. The learning rate hyperparameter
range is usually between 0.01 and 0.1. The alteration of the
learning rate value controls the training speed and the amount
of allocated error in updating the weights. In this method, the
Hessian matrix and gradient of performance index are
represented as Eq. 4 and Eq. 5 respectively.

H(n) � JT(n)J(n) (4)
g(n) � JT(n)E(n) (5)

where term J is the Jacobian matrix containing the first
derivatives of the network errors with respect to the weights
and biases, and term E is the network error vector. The
Levenberg-Marquardt algorithm minimizes the error function
by keeping the step size small to certify the validity of the linear
approximation. By utilizing the Hessian matrix approximation
and minimizing the modified error, the Newton-like update
equation is obtained as Eq. 6.

w(n + 1) � w(n) − [J(n)TJ(n) + μI]−1J(n)TE(n) (6)
where μ is the nonnegative step size governing parameter and I is
the identity matrix. For μ � 0, the Eq. 6 is Newton’s method;
however, for large measures of μ, the equation is changed to
gradient descendent with a small step size. In gradient descendent
optimization technique, the learning rate must be adjusted to an
appropriate value (neither too low nor too high) to avoid
bouncing back and forth between gradient descent function.

2.4 Multi-Objective Optimization
Combining neural networks with optimization algorithms can
provide a robust optimization platform for microfluidic
systems. The multi-objective heuristic optimization
approaches have shown their superiority in tuning the
operating parameters and design optimization of microfluidic
devices (Talebjedi et al., 2021c). In this study, for identifying the
optimum combination of the design factors for minimum
reflection coefficient and quality factor, the trained neural
network model was used in connection with NSGA-II multi-
objective genetic algorithm. The GA first starts by generating an
initial population of the chromosome, which are a possible
solution for genetic algorithm optimization. The fitness
function is used for determining the best chromosomes with
highest survival ability and reproducibility. Here, the fitness
function was created according to the developed ANN model.
Individuals’ competition with their parents produces the
offspring for next-generation creation, so that the superb
individuals are retained, leading to a rise in the overall
population evolution level. The newly generated population
outperforms the previous population by continuing the
process of selection, crossover and mutation on each
generation (Talebjedi et al., 2020). Here, the Nondominated
Sorting Genetic Algorithm (NSGA-II) is utilized for global
optimization objectives of the reflection coefficient and
quality factor as the algorithm is fast and avoids local
optimal solution. The multi-objective optimization problems
return the Pareto-optimal solution, showing a trade-off between
objective functions subjected to defined constraints. The
suggested solutions on the Pareto front are equally suitable
and none of them have superiority over others. The decision-
maker chooses between points according to the application to
meet the required criteria. The flowchart of the ANN-GA
algorithm is shown in Figure 2.

2.5 Governing Equations
The computation of harmonic acoustic pressure distribution was
obtained by Helmholtz wave equation defined as follow:

∇.( − 1
�ρk
∇P) − ω2

�ρk�c
2
k

P � 0, (7)

where P is the acoustic pressure and �ρk, �ck and ω are the
equivalent density of the medium, equivalent sound velocity of
the medium and angular frequency. The fluid flow simulation was
performed by solving the continuity andmomentum equations as
follow:

zρ

zt
+ ∇.(ρu) � 0, (8)

ρ(zu
zt

+ u.∇u) � −∇P + μ∇2u + (μb + 1
3
μ).u (9)

where ρ is the density of the fluid, P is the pressure, u is the fluid
flow velocity, μb is the bulk fluid viscosity. The linear piezoelectric
constitutive equations are shown as follow:

σ ij � Cijklskl − eijmEm, (10)
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Dm � emijsij + εmkEk, (11)
where σ and D are mechanical stress tensor and electric
displacement vector, respectively. The term E shows the
electric field, Cijkl is the fourth-order elasticity matrix, tensor,
εmk is the second-order tensor of the dielectric matrix, skl is the
second-order strain tensor and eijm is the third-order
piezoelectric stress matrix responsible for coupling the electric
field with mechanical vibration. The model parameters used for
the SAW simulation is listed in Supplementary Table S1.

3 RESULTS AND DISCUSSION

3.1 Validation
In this study, the numerical analysis was performed using the
finite element analysis (FEA) software package (COMSOL
Multiphysics, version 5.6). The preliminary mesh dependency
test was carried out to find the optimum grid size. The resonant
frequency and reflection coefficient measures were the
controlling parameters for monitoring the convergency test
and validation. Four different mesh setups with 754,321,
1,256,798, 1,794,532 and 2,1457,68 grids were used for

experiment number 108 simulation. This experiment’s
resonant frequency and reflection coefficient are 33.6MHz
and −48 (dB), respectively. Table 1 represents the resonant
frequency and reflection coefficient for different grid setup
(coarse to high grid resolution). Table 1 reveals the
corresponding discrepancy of the predictions reduced to 2.35%
for the resonant frequency and 4.5% for the reflection coefficient
for mesh systems based on 1,794,532 and 2,145,768 grids,
showing a good converged solution. As a result, the meshing
setup with 2,145,768 grid elements was considered for domain
discretization. Figure 3 demonstrates the final meshing system of
the acoustic actuator and the microchannel. It was seen that the
suggested grid setup from the grid dependency test shows an
excellent agreement with the experimental measurements, as
illustrated in Figure 4.

3.2 Frequency Response Prediction
Here we develop two multi-layer perceptron (MLP) neural
networks for creating accurate prediction models of the
resonator frequency response (reflection coefficient and
Q-factor) according to different IDT geometry features. The
dataset was obtained by laying out a full factorial design of
experiment (DOE). Three main parameters, including length

FIGURE 2 | Flowchart of ANN-GA algorithm.
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of the electrodes (L1), the half distance between electrodes (L2)
and the number of fingers (NF) were considered as the IDT
design parameters with five levels. The schematic of the
acoustofluidic device and corresponding IDT features have
been demonstrated in Figure 5. The design parameters and
their levels have been demonstrated in Table 2. The full
factorial experiments (considering all the possible
combinations of levels and parameters) were carried out to lay
out the database for neural networks. The results of the created
design of experiment is reported in Supplementary Table S2.
After performing the full factorial design of the experiment, the
reflection coefficient and Q-factor measures were extracted and

recorded by sweeping the frequency over a wide range of
frequencies with a VNA machine. To ensure that the results
from each experiment are accurate and reliable, each device was
fabricated three times, and the average response was taken as the
outcome. After extracting the performance operation features of
the conducted experiments, two different neural networks were
developed for each objective. The model with the highest
accuracy was picked up and saved for prediction purposes.
The dataset was split into 15% for validation, 15% for tets,
and the rest for training. The prediction models’ performance
was assessed by evaluating the coefficient of determination, root
mean square error, and mean absolute percentage error. The
coefficient of determination usually referred to as the “goodness
of fit,” is a value between 0 and 1 that defines the extent of
dependent variable variation that the prediction model can
explain. The higher value of the determination coefficient
reveals that the model is reliable for future forecasting. The
corresponding formulas for calculating the coefficient of
determination, root mean square error and mean absolute
percentage error have been demonstrated in Eq. 12–14
respectively.

R2 � [∑n
i�1(xi − �x)(yi − �y)]2[∑n
i�1(xi − �x)2(yi − �y)2] (12)

RMSE �
������������
1
n
∑n
i�1
(xi − yi)2√

(13)

MAPE � 1
n
∑n
i�1

∣∣∣∣xi − yi

∣∣∣∣
xi

(14)

Figure 6 demonstrates the coefficient of determination (R2)
value for training, validation, test, and all the datapoints for
reflection coefficient and Q-factor models. As Figure 6 reveals,
the coefficient of determination for test data is higher than 0.96
for both networks meaning that the model is not overfitted or
under fitted. Table 3 also demosntrates the measures of the
coefficient of determination (unseen data), root mean square
error (RMSE), and mean absolute percentage error (MAPE)
for both artificial neural networks. The RMSE and MAPE
measures for refelcetion coefficient model were obtained as
1.044 and 3.23%, respectively, and for the Q-factor network
were calculated as 4.75 and 17.82%, respectively. Considering
the performance analysis measures, it can be concluded that
constructed neural networks are reliable enough to provide an
accurate prediction over reflection coefficient and Q-factor. To
visualize the prediction ability of the ANNs for completely
unseen data, we plotted the predicted and actual values of the

TABLE 1 | Different meshing systems for the Grid-dependency test.

Number of elements Resonance frequency (MHz) S11 (dB) Magnitude

754,321 37.83 −27
1,256,798 35.72 −33
1,794,532 34.34 −44
2,145,768 33.54 −46

FIGURE 3 | Numerical grids of a 3D acoustic actuator.

FIGURE 4 | Comparison of the frequency response results from
numerical simulation and experimental data for experiment number 108.
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FIGURE 5 | Schematic view of the acoustofluidic microseparator and IDT features.

TABLE 2 | Microseperator design parameters and levels.

Parameter/Levels L1(mm) L2(mm) NF

1 6 4 20
2 7 5 24
3 8 6 30
4 9 7 34
5 10 8 40

FIGURE 6 | Measures of the R-squared for train, validation, and entire data for (A) Reflection coefficient and (B) Q-factor models.

TABLE 3 | The measures of the performance analysis of the prediction model.

R2 RMSE MAPE

Reflection coefficient 0.97 1.044 3.23%
Quality factor 0.96 4.75 17.82%
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test data for both reflection coefficient and Q-factor networks
as represented in Figures 7, 8, respectively. Concerning the
networks accuracy assessment, it can be concluded that the
neural networks can predict the reflection coefficient and
Q-factor for unseen data by the algorithm with high
accuracy; therefore, the machine learning-based prediction
platforms were automated to predict the frequency
response of a given IDT design by cutting the trial and
error efforts.

3.3 Multi-Objective Optimization of Artificial
Neural Networks
To demonstrate the capability of the prediction models in
delivering the best optimized user-specified performance in
terms of reflection coefficient and Q-factor, we benefited from

a heuristic multi-objective optimization approach. In this
regard, we considered two ANNs as objective functions of
the Genetic algorithm subjected to some constraints. In this
study, the constraints were considered as the lower and upper
bounds of the IDT features. A Pareto-optimal front was created
with an optimized trade-off between the objectives
(i.e., minimum reflection coefficient and Q-factor). As each
point of the Pareto front is a globally optimal solution, non of
the Pareto-optimal solutions have superiority over others for
both objectives; thus, the solution’s choice depends on the
performance that meets the designer’s need. Figure 9
demonstrates the Pareto front of two objective functions. To
examine how multi-objective optimization aids in improving
the performance of the acoustofluidic device in separating and
confining the particles, we picked up a point on the Pareto
front with reflection coefficient as −45 dB and Q-factor as 45
and fabricated the corresponding device. Next, we tested the
acoustofluidic device capability in deviating and confining the
0.5 μm polystyrene particles from their initial stream to the
upper side of the channel. Supplementary Video S1 shows the
confinement of the 0.5 μm polystyrene particles before and
after applying the radiofrequency. In this experiment, the
frequency was set as 33.7MHz, voltage as 17V and inlet
flowrates were 1 μl/min for the main particle stream and
4 μl/min for the sheath flow. To compare the functionality
of the device setup on the Pareto front and out of the Pareto
front, we conducted another experiment with a device
reflection coefficient of −12 dB. Supplementary Video S2
shows the device’s performance before and after acoustic
excitation at different voltages. As Supplementary Video S2
shows, by applying the RF voltage, the particles focus in
parallel lines with the microchannel wall, showing that the
acoustic radiation force is not sufficient enough to push the
particles to the other side of the channel. Moreover, it could be
concluded that the nodal pressure lines are formed parallel to

FIGURE 7 | The comparison of actual and predicted reflection coefficient
values for different experiments.

FIGURE 8 | The comparison of actual and predicted Q-factor values for
different experiments.

FIGURE 9 | Pareto front of the reflection coefficient and Q-factor models.
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the channel and have not kept their slanted shape. By rising the
voltage, the concentration of the particles moving to the
middle of the channel increases; however, part of the
particles are still located in parallel lines to the channel

wall. For voltage 24V, the more significant portion of the
particles get concentrated in the channel center, but we can see
that the bubbles start forming in the channel wall due to the
acoustic cavitation.

FIGURE 10 | The results of the numerical and experimental studies corresponding to experiment number 36 with tilt angle 20°. (A) Contours of the acoustic
pressure field distribution inside the fluidic domain. (B) The frequency response of the resonator. (C) The flow of 0.5 μm particles before applying the acoustic force at the
channel’s end. (D)Confinement of 0.5 μm particles after applying the acoustic field at the channel’s end. (E)Graph of comparison color intensity across the microchannel
before and after applying the SSAW field. (The lower color intensity corresponds to darker color).

FIGURE 11 | The results of the numerical and experimental studies corresponding to experiment number 90 with tilt angle 20°. (A) Contours of the acoustic
pressure field distribution inside the fluidic domain. (B) The frequency response of the resonator. (C) The flow of 0.5 μm particles before applying the acoustic force at the
channel’s end. (D)Confinement of 0.5 μm particles after applying the acoustic field at the channel’s end. (E)Graph of comparison color intensity across the microchannel
before and after applying the SSAW field. (The lower color intensity corresponds to darker color).
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3.4 Sensitivity Analysis
3.4.1 Reflection Coefficient
The range of reflection coefficient for different geometrical
configurations was observed between −9(dB) to −50 (dB). To
investigate the effect of reflection coefficient on particle
confinement, two DOE suggested experiments with reflection
coefficient values −14 (dB) and −37 (dB) were selected for
experimental and numerical studies. Figures 10, 11
demonstrate the acoustic pressure field and particle migration
results for experiment numbers 36 and 90 with corresponding
reflection coefficient values as −14 (dB) and −37 (dB) ,
respectively. In these experiments, the applied voltage was
considered 20V, and the particle and sheath stream flowrates
were as 3 and 5 μl/min. To avoid contacting the particles to channel
wall, another sheath flow with 0.5 μl/min flowrate was flowed to
impede the sticking of the particles to the channel wall. The three-
dimensional simulation was carried out to investigate the pattern
and magnitude of the acoustic radiation force. It was observed that
there is a considerable difference in the acoustic pressure amplitude
for these two devices. As Figures 10A, 11A demonstrate, the peak
of the acoustic radiation force across the microchannel cross-
section for the device with S11 = −37 (dB) is 400 kPa,
approximately double the device with S11 � −14 (dB)
(200 kPa). The pressure distribution contours (Figures 10A,
11A) reveal that for the device with a reflection coefficient
value as −37 (dB) the acoustic pressure lines are aligned with
20° with respect to microchannel cross-section, while the contours
of the pressure distribution for SAW device with a reflection
coefficient of −14 (dB) are parallel to the channel wall. The
separation resolution strongly depends on the pattern of the
acoustic pressure lines alignment. The highest focusing
efficiency acquires when the acoustic pressure nodal lines are
not parallel to channel walls and preserve their corresponding
tilt angle with respect to microchannel cross-section. In case
pressure nodal planes in three dimensions are parallel to the
channel walls, the particle’s lateral migration will just be
bounded to small movement to the closest nodal plane;
however, for the separation purposes, the particles need to have

complete lateral movement across the channel width, and this issue
is only possible when the pressure nodes are formed tilted with
respect to the mainstream flow direction. Figures 10C,D
demonstrate the microbeads focusing for experiment number
36 with an absolute reflection coefficient value of 14 at the end
of the microchannel before and after RF excitation at the
corresponding resonant frequency (Figure 10B). The image
processing technique based on the color intensity evaluation
was employed to track the particle confinement across the
microchannel width. The lower number in the vertical axis of
Figure 10E shows the darker color or higher concentration of
particles. As shown in Figure 10D, exposing SSAW to the particles
does not contribute to the lateral movement of particles and only
reduces the thickness of the particle flow path. This issue arises
from the low capability of the chip in the transmission of the
applied power to the particles and failure in maintaining the
acoustic pressure tilt angle between the microchannel and IDTs.
In this situation, the drag-induced force from the sheath flow is
dominant over the acoustic radiation force, resulting in reducing
focusing efficiency. As Figure 10E elucidates, before the SSAW
excitation, the particles are focused within a span of 250 μm to
330 μm in the lateral direction (Y-axis). By applying the RF voltage,
the SSAW-induced flow thickness was shrunk to 20 μm within a
span of 300 μm (Figure 10E). The same study conducted for
experiment number 90 with an absolute reflection coefficient value
of 37 demonstrated in Figure 11. As Figure 11A demonstrates, the
acoustic pressure nodal planes preserved their slanted formation by
scattering inside the microchannel. The experimental photos
before and after SAW exposure to the particles are elucidated
in Figures 11C,D, respectively. Before applying the RF voltage, the
side sheath flows focused on the particles within the span of
250 μm to 300 μm of the Y-axis. After acoustic field excitation,
the particlesmoved to the upper side of the channel within the span
of 45 μm to 55 μm of the Y axis, showing an excellent capability of
the device in transmitting the input power to the particles. Further
studies unfolded that for submicron particle separation purposes,
the designed acoustic actuator must have a reflection coefficient
below −30 (dB). It was observed that the devices with a reflection
coefficient higher than −30 (dB) impose a small amount of force
on submicron particles and cannot push them above the channel’s
centerline. The alternative way to address this issue is increasing
the applied power; however, increasing power contributes to
cavitation, electrophoresis effect, and heat generation.

3.4.2 Quality Factor
The other key parameter strongly affecting the isolation efficiency
is the bandwidth. Finding the exact value of the resonant frequency
requires the VNA machine, which is very expensive and space-
consuming. Moreover, sometimes the resonant frequency does not
stay constant and shifts slightly during the experiment. For devices
with narrow bandwidth, the minute shift in the resonant frequency
causes a remarkable rise in return loss, while the wideband
coverage means that the system can still operate with some
degree of deviation from the resonant frequency without any
considerable change in return loss. The elimination of using
VNA machine for finding the resonant frequency and
benefiting from simple equation v � λf, (where v is the speed

FIGURE 12 | Frequency response of experiment numbers 12 and 5.
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of sound in lithium niobate substrate, λ is the wavelength of the
SAW resonator and f is the resonant frequency) can extensively
reduce the cost and complexity of the experimental setup.

Although this equation is inaccurate and does not give the
exact resonant frequency, it can estimate the resonant frequency
range. For narrow bandwidth operating resonators, the slight

FIGURE 13 | The results of pressure distribution and experimental tests for experiment number 12 with Q-factor 14 in resonant frequency and 0.5MHz deviation from
resonant frequency. (A) The distribution of pressure and voltage across the microchannel in resonant frequency. (B) The distribution of pressure and voltage across the
microchannel with 0.5MHz deviations from resonant frequency. (C) Sheath flow focusing of the stream of 0.5 μm particles before SSAW excitation. (D) Microbead focusing
flowpath after SSAWexcitation in resonant frequency. (E)Particle flowpath after SSAWexcitation in 0.5MHz off-resonant frequency. (F)Graph of colour intensity before and
after acoustic actuation in resonant frequency (G) Graph of colour intensity before and after acoustic actuation in off-resonant frequency.
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FIGURE 14 | The results of pressure distribution and experimental tests for experiment number 5 with Q-factor 78 in resonant frequency and 0.5MHz deviation
from resonant frequency. (A) The distribution of pressure and voltage across the microchannel in resonant frequency. (B) The distribution of pressure and voltage across
the microchannel with 0.5MHz deviations from resonant frequency. (C) Sheath flow focusing of the stream of 0.5 μm particles before SSAW excitation. (D) Microbead
focusing flow path after SSAW excitation in resonant frequency. (E) Particle flow path after SSAW excitation in 0.5MHz off-resonant frequency. (F)Graph of colour
intensity before and after acoustic actuation in resonant frequency (G) Graph of colour intensity before and after acoustic actuation in off-resonant frequency.
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deviation from resonant frequency results in a drastic drop in
power transmission; thereby, it is critical to avoid designing the
devices with narrow bandwidth to accomplish efficient energy
transmission. Multiple parameters influence the quality factor,
piezoelectric dielectric loss, loading effects, ohmic losses, and
leakage of the acoustic wave to the substrate.

To investigate the role of bandwidth on separation efficiency,
we conducted two experiments with high and low-quality factors.
Experiment number 12 with quality factor 14 and experiment
number 5 with quality number 78 were selected for numerical and
experimental studies. The frequency response of these two
experiments are represented in Figure 12. As Figure 12 reveals,
both devices show similar reflection coefficient value about
−32 (dB) in their resonant frequency. Although the wavelength
for both designs was the same, there was about 1MHz difference
in their resonant frequency, showing the role of geometrical
features of the IDTs on the resonant frequency. However, due
to the acoustic actuator’s extreme nonlinear behavior, linking the
acoustic actuator parameters to the resonant frequency is not a
viable route. The resonant frequency for experiment number 12 is
32.5MHz and for experiment number 5 is 33.5MHz. As
Figure 12 indicates, 0.5MHz rise in the resonant frequency for
experiment number 5 increases the reflection coefficient value to
−28 (dB), while for experiment number 12, the 0.5MHz rise in
resonant frequency results in reflection coefficient as −10 (dB).
The −10 (dB) return loss shows that a large portion of the applied
power is reflected to the source and has not been transferred to the
fluidic domain. The experimental and numerical studies were
conducted to better demonstrate the bandwidth effect on
separation efficiency. Figure 13 depicts the pressure distribution
results and experimental tests for experiment number 12 with
Q-factor 14 in resonant frequency and 0.5MHz off from
resonant-frequency. The exact value of the resonant frequency
was measured by the VNAmachine. Figure 13A demonstrates the
contours of the pressure and voltage in resonant frequency
transducer actuation, and Figure 13B depicts the same contours
for 0.5MHz off-frequency wave excitation. As it could be seen, the
peak values of the acoustic pressure have remained almost constant
for both resonant and off-resonant frequency actuation. The same
behavior was also observed for the contours of voltage distribution
in the piezoelectric and liquid domains. Figure 13C illustrates the
sheath flow assisted focusing of 0.5 μmmicrobeads before applying
the RF voltage. Figures 13D,E demonstrate the microbeads flow
path in the resonant frequency and off-resonant frequency SSAW
actuation at the end of the microchannel, respectively. As
Figure 13f shows, before applying the RF voltage, the particles
were focused on the span of 230 μm to 300 μm distance from the
upper side of the channel in the Y-axis. By applying the RF voltage
in resonant frequency, the particles focusing range was changed to
130 μm to 150 μm. By slightly shifting the excitation frequency
from measured resonant frequency to 0.5MHz off-resonant
frequency, it was observed that the focusing range of the
particles was 20 μm wider compared to resonant frequency
actuation and was focused on the span of 150 μm to 200 μm
distance from the upper side of the channel at the end of the
microchannel (Figure 13G). The comparison of Figures 13D,E
shows that all the particles were not focused on a single line for off-

resonant actuation, unlike the resonant actuation where all the
particles were focused in one flow stream. As Figure 13E depicts,
the particles are focused in two parallel lines while the upper line
contains the higher concentration of microbeads. This parallel
formation of particles flow stream is due to the slight drop in power
transmission due to return losses from off-resonant frequency
excitation. The same study was carried out for experiment number
5 with a Q-factor value of 78. The contours of pressure distribution
and experimental studies are depicted in Figure 14. The high value
of the Q-factor for experiment number 5 shows that the slight
deviation from resonant frequency can result in a remarkable drop
in power transmission to the particles. Figures 14A,B represent the
contours of the voltage and pressure distribution for resonant
frequency actuation and 0.5MHz off-resonant frequency
actuation. As seen, the acoustic pressure’s peak values are
declined from 300 kPa for resonant actuation to 80 kPa for off-
resonant frequency actuation (73% drop in acoustic pressure). It
was also seen that the nodal pressure lines could not preserve their
tilted formation for off-resonant actuation in the channel, and
nodal planes were formed parallel to the channel walls, which is not
favorable for separation purposes. Comparing the contours of
voltage for these two experiments shows that in resonant
frequency with 20V initial excitation, about 17V is delivered
to the piezoelectric underneath the microchannel, while this value
for the off-resonant actuation was about 5V. Figures 14C,D,E
show the flow path of the microbeads, before acoustic excitation,
resonant frequency actuation, and 0.5MHz off-resonant
actuation for experiment number 5. As Figures 14F,G
represent, before applying the acoustic field the particles are
focused in the span of 250 μm to 300 μm from the upper side
of the microchannel. By actuation of the transducer in resonant
frequency, the particles were moved to the upper side of the
microchannel and focused on the span of 140 μm to 155 μm
from the upper microchannel wall. As Figure 14E
demonstrates, the non-tilted formation of nodal planes has led
to particles focusing on multiple parallel lines. Due to power
reflection from the transducer, the power is not fully delivered
to the particles. The acoustic radiation force acting on the particles
was insufficient to overcome the drag-induced force from
sheath-flow.

4 CONCLUSION

A learning-based approach for optimizing an acoustic transducer
by combining the ANN and MOGA was introduced for the first
time. The developed ANNs revealed an equivalent accuracy to
experimental test with R2 � 0.97 for reflection coefficient and
R2 � 0.96 for quality factor with very low computation time. For
multi-objective optimization, NSGA-II is utilized as a MOGA
tool to meet piezotransducer optimization requirements and
provide a valid set of solutions according to the combination
of suitable variables. The ANN-GA model was successfully used
as a design guideline for suggesting the optimum IDTs structural
configurations of the SAW resonator by establishing a Pareto
solution set of optimal reflection coefficient and quality factor.
Due to the IDT design’s critical role on the SAW device’s
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frequency response, the design parameters were considered as the
geometrical variables of the IDTs (i.e., electrode length, distance
between electrodes, and number of fingers). The finite element
methodology coupled with experimental studies were used for the
full-scale analysis (acoustic pressure amplitude, distribution,
voltage, particle migration and thermal effect) of the
piezotransducer. To minimize the sound wave attenuation
inside the PDMS layer, 100 μm acoustic window was designed
to reduce the power loss inside the PDMS domain. By conducting
the sensitivity analysis on the reflection coefficient and quality
factor, it was observed that the reflection coefficient and Q-factor
significantly influence the acoustic pressure amplitude and
distribution. It was observed that increasing RF signal voltage
excitation above 24Vpp increases the risk of bubble formation in
the microchannel due to the cavitation. Apart from finding the
optimal set of solutions by combined ANN-MOGA, this
technique can also be extended to creating a framework for
suggesting the design parameters for user-specified
performance needs. Chen and Wang, (2021).
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