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Tolerogenic cell therapies provide an alternative to conventional immunosuppressive 
treatments of autoimmune disease and address, among other goals, the rejection of 
organ or stem cell transplants. Since various methodologies can be followed to develop 
tolerogenic therapies, it is important to be aware and up to date on all available studies 
that may be relevant to their improvement. Recently, knowledge graphs have been pro-
posed to link various sources of information, using text mining techniques. Knowledge 
graphs facilitate the automatic retrieval of information about the topics represented 
in the graph. The objective of this work was to automatically generate a knowledge 
graph for tolerogenic cell therapy from biomedical literature. We developed a system, 
ICRel, based on machine learning to extract relations between cells and cytokines from 
abstracts. Our system retrieves related documents from PubMed, annotates each 
abstract with cell and cytokine named entities, generates the possible combinations 
of cell–cytokine pairs cooccurring in the same sentence, and identifies meaningful 
relations between cells and cytokines. The extracted relations were used to generate 
a knowledge graph, where each edge was supported by one or more documents. We 
obtained a graph containing 647 cell–cytokine relations, based on 3,264 abstracts. 
The modules of ICRel were evaluated with cross-validation and manual evaluation of 
the relations extracted. The relation extraction module obtained an F-measure of 0.789 
in a reference database, while the manual evaluation obtained an accuracy of 0.615. 
Even though the knowledge graph is based on information that was already published 
in other articles about immunology, the system we present is more efficient than the 
laborious task of manually reading all the literature to find indirect or implicit relations. 
The ICRel graph will help experts identify implicit relations that may not be evident in 
published studies.
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1. inTrODUcTiOn

Tolerogenic cell therapies provide an alternative to conventional immunosuppressive treatments of 
autoimmune disease and address, among other goals, the rejection of organ or stem cell transplants 
(1). These therapies aim at modulating the pathological immune response with minimal effect 
on the immune system. Antigen-presenting cells (APCs) can be induced to control the immune 
response by targeting specific T cell responses, avoiding general suppression of the immune system 
(2). It is necessary to understand the underlying mechanisms of the immune system to develop 
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tolerogenic cell therapies. Cytokines are small peptides involved 
in cell signaling, which can be used to induce tolerance in APCs 
(3). Immune cells express cytokines and their respective recep-
tors. High-throughput sequencing techniques have improved our 
knowledge about cell signaling, introducing a variety of infor-
mation about how cytokines are used by the immune system. 
This information is important to understand and develop new 
methods to isolate, culture, and induce tolerance in APCs.

Biomedical information is often presented to the commu-
nity through published literature, including information about 
human autoimmune diseases and therapies to treat them. There 
are knowledge bases aiming at organizing the findings provided 
by the literature through a single access point. Populating such 
knowledge bases is, therefore, important for biomedical research, 
in particular, because they allow computational methods to find 
patterns in the data, thus generating new hypotheses to be tested 
experimentally. If a cell produces the same cytokine receptors 
as another cell, and a new cytokine is found to interact with the 
first cell, it is plausible that new cytokine could also affect the 
second cell. This type of inference, also known as ABC model 
(4), is only possible if the results of many studies are analyzed 
together.

The scientific community has shown interest in curating data-
bases about cells and cytokines. For example, the National Center 
for Biotechnology Information (NCBI) provides a compilation 
of several biomedical and genomic resources (5), including the 
Entrez Gene database (6). This database contains entries for the 
genes associated with cytokines, and each entry contains useful 
information about that cytokine, such as interactions, pathways, 
and gene ontology annotations. There are also resources specific 
to cytokine information. The Cytokine Reference is an online 
database of information on cytokines and receptors, compiled 
from the literature by experts (7). This database contains links 
to other databases such as MEDLINE and GenBank, and can be 
searched by cytokine, cell or disease. Another relevant database 
is the Cytokine & Cells Online Pathfinder Encyclopedia (COPE)1, 
which focuses on the interactions between cell types through 
cytokines. The current version of COPE contains 45k entries, 
including a cell type dictionary of 3k entries. These efforts show 
the importance of information structures for cells and cytokines. 
Therefore, the development of computational methods to struc-
ture this information would benefit researchers working in this 
domain.

These computational methods require two conditions: (i) the 
information is readable by computers and (ii) it is comprehensive, 
encoding the up-to-date collective knowledge of the community. 
Both these tasks are currently subject to intensive research. 
Converting heterogeneous data formats to a common language 
and merging the data is one approach to the first task. For exam-
ple, Bio2RDF converts heterogeneous data from several datasets 
into RDF, a standard data model based on the specification of 
links between data elements (8).

As for the second task, the information stored in many bio-
medical datasets is the result of manual processing of documents, 

1 http://www.cells-talk.com

which is becoming less practical, since the number of published 
documents increases at a high rate. A more feasible approach is 
to use automatic text mining methods to process documents and 
generate a knowledge graph for a given topic. In a knowledge 
graph, nodes correspond to real world entities while edges repre-
sent relationships between the entities. A widely popular knowl-
edge graph is the one integrated with Google search. This graph is 
generated from web documents, and organizes information about 
various topics, such as people, places, and works of art, to improve 
the quality of the search results delivered to the users.2 Recent 
works have demonstrated how biological knowledge graphs can 
be extracted from documents, based on protein–protein (9), 
miRNA–gene (10), and drug–target interactions (11). While 
these graphs provide important efforts to link the discoveries of 
various manuscripts, there is still a need for automatic methods 
that can create specialized graphs and update them as more works 
are published.

This manuscript presents the system, Identifying Cellular 
Relations (ICRel), that we developed, based on machine learning, 
to extract cell–cytokine relations from documents and gener-
ate a knowledge graph. ICRel was trained and evaluated with 
the immuneXpresso database to extract meaningful relations 
between cells and cytokines in documents. We did not aim at 
finding novel information, instead we demonstrate the utility of 
the system by studying the graph generated by ICRel, in particular, 
the nodes associated with APCs. Therefore, the contributions of 
this manuscript are: (i) the open source ICRel system that gener-
ates a cell–cytokine graph from biomedical abstracts and (ii) the 
knowledge graph obtained using ICRel on a set of documents 
relevant to tolerogenic antigen-presenting cell therapy. ICRel 
was able to identify cytokines associated with tolerogenic antigen 
presenting cells that were missing from the immuneXpresso 
database. The code and results obtained with ICRel are available 
at https://github.com/lasigeBioTM/ICRel.

2. MaTerials anD MeThODs

The objective of ICRel is to automatically generate a knowledge 
graph relevant to tolerogenic cell therapy from a given corpus. 
The system was written in Python 3.5 and its code is openly 
available.3 The methodology used can be adapted to other 
domains, by selecting an appropriate set of documents and refer-
ence database. Figure 1 presents the pipeline of ICRel, describing 
the input and output of each module, whereas Figure 2 provides 
an example of an abstract being processed by each module. The 
first module retrieves abstracts from PubMed into an internal 
database, according to a given query specified as input. The 
second module identifies named entities with an external tool, 
requiring one lexicon for each entity type to be identified. In this 
case, we had a lexicon for cell names and another for cytokines. 
The third module combines all cell–cytokine pairs identified 
within a sentence to generate instances for the machine learning 

2 https://www.google.com/intl/es419/insidesearch/features/search/knowledge.
html.
3 https://github.com/lasigeBioTM/ICRel.
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FigUre 2 | Example of an abstract being processed by the ICRel system. We show the first four sentences of the abstract of the article (12). The first box  
(a) shows these sentences, numbered and with cells and cytokines bolded manually. The second box (B) shows the entities recognized automatically, where the 
numbers at the start of each line represent the first and last character offset of the entity. The third box (c) shows the possible cell–cytokine combinations using the 
sentences shown. The fourth box (D) shows the confidence scores obtained with our system for those pairs. It should be noted that those scores were obtained 
using several documents and not just the example shown.

FigUre 1 | Pipeline of the ICRel system. This first module (a) retrieves documents from PubMed, the second module (B) annotates cell and cytokine entities in 
each document using the Cell Ontology and Cytokine registry, the third module (c) combines the cells and cytokines mentioned in the sentence, and the fourth 
module (D) classifies each pair and generates the graph.
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classifier and to calculate the pair frequency score. Finally, the 
fourth module classifies each pair, assigns a confidence score and 
generates a graph based on the pairs that were classified as posi-
tive. The remainder of this section describes in detail the data and 
methods used to develop this system.

2.1. Datasets
A previous study provided a database of interactions between 
cytokines and cells, named immuneXpresso (13). Although this 
database was generated using automatic information extraction 
methods, its contents were evaluated with two manually curated 
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databases, regarding the interactions containing B  cells. The 
authors obtained a 20% false negative rate and no false positives. 
Even though we have no other guarantee that all entries of this 
database are correct, we considered this database as a silver 
standard due to the evaluation scores reported by the authors.  
A gold standard would require each entry to be manually vali-
dated by different domain experts. Since we could not find a gold 
standard for cytokine–cell interactions in abstracts, we used this 
silver standard to train and evaluate our method using 5-fold 
cross-validation. In previous studies, this type of methodology 
has been shown to be useful for information extraction evalua-
tions (14, 15).

Each entry of the immuneXpresso database represents an 
interaction between a cytokine and a cell found in the literature. 
The interactions are supported by one or more abstracts, and 
they have the following attributes: direction (cell to cytokine or 
vice-versa), sentiment (Positive, Negative or Unknown), number 
of articles, and e-score. The sentiment reflects if the interaction 
indicates upregulation (positive) or downregulation (negative). 
Each interaction can be found in the associated abstracts, in at 
least one sentence mentioning both the cytokine and cell. We 
retrieved these abstracts from PubMed and associated each entry 
with the respective abstracts. A total of 25,347 abstracts were 
considered for this silver standard.

Our main objective was to develop an automatic system to 
generate a knowledge graph about cellular tolerogenic therapies, 
focusing on those that use APCs. Hence, we retrieved a corpus of 
documents related to this topic using the MeSH term “Antigen-
Presenting Cells,” which should include most published abstracts 
with information relevant to our graph. We restricted this query 
to abstracts published from January 2015 to August 2017, to avoid 
overlapping with immuneXpresso, which has no abstracts pub-
lished after 2015. Using this query, we obtained 3,264 abstracts, 
which were then annotated with cytokine and cell named entities. 
Figure 2A shows an excerpt of one of these abstracts. We expect 
that the information obtained by our system can be complemen-
tary to this database, which is not focused on any specific topic 
besides immunology. Furthermore, our system can automatically 
process new abstracts and add new relations to the graph.

2.2. named entity recognition
Each abstract of our datasets contained named entities corre-
sponding to concepts relevant to tolerogenic cell therapies. We 
were interested specifically in references to cells and cytokines in 
these abstracts. To this end, we established a lexicon of cell and 
cytokine names. The cell lexicon is based on the Cell Ontology 
(16) (version: 2017-07-29). We compiled all the concept labels 
and corresponding synonyms, resulting in a total of 8,503 terms. 
For cytokines, we used a cytokine registry,4 which includes sev-
eral synonyms for each cytokine, corresponding to a total of 7,242 
terms (version: November 2015). In both cases, each synonym 
was mapped to a reference string: Cell Ontology concept label 
in the case of cells and Entrez name in the case of cytokines. 
This way, we could associate the same entities mentioned across 

4 http://immport.org/immport-open/public/reference/cytokineRegistry. 

various documents through different synonyms, as long as those 
synonyms were considered in our lexicon.

We employed MER (17) to identify named entities in the 
abstracts. MER matches a list of terms (lexicon) to their men-
tions in the text, returning the characters of the entities found. For 
example, in the sentence “The dendritic cells were safely tolerated.” 
MER would return the characters from 4 to 19, which correspond 
to the text “dendritic cells.” Figure 2B shows an example of the 
output of MER for an abstract. This tool has the advantage of 
being easy to adapt to any entity type, it does not require anno-
tated training data, and it is lightweight in terms of computational 
resources. We ran MER for each entity type (cell and cytokine) 
on each abstract. Due to its simplicity, MER has some limitations, 
for example, it is not able to use context to recognize entities, 
and it is susceptible to orthographic variations. To increase the 
number of entities recognized, we added plural variants of every 
cell name to the lexicon with the Python package inflect. This way, 
in the previous example, “dendritic cells” would be matched to 
the “dendritic cell” concept of the Cell Ontology, even if the text 
is not a perfect match. Furthermore, we removed common words 
such as “light” and “killer” from the cytokine lexicon, since these 
words could also appear in other contexts, for example, as part 
of “natural killer cell.” We found these words by comparing the 
lexicon to a list of common English words. The main limitation of 
MER is that the lexicon may be incomplete and some references 
to cells and cytokines in the documents will be missed. However, 
by using a large corpus, our assumption is that only rare variants 
will not be identified since most journals recommend a specific 
nomenclature for cells and proteins.

2.3. cell–cytokine relation extraction
A classifier is a model capable of assigning labels to new data 
according to a specific function learned from the training 
data. Supervised machine learning algorithms learn to classify 
instances (in this case, pairs) by adjusting a function to the labels 
of each instance of the training set. Generally, these algorithms 
require the training data to consist of a matrix where each line 
corresponds to an instance and each column to a feature. We con-
sider an instance to be a specific combination of cell and cytokine, 
while the features consist of the words used in sentences where 
that pair cooccurs. A classifier should be evaluated to understand 
how useful it can be to predict the labels of new data. This type 
of evaluation is done by comparing the real labels assigned by 
experts to the labels predicted by the classifier. Figure 3A shows 
the workflow of the training and evaluation process of a super-
vised machine learning approach using 5-fold cross-validation. 
Cross-validation consists of iteratively partitioning the dataset in 
folds, using all but one of the folds to train a classifier. This classi-
fier is used to predict labels for the remaining fold, which are then 
compared to the original labels. In a 5-fold cross-validation, this 
process is repeated 5 times, and an average of the scores obtained 
in each iteration is used to estimate the quality of the classifier. 
Afterward, a classifier can be trained using the whole dataset.

We consider a knowledge graph to be a set of facts associated 
with a specific domain using the RDF data model, i.e., specified by 
predicate–verb–object triplets. In our case, the knowledge graph 
is constituted by cell–cytokine interactions, where the focus is 

http://www.frontiersin.org/Immunology/
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FigUre 3 | Demonstration of a machine learning workflow for cell–cytokine pair classification. (a) The label of each pair is known, and the learning algorithm trains 
a classifier based on these labels. Using 5-fold cross-validation, at each iteration 4 folds are used for training and 1 for testing. (B) Using distant supervision, the 
labels of each instance are not known, instead, a database assigns a label according to the existence of an entry corresponding to that pair.
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on the predicate and objects, which are cells and cytokines, with 
no specific order. An instance is any cooccurrence of a specific 
cell–cytokine pair within a sentence. We consider various types 
of relations, where a cell expresses a cytokine, or a cytokine affects 
the behavior of a cell. We are interested only in direct relations, 
where there are no intermediaries to the relation described. This 
includes cases of up- and downregulation, signaling, activation, 
and stimulation, for example. However, we are not interested in 
cases where the relation is negated (e.g., the cell does not express 
the cytokine) or hypothetical (e.g., the authors consider that a 
similar cell may express the same cytokine). For each pair, at least 
one sentence must explicitly state the existence of the relation 
for it to be considered a positive instance. That sentence may 
contain other information, such as the mechanism of the relation, 
experimental details or other cells and cytokines.

Distant supervision assumes that if a relation between two 
entities is stated in a database, it can be assumed that whenever 
those two entities cooccur in a document a relation between 
them is described (Figure  3B). We used distant supervision 
to generate a dataset for training since it is not easy to obtain 
labeled training data for most domains. For example, it would 
be assumed that every sentence in the abstract of the article (12) 
that mentions both dendritic cells and IL-12 is supporting that 
relation, including this sentence: “These dendritic cells were 
stimulated for another 48  h, and IL-12 p70 was measured by 
ELISA.” Although this assumption does not take into account the 
semantics of the text, it has been shown that distant supervision 
can be useful to extract relations from documents (18). In this 
work, we adopted immuneXpresso as the reference database. As 
previously mentioned, this database was generated automatically, 
however, the authors report a high accuracy when compared to 
experimental data.

The machine learning algorithm used by ICRel, multi-instance 
learning (MIL), organizes instances in bags, which consist simply 
of sets of instances with a common property. All instances are 
negative if the bag label is negative, or at least one instance is 
positive if the bag label is positive. Therefore, there is no need to 
manually label the relations in the documents. This approach can 
be applied to relation extraction, assuming that the instances are 
potential relations and the bags contain instances of the same pair 
of entities. Figure 2C shows an example of the way the instances 
are organized in bags, where each line corresponds to a different 
bag. Each bag has a label, which can be positive if the database 
contains an entry establishing a relation between the two ele-
ments of the bag, or negative otherwise. Using a machine learning 
algorithm, a classifier can be trained to classify new instances. 
This classifier will assign a confidence score to each bag. It is a 
reasonable assumption that an interaction is stated in a single 
sentence, so we consider only pairs of entities mentioned within 
a sentence.

Besides the labels of each bag, the MIL algorithm uses a feature 
representation of each instance to train a classifier. In our case, 
the feature representation of each instance is based on a window 
of words around each entity of the pair. We used a context win-
dow of size three, meaning that at most three words before and 
after each entity were considered. Each word was represented by 
its lemma so that variations of the same root word did not affect 
the learning process. Words that were part of named entities 
were represented by their respective entity type, to avoid any bias 
toward specific entities, and words that appeared in less than 1% 
of the documents were not considered, to reduced noise caused 
by text artifacts.

Then, we generated tf-idf weights for each word, to obtain 
a vector representation of each instance. Tf-idf corresponds to 

http://www.frontiersin.org/Immunology/
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the product between term frequency (tf) and inverse document 
frequency (idf), and it is used to estimate the relative importance 
of each word in a corpus. This is required since machine learning 
algorithms require numeric vectors. The weights generated dur-
ing the training phase were also applied to new data. In summary, 
each document was converted to sets of instances (bags), with 
each instance corresponding to a feature vector obtained with 
tf-idf weighting.

We observed that only some sentences in each abstract 
described relations between cells and cytokines, while the other 
sentences presented other types of information, such as definitions 
or experimental parameters. This would be an issue to traditional 
approaches relation extraction because there is a larger propor-
tion of negative pairs (no direct and explicit relation is described 
in the text) than positive. In our preliminary experiments, we 
found that often less than 10% of the pairs in a document are 
positive. Therefore, it was necessary to use an algorithm that 
takes into account the sparsity of the data. We tested variations 
of MIL and found that sparse MIL (sMIL) (19) provided the best 
results. This algorithm is based on support vector machines, with 
an adapted objective function to account for the reduced number 
of positive labels. This new cost function assumes that smaller 
positive bags are more informative, weighting the feature vector 
of each positive bag according to its number of instances.

Our system contains a classifier trained using all entries and 
documents from the immuneXpresso database, corresponding to 
about 25k abstracts, using the methods described above. ICRel 
extracts relations from documents by transforming the text into 
feature vectors and then applying this classifier. The trained clas-
sifier predicts the label of a bag but does not predict the individual 
label of its instances. This means that it is not possible to know 
the exact sentence where the interaction is described. However, 
this information is sufficient for our purposes, since we know that 
each extracted relation has at least one sentence supporting it.

We used two different measures to classify an instance: the 
confidence score assigned by the machine learning classifier, 
and the number of sentences associated with a pair, which we 
call the pair frequency. The classifier confidence score was based 
on the distance to the hyperplane given by the sMIL algorithm, 
as described in Ref. (20). The pair frequency was calculated as 
the number of abstracts where that pair cooccurs in a sentence 
divided by the total number of abstracts in the corpus. We expect 
that pairs mentioned in more documents are more likely to have 
been correctly identified. Both scores were used to study how pre-
cision and recall varies when using a threshold. As the threshold 
increases, recall should decrease while precision increases.

2.4. Knowledge graph for Tolerogenic  
cell Therapy
The proposed ICRel system can extract candidate entries to gen erate 
a cytokine-cell graph. Each candidate entry is supported by the 
sentences where it was found, a classifier confidence score and 
its frequency. Figure 2D shows an example of the final output 
of the ICRel system. Since each cell and cytokine entity was 
normalized to a reference database, we can associate relations 
described over many documents, even if the authors use various 

nomenclatures. Furthermore, since we used the Cell Ontology 
as the reference for cell names, its axioms can be explored to 
expand the graph.

To obtain a knowledge graph for tolerogenic cell therapy, we 
first obtained a set of 3,264 documents about APCs. This set of 
documents does not overlap with the documents used to train 
the classifier, which includes only documents published before 
2015. The same documents should not be used for training and 
testing machine learning classifiers because the classifier will 
have a biased performance on the training documents, leading 
to an overestimation of the quality of the results. Instead, we can 
simply match the immuneXpresso relations with our graph to 
obtain more knowledge.

The extracted relations were imported to Cytoscape (21) to 
visualize the graph. The ICRel graph is an undirected bipartite 
graph where each edge corresponds to a cell–cytokine relation. 
We compared our graph to the one obtained with immune-
Xpresso, by considering it also as an undirected graph. We com-
puted standard properties of the two graphs, such as diameter 
and center nodes, with the Python package NetworkX (22). 
Furthermore, since our system is focused on obtaining informa-
tion about tolerogenic cell therapies, we explored the informa-
tion contained by each graph relevant to this type of therapy.

We considered that a manual evaluation of the automatically 
generated knowledge graph was necessary to estimate the quality 
of the information. We sampled a set of 60 edges to be manually 
validated by three human curators. Each curator validated 30 
edges, with a set of 15 edges common to all three, to calculate the 
interannotator agreement. Each curator accepted an edge if there 
was at least one sentence supporting it in the corpus, and rejected 
otherwise. We asked to classify the cause of each rejection to 
understand the sources of error of our graph. The interannotator 
agreement was measured using Fleiss’ kappa, an adaptation of 
Cohen’s kappa for multiple annotators (23). The classifications of 
the curators were used to estimate the accuracy of the graph.

3. resUlTs

The silver standard described in Section 2.1 is composed of 
25,347 abstracts and a total of 4,445 cell–cytokine relations, 
without considering direction or any other attribute. The silver 
standard did not contain any information about entities men-
tioned in the abstracts that did not participate in cell–cytokine 
relations. We identified 185,243 cells and 189,457 cytokines 
mentions in these abstracts, which we then used to extract 
relations using the distant supervision approach. Considering 
that only 26,357 cell and 25,946 cytokines mentions exist in 
the immuneXpresso database, we identified about seven times 
more entities. Notice that these numbers refer to total mentions,  
i.e., any cell or cytokine may be mentioned more than once across 
the abstracts. We obtained a precision of 0.366 and recall of 0.853 
when comparing with this silver standard. We estimate that the 
low precision is due to entities that do not participate in inter-
actions, and, as such, are not considered in the silver standard 
used. For our objective, it is more important to recognize most 
of the cell and cytokines mentioned in the abstracts because the 
relation classifier will train and identify new relations based on 

http://www.frontiersin.org/Immunology/
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FigUre 4 | Precision-recall curves obtained using the classifier confidence 
score and pair frequency.

TaBle 1 | Results obtained with cross-validation on the immuneXpresso silver 
standard using the classifier confidence score and pair frequency at the threshold 
where the highest F-measure was obtained.

P r F1 Threshold

Pair frequency 0.753 0.718 0.735 0.126
ICRel 0.911 0.696 0.789 0.918
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those entities. Therefore, a recall of 0.853 indicates that most of 
the cell and cytokine names were identified.

We ran a 5-fold cross-validation on the silver standard docu-
ments to evaluate the performance of our system. We randomly 
divided the documents into 5 partitions and iteratively trained a 
classifier on the documents and respective relations of 4 parti-
tions and tested on the documents of the other one. Then we 
compared the relations obtained on each iteration with the silver 
standard, to calculate precision and recall. Using the classifier 
confidence score of each prediction, we can use it as a threshold 
to observe how it affects precision and recall. We compared this 
approach with only using the pair frequency, which was given by 
the number of documents where the cell and cytokine appeared 
within a sentence divided by the total number of documents. 
For both cases, we tested several threshold values and calculated 
precision, recall and F-measure assuming that only pairs with 
scores above the threshold were predicted as positive. Table  1 
compares the confidence score calculated by the classifier with 
the pair frequency, at the threshold where the highest F-measure 
was obtained. Figure 4 shows the precision-recall curve obtained 
by ranking the pairs by classifier confidence or pair frequency. In 
this figure, we can see that for the same recall values, the distant 
supervision approach has higher precision than the frequency 
approach, hence it can provide higher quality results. At the 
highest recall values, the precision of the frequency approach 
is slightly higher, and for maximum recall, the precision is the 
same in both cases since the only difference is how the pairs are 

ranked. However, the classifier confidence score has a larger area 
under the curve (0.881 vs. 0.850). The area under the PR curve is 
used as an estimate of the quality of a classifier in cases where the 
distribution of the labels is skewed (24).

We generated a graph from the immuneXpresso database to 
compare with the graph generated using ICRel. This graph is 
composed of cell–cytokine relations found automatically in 25k 
abstracts from 1988 to 2015, resulting in 432 nodes and 2,495 
edges. The authors of this database provided other properties for 
each relation, such as direction and degree. However, since our 
system did not provide this type of information, we considered 
all interactions regardless of their properties.

The ICRel graph contains 212 nodes and 647 edges, extracted 
from 3,264 abstracts. Each edge is supported by at least one 
sentence from these abstracts, with an average of 2.87 sentences 
per edge. Furthermore, each edge has a confidence value given by 
the classifier. We calculated the Pearson correlation between this 
confidence value and the number of sentences associated with the 
two nodes. We obtained a correlation of 0.666, which indicates 
that while the two variables are positively correlated, this cor-
relation is not very strong. The diameter of this graph is 7, which 
is one edge larger than the immuneXpresso graph. Overall, the 
immuneXpresso graph contains more nodes and edges, which is 
expected since it was derived from a larger number of documents 
than the ICRel graph. Figure 5 presents an overview representa-
tion of the ICRel graph, while Table  2 provides a comparison 
between the two graphs. The files used to generated the graph 
are provided as supplementary material. Data Sheet 1 is a table 
where each line is an edge of the graph and the PubMed IDs of 
the documents are included, whereas Data Sheet 2 contains the 
sentences which support each of the edges.

Regarding the manual evaluation of the graph, the accuracy 
obtained was of 0.615. We obtained a kappa score of 0.600, which 
can be considered an adequate level of agreement (25). In the 
following section, we summarize the most common sources of 
error found in this evaluation.

4. DiscUssiOn

Our work demonstrates how text mining solutions can be used to 
automatically generate a knowledge graph relevant to tolerogenic 
cell therapy. A reference database is required to train a classifier 
based on a specific type of relation. Due to the lack of databases 
about immunological therapies, we could only train and evaluate 
our system on immuneXpresso. As such, we were also limited in 
terms of type of relation to extract, since it had to be a relation 
described in that database. However, cytokines have been shown 
to be therapeutic agents in various diseases such as diabetes mel-
litus and multiple sclerosis. Cytokines also have important roles 
in the production of APCs (3). It is relevant to understand the 
relation described in the literature between cells and cytokine 
since these could suggest novel approaches to tolerogenic cell 
therapy. Our graph contains these relations and can be integrated 
with other sources of information through the unique identifiers 
provided by the Cell Ontology or Entrez databases.

We compared the confidence score given by our classifier with 
a frequency-based approach, where the ranking score is given by 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 2 | Comparison of ICRel and immuneXpresso graphs in terms of number 
of nodes, edges, abstracts used, and diameter.

icrel immuneXpresso

Nodes 212 433

Cells 93 295

Cytokines 119 138

Edges 647 2,509

# abstracts 3,264 25,347

Diameter 7 6

FigUre 5 | Overview of the ICRel knowledge graph. Cells are represented as white circles while cytokines are gray squares.
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the frequency of a cell–cytokine pair in the corpus. We found that 
the score given by the classifier is more accurate than the pair 
frequency. This is also supported by the low correlation between 

the classifier confidence and number of sentences supporting that 
pair (0.666). Our system learns how to classify relations using the 
context words as features. A cell–cytokine pair may be mentioned 
in multiple documents, but if the context words used are not simi-
lar to other positive pairs, it will not be classified as such. This is 
the main advantage of machine learning methods, along with the 
possibility of improving the classifier with more validated data.

Most of the processing time necessary to run our system 
consists of training the classifier. This part of the process takes 
more time and memory as more documents are considered for 
training since each document introduces new words and entities. 
In our case, the training itself took about 1 day. However, once 
the classifier is trained, a new set of documents can be processed 
relatively quickly.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 3 | Degree of novelty of ICRel vs. immuneXpresso.

category of edge #

Present in both graphs 195
Unique to ICRel w/common nodes 178
Unique to ICRel w/a unique node to ICRel 256
Unique to ICRel w/both nodes unique to ICRel 18

Total 647

FigUre 6 | Subgraph created using the longest paths of the ICRel and 
immuneXpresso graphs with at least three nodes in common. Solid line 
corresponds to the edges of the ICRel graph, dashed line to the 
immuneXpresso graph, and double line to both.
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4.1. comparison between icrel and 
immuneXpresso graphs
The main point of comparison of our graph is the one created 
by Shen-Orr et al. (13), which we refer to as the immuneXpresso 
graph. This graph is larger than ours, containing more nodes and 
edges. However, it is important to consider that immuneXpresso 
was created using a more generic set of documents, that were 
retrieved using the keywords “Immunology and Allergy” and 
“General Science,” from a span of about 50  years. We demon-
strated the usefulness of our system by generating a knowledge 
graph focused on one particular subject and using only abstracts 
published in the past two years. We expect that the number of 
relations extracted by our system would increase with a larger set 
of documents. Our assumption is that a more limited and focused 
set of documents should result in a graph with more relevant 
information to the subject of study.

We first compared the information stored in each graph in 
general terms. As shown in the Section 3, despite the difference 
in size, both graphs have a similar diameter. The diameter cor-
responds to the shortest distance between the two most distant 
nodes of a graph. As an example, Figure  6 shows a subgraph 
containing the union of the longest paths of each graph with at 
least three nodes in common. There are three edges in this sub-
graph that are shared between the two graphs (T cell < - > IL4, 
IL4 < - > T-helper 2 cell and T-helper 2 cell < - > IL13). These 
associations that exist in both graphs show that ICRel can extract 
well studied cell–cytokines relations, while in Section 4.2 we 
show examples of extracted relations from recent articles that 
could not be found in the immuneXpresso graph.

Comparing the relations described by each graph, we can 
observe various differences. The nodes in the center of the immun-
eXpresso graph (the center is the set of nodes whose distance to 
any other node is less or equal to the radius) are all cytokines 
(TGFB and TNG) while the ICRel graph has two cytokines (IL-6 
and CSF2) and two cells (dendritic cell and T-cell) in the center. 
Dendritic cells are APCs, while T-cells can be targeted by APCs. 
Both cytokines CSF2 and IL-6 are also relevant to APCs since the 
former is used to differentiate APCs and the latter is produced by 
dendritic cells.

To better understand the degree of novelty of ICRel we 
divided its edges in four categories: (i) edges in common with 
the immuneXpresso graph; (ii) edges where the nodes existed in 
the immuneXpresso graph but were not connected; (iii) edges 
containing only one node that existed in the immuneXpresso 
graph; and (iv) edges where the two nodes did not exist in the 
immuneXpresso graph. Table 3 shows the total of edges for each 
of these categories.

The two graphs have 132 nodes and 195 edges in common. 
The top five nodes that were in these edges were T  cells (36), 
macrophages (20), TNF (19), CSF2 (17), and dendritic cells 
(15). Considering only nodes that were common to both graphs, 
ICRel found 178 new relations. For example, ICRel identified a 
relation between mononuclear cells and CSF2, supported by six 
documents.

The ICRel graph has 76 nodes (23 cells, 53 cytokines) that 
were not in the other graph. Of the new cytokines identified, 

most were actually genes coding cytokine receptors. However, 
we believe that these are as relevant to understand cell–cytokine 
relations as the cytokines themselves. A cell that produces a 
cytokine receptor is intrinsically associated with that cytokine. 
We found that 14 of the 76 new nodes were actually in the 
immuneXpresso database under different synonyms. For 
example, we identified the expressions “alpha interferon” and 
“interferon-alpha,” but we were not able to associate with IFNA, 
which is how it is represented in immuneXpresso. These syno-
nyms should be considered in future analysis to facilitate the 
integration of different knowledge graphs.

The ICRel graph contains 256 edges with one new node, and 
18 where the two nodes were new. The top five nodes of this 
category were T cells (27), dendritic cells (25), FLT3 (16), CCR7 
(16), and monocytes (16). While the immuneXpresso graph 
contained many edges with T  cells and dendritic cells, ICRel 
identified even more cytokines related to those cells. The FLT3 
receptor is associated with the differentiation of dendritic cells, 
which might explain why our graph contains more edges with this 
cytokine receptor. CCR7 is a cytokine receptor annotated with 
the Gene Ontology term “positive regulation of dendritic cell 
antigen processing and presentation,” which was recognized by 
our system due to an entry in the cytokine registry that we used.

4.2. Manual evaluation
We manually evaluated a partition of the ICRel graph to under-
stand how a classifier trained on the immuneXpresso dataset 
would perform on a different corpus. This evaluation was per-
formed by three researchers, who we refer to as curators, who 
read the sentences associated with 60 relations and determined 
if the cell–cytokine relation was supported by the text. The cura-
tors were given the same description of what was considered a 
relation, similar to the one presented in Section 2.3. We observed 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 4 | Cytokines and receptors identified by ICRel as being associated with 
APCs.

icrel immuneXpresso

cell type reference aPc Dc aPc Dc

CCL19 (27) • • •
CCL21 (27) • •
CCR7 (27) • •
CCL5 (28) • •
CXCL12 (28) • •
CSF2 (30) • • • •
IFN1 (31) • • •
IL12 (32) • • • •
TGFB1 (33) • •
TNF (34) • • •

The second column indicates the reference of the abstract where that relation was 
found. The third and fourth columns indicate if that cytokine was associated with APCs 
or dendritic cells in ICRel and immuneXpresso respectively.
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that the curators did not agree in some cases, leading to an inter-
annotator agreement of 0.600, based on 15 relations. Since this 
value represented only a moderate agreement, we analyzed the 
cases where the curators disagreed. Our system considered both 
cytokine and cytokine receptors, and it was not clear to the cura-
tors which one was relevant. For example, one of the sentences 
contained the following text: “Flt3 ligand (Flt3L)”; our system 
recognized both FLT3LG and FLT3 and as cytokines, while FLT3 
is actually a cytokine receptor. It is reasonable to assume that a 
cell associated with FLT3LG is also associated with its receptor, 
however, since it is not explicitly stated in the sentence, it caused 
ambiguity among the curators.

The accuracy obtained with the manual evaluation of the 
graph was of 0.615. The most common errors were indirect 
relation between the cytokine and cell, i.e., whenever there is a 
third element that affects both cytokine and cell. For example, 
consider the pair (CXCL2, memory T cell) in the sentence “(…) 
perivascular macrophages that are activated by IL-1a produced 
by keratinocytes and dDCs that are attracted by these mac-
rophages through CXCL2 signaling, both of which are essential 
for the efficient activation of memory T cells in situ.” Although 
both elements of the pair are mentioned in the sentence, there 
is not a direct relation described, instead, they are both directly 
associated with keratinocytes and dDCs.

Another common source of error is the incorrect recognition 
of named entities, both cytokines and cells. For example, in 
every sentence mentioning “granulocyte macrophage colony-
stimulating factor,” macrophage was recognized as a cell entity. 
The cytokine registry we used to generate a list of synonyms 
contained some entries that were too ambiguous to be used by 
our system, such as acronyms that correspond to normal words. 
Although we were able to remove most of these synonyms, some 
cytokine synonyms stayed in the lexicon and generated named 
entity recognition errors. This is the case of immunoglobulin M 
(IgM), which was recognized as CD40LG since IGM is a synonym 
of that cytokine.5 These errors are hard to prevent since it is not 
possible to have complete knowledge of which synonyms have 
multiple meanings. One possible solution to this problem consists 
in computing the semantic similarity of all entities of an abstract 
and using that value to exclude outliers. Assuming named entity 
recognition errors would have low similarity to the other entities, 
this method could improve the precision of our graph (26). In 
the previous example, we expect that immunoglobulin M and 
CD40LG would have low similarity to the other entities of that 
abstract.

To identify if the graph contains information relevant to 
APCs, we evaluated manually the edges containing the node 
“professional antigen-presenting cell.” In the ICRel graph, this 
node is connected to 10 nodes: CCL19, CCL21, CCL5, CCR7, 
CSF2, CXCL12, IFN1, IL12, TGFB1, and TNF. Two of these 
cytokines (CSF2 and IL12) also appear associated with APCs 
in immuneXpresso. The ICRel graph contains the more generic 
IFN1, which includes two cytokines that appear associated with 
APCs in immuneXpresso (IFNA and IFNG). We confirmed the 

5 https://www.ncbi.nlm.nih.gov/gene/959.

relations between APCs and its respective cytokines in the articles 
from where they were extracted (Table 4). By carefully analyz-
ing the articles or the sentences provided in the supplementary 
material Data Sheet 2, it is possible to obtain more details about 
these relations. For example, Bryce et al. (27) explain the roles of 
CCL19 and CCL21 in the migration of APCs to lymph nodes. 
Since our system identifies both cytokines and their receptors, 
it also identified a relation between CCR7, a chemokine recep-
tor, and APCs. Even though CCR7 is associated with APCs, as 
explained in this article, it is out of the scope of the knowledge 
graph, which consists of cell–cytokines relations (28). show that 
CXCL12 and CCL5 are relevant to the recruitment of APCs in 
early vitiligo. Although this is not directly related to tolerogenic 
therapies, understanding the mechanisms of APCs in disease can 
lead to new methods to generate and modulate the action of these 
cells. Further improvements could be added to ICRel in order 
to extract other attributes of each relation, such as directional-
ity, temporality and magnitude. For example, by adapting the 
methods that we recently developed to classify the type, polarity, 
degree and modality of clinical events (29).

To understand whether our method was able to find relations 
that were not yet well studied, we compared the cytokines associ-
ated with APCs and dendritic cells on ICRel and immuneXpresso 
(Table 4). ImmuneXpresso was generated using abstracts up to 
2015, excluding that year. Only 2 of the 10 cytokines from ICRel 
were also found in immuneXpresso. Seven cytokines were found 
to be associated with APCs in articles from recent years. One 
cytokine receptor (CCR7) was also found to be associated with 
APCs and dendritic cells by our system. Our system as able to cor-
rectly extract this new information and organize it in a knowledge 
graph. We also studied the edges containing the node “dendritic 
cell,” which is a type of professional APC. The ICRel graph con-
tains 64 edges associated with dendritic cells, of which 49 were 
not found in immuneXpresso. Dendritic cells and APCs had 7 
edges in common in the ICRel graph (IFN1, CCR7, IL12, CSF2, 
TNF, CCL5, and CCL19). Comparing to the immuneXpresso 
graph, we can see that most of the cytokines associated with 
dendritic cells were found to be associated with APCs by ICRel. 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
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TaBle 5 | Relations of tolerogenic APC types found by the ICRel system.

cell cytokine reference

Tolerogenic dendritic cell TGFB1 (37)
Tolerogenic dendritic cell IL33 (38)
Regulatory dendritic cell CCL8 (39)
Myeloid-derived suppressor cell TNF (35)
Myeloid-derived suppressor cell TNFRSF1B (35)
Myeloid-derived suppressor cell TNFRSF1A (35)
Myeloid-derived suppressor cell CXCL2 (40)
Myeloid-derived suppressor cell IL10 (36)
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Since there is no overlap in the source documents, this means that 
while these cytokines were first reported to be associated with 
dendritic cells, other APCs types have also been studied, such as 
epidermal Langerhans cells (27) and macrophages (33).

We found that immuneXpresso lacked information about 
specific tolerogenic cell types, given that the version of the Cell 
Ontology used did not contain them. Thus, we added a list of 13 
tolerogenic APC types to the lexicon so that relations containing 
these cells could also be detected. This led to the identification 
of 8 relations containing tolerogenic APCs (Table 5). The major-
ity of these relations included myeloid-derived suppressor cells 
(MDSC). The system identified relations between MDSC and TNF, 
TNFRSF1A, and TNFRSF1B. While TNFRSF1A and TNFRSF1B 
are actually cytokine receptors, the article that mentions them 
(source article) describes the effects of gene deletion of both the 
cytokine and the receptors in carcinogenesis (35). The relation 
between MDSC and IL10 was extracted from a review article about 
the role of these cells in inflammatory diseases (36). Another rela-
tion extracted was between tolerogenic dendritic cells and TGFB1. 
In this case, the source article establishes the importance of TGFB1 
in immunotherapies using tolerogenic dendritic cells (37).

4.3. conclusion and Future Directions
Due to its initial stage, there is a lack of openly available databases 
about tolerogenic cell therapy. Although commercial databases 
such as COPE and Cytokine Reference exist, these depend on 
manual curation. It is time-consuming to manually develop 
and then update databases with newly found information from 
published articles. Our ICRel system presents a solution to this 
issue, by using machine learning to automatically generate a 
knowledge graph of cell–cytokine relations. Using the knowl-
edge graph, experts can then find more facts to store in their 
own databases, or help them formulate new hypotheses that 
need further study. Our system obtained higher precision values 
when compared to a frequency based approach.

We demonstrated the usefulness of the system by focusing 
on antigen presenting cells relevant to tolerogenic cell therapy. 
There have been various advancements in our understanding of 
immune mechanisms and pathways that are dysregulated in auto-
immune diseases, and active in transplant rejection, contributing 
to advancements in tolerogenic therapies. A better organization 
of the current knowledge about this process would benefit the 
development of new treatments and clinical trials. The knowledge 
graph contained relations between APCs that were found only in 
recent articles, thus showing how our system can lead to a more 

complete information structure on this topic. Furthermore, we 
identified multiple associations between specific tolerogenic 
APCs and cytokines. We believe that our proposed system has 
a large potential to help practicing cell biologists or cell therapy 
experts in identifying relevant relationships that can only be 
found by exploring various scientific articles in an integrated way. 
It was not our aim to find novel or specialized information but 
rather show the feasibility of the system and to use examples for 
guiding practitioners and experts on how to take advantage of it.

The work presented in this manuscript has two major appli-
cations. The first is information retrieval systems that can use 
the information from our graph to integrate various sources of 
information. This is the case of Bio2RDF (8), which stores several 
biomedical databases, such as KEGG, PubMed, and HGNC, in 
RDF format. The Bio2RDF project is an effort to link the entries of 
these databases using normalized URIs. Since our system matches 
each cytokine to the Entrez database and each cell to the Cell 
Ontology, it should be simple to integrate our graph with other 
databases for information retrieval. Another major application 
is recommendation systems. It is useful for a researcher work-
ing with a specific group of cell lines to know which other cells 
could also fit in that group. There are various methods to provide 
this type of recommendation, one of them consisting in explor-
ing the structure of the graph to compute similarity measures.  
A recommender system could then suggest cells that interact 
with the same cytokines as the cells in the group. By integrating 
with external sources, it would be possible to suggest cytokines 
associated with specific diseases, chemicals or genes.
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