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Human memory stores vast amounts of information. Yet recalling this information is often challenging when specific cues

are lacking. Here we consider an associative model of retrieval where each recalled item triggers the recall of the next item

based on the similarity between their long-term neuronal representations. The model predicts that different items stored in

memory have different probability to be recalled depending on the size of their representation. Moreover, items with high

recall probability tend to be recalled earlier and suppress other items. We performed an analysis of a large data set on free

recall and found a highly specific pattern of statistical dependencies predicted by the model, in particular negative corre-

lations between the number of words recalled and their average recall probability. Taken together, experimental and mod-

eling results presented here reveal complex interactions between memory items during recall that severely constrain recall

capacity.

In the classical free-recall paradigm (Binet and Henri 1894; Mur-
dock 1960, 1962; Roberts 1972; Standing 1973; Murray et al.
1976) subjects are presented with lists of unrelated words and
are prompted to recall them in an arbitrary order. Participants typ-
ically cannot accurately recall more than five words. For compar-
ison, people can successfully recognize thousands of items after a
brief exposure (Standing 1973). Furthermore, more words can be
recalled with appropriate cues (Tulving and Pearlstone 1966), in-
dicating that the bottleneck for the recall is information retrieval
from memory rather than a complete loss of information. It was
proposed that the average number of items that can be recalled ex-
hibits sublinear power-law scaling with the number of items in
memory: Nrec � La, where L is the number of presented items,
with a ¼ 0.3–0.5 (Murray et al. 1976). In another experimental
paradigm, subjects were instructed to freely recall words with dif-
ferent first letters (“a” to “z”). Also for this paradigm, subjects
could only recall a small fraction of all the words they can reason-
ably be estimated to know (Murray 1975). Across the different ini-
tial letters, the number of recalled words exhibits a similar
power-law scaling with the estimated number of familiar words
that begin with the corresponding letters (Murray 1975), indicat-
ing that a universal mechanism of information retrieval from
memory mediates recall.

Most existing models of free recall proposed in the psycho-
logical literature ignore the effects of words’ identity as expressed
in their neuronal representation on long-term memory and focus
on describing associations between the items established during
acquisition and rehearsal. These models are characterized by a
large number of free parameters that are tuned to fit the recall
data (Raaijmakers and Shiffrin 1980; Howard and Kahana 2002;
Laming 2009; Polyn et al. 2009; Lehman and Malmberg 2013).
We recently proposed a basic mechanism of information retrieval
(Romani et al. 2013) where memorized items are assumed to be
encoded (represented) by randomly assembled uncorrelated neu-
ronal populations (Hopfield 1982; Amit 1989). The goal of the
model is to identify general principles of information retrieval
from long-term memory and thus it did not include effects of se-
rial position of memory items during presentation that are specific

to free-recall paradigm. The retrieval mechanism proposed (Ro-
mani et al. 2013) specified the general limits on retrieval capacity
that arise due to the randomness of long-term neuronal represen-
tations of items. In particular, the model robustly accounts for
power-law scaling of retrieval capacity mentioned above, without
having to tune a single free parameter (Romani et al. 2013).

We believe that the mechanism proposed by the model
(Romani et al. 2013) plays a crucial role in all experimental para-
digms that involve information retrieval from long-term memory,
including free-recall paradigm. The goal of the current contribu-
tion is to derive statistical properties of recall that emerge due to
random memory representations and to confront them with the
large data set of recall experiments performed in the laboratory
of M. Kahana (data courtesy of M. Kahana, see Materials and
Methods). More specifically, we derived model predictions regard-
ing the relation between the probability to recall an item and the
size of its neuronal representation, and statistical interactions be-
tween items of different recall probability presented in the same
list. We analyzed the experimental data in the way suggested by
the model and compared the results with model predictions. We
also extended our model to include the effects of order presenta-
tions specific to free recall data, and showed that the predicted ef-
fects are retained in the extended model.

Results

Retrieval model simulations
The retrieval of an item in the model (Romani et al. 2013) is
mediated by the activation of the corresponding neuronal pop-
ulation that encode this item in the long-term memory network
(Hasselmo and Wyble 1997; Gelbard-Sagiv et al. 2008), and each
retrieved item acts as an internal cue for the next item (Raaij-
makers and Shiffrin 1980; Russo et al. 2008; see Fig. 1D for a sche-
matic representation of the model).The size of the intersection
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between populations (i.e., the number of neurons that represent
both items) defines the “similarity” between corresponding items
(Raaijmakers and Shiffrin 1980; Hills et al. 2012). In contrast to
Howard and Kahana (2002) model, encodings of items are not re-
quired to be orthogonal, leading to differences in similarities be-
tween items (see Fig. 1B). The dynamics of retrieval is described
by a sequence of active populations, with the next population
chosen to be the one that has a maximal intersection with the
currently activated one, not counting just “visited” item. The re-
trieval process is completely deterministic, hence the network
eventually enters into a cycle, repeating the pattern of visited pop-
ulations, and no more items can be retrieved (Fig. 1D; similar re-
call termination was also proposed in Laming 2009).

To derive testable implications of our model, we imitated the
experimental protocol by generating a large pool of randomly
generated memory representations and simulated multiple re-
calls of randomly assembled lists of 16 items (see Materials and
Methods for more details). We then computed the intrinsic prob-
ability for a word to be recalled (Prec) when considering all trials
where it was presented. We observed that across the pool of words,

Prec of a given item is to a large degree determined by the number
of neurons that form its neuronal representation via a monoton-
ically increasing relation (correlation coefficient is 0.94, Fig. 2A).
Such a monotonic dependency emerges because larger neuronal
groups statistically have larger intersections with other represen-
tations. Moreover, we observed that easier items (the ones with
bigger representations and hence larger Prec) tend to be recalled
earlier than more difficult ones (correlation coefficient is 20.24,
Fig. 2B). This reflects the tendency of easy items to suppress the
recall of more difficult ones and hence to limit the overall recall
performance. As shown in the mathematical analysis of recall
capacity of the model (Romani et al. 2013), it is precisely the var-
iability in the sizes of the neuronal representations of memory
items that is responsible for the decrease of the performance
with increasing average relative size of neuronal representations,
f (see Fig. 2C).

Comparing the results shown in Figure 2A and C, one
might detect an apparent paradox: on the one hand, items with
larger representations have a higher probability to be recalled,
but on the other hand, increasing the average size of items

Figure 1. Schematic description of the retrieval model. (A) Long-term representations of items in memory dedicated network. Each black square rep-
resents a network unit participating in the encoding of the item. On average f ¼ 2% of units are active for each item. Due to the random nature of en-
coding the number of encoding units varies (examples are shown on the right side of the image). Some units simultaneously participate in encoding more
than one word. (B) Similarity matrix. Each entry shows the number of units participating in encoding of pairs of corresponding words. (C) Similarity matrix
for items chosen for a single trial. This is a corresponding submatrix of the full similarity matrix shown in B. Red circles indicate maximal similarity in a given
row; blue circle indicated second maximal similarity in a row. (D) Schematic representation of the retrieval process. The first item is retrieved randomly.
Next an item having largest or second largest similarity (see C) is selected (see Materials and Methods).
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representations results in lower average performance. The resolu-
tion of this paradox lies in the realization that the recall probabil-
ity of an item as well as the general recall performance critically
depends on the statistics of the pool of items in memory. In par-
ticular, the reason that the performance is declining with in-
creasing f is the increasing “variability” in the sizes of neuronal
representations, rather than the increase in the “average” size of
representations. To further illustrate this point, we simulated
the recall performance when all of the lists are composed of ran-
domly chosen items that have representations of the same size.
As shown in Figure 2D, for such a composition of the lists, the
performance does not depend on the chosen size of neuronal
representations.

These counter-intuitive results indicate nontrivial interac-
tions between easy and difficult items in our recall model. To
derive quantitative measures characterizing these interactions
that can be directly tested with our data set (see Materials and
Methods), we again considered lists of randomly chosen items
of different sizes, and characterized each recall trial by three vari-
ables: the average Prec of presented items (Prec-pres); the number of
items recalled (Nrec) and the average Prec of recalled items (Prec-rec).
One can characterize the statistical properties of recall interac-
tions between different items by computing, across trials, the cor-
relation coefficients between Nrec and either Prec-pres or Prec-rec. It is
instructive to compare our model with the “naı̈ve” one where
each item is recalled independently with its corresponding prob-
ability Prec. As shown in Figure 3A and B, these correlations are
radically different for the two models. While for the naı̈ve model,
Nrec is positively correlated with Prec-pres and only slightly corre-
lated with Prec-rec, the associative recall model produces almost
no correlation of Nrec to Prec-pres and negative correlation to
Prec-rec. In other words, lists that are comprised of easier items
will on average not be recalled better than the lists of difficult
items, and recalling easier items will typically result in fewer items

recalled on this trial. Note that these re-
sults are obtained for all values of sparse-
ness f, i.e., they represent the generic
feature of our retrieval model.

Analysis of the data
We tested the above predictions by ana-
lyzing the large data set of free recall
experiments performed by 141 subjects
with 112 trials per subject (see Materials
and Methods). We first analyzed the
data for the existence of easy and difficult
words. Figure 4A shows the distribution
of recall probabilities, Prec for all the
words in the data set, computed as a frac-
tion of times a given word was recalled
when presented. Figure 4B shows the
scatter plot of the Prec obtained from
two random disjoint groups of subjects,
showing that the words that were easy/
difficult for one group tend to be easy/

difficult for another group. These results
demonstrate that different words ex-
hibit significantly different probabilities
to be recalled, and that this distinction
is broadly reproducible across subjects.
We also found that, as predicted by the
model, easy words tend to be recalled ear-
lier than the difficult ones (Fig. 4C).

Having established the distribution
of recall probabilities across the word

pool, we computed the correlation coefficients between Nrec,
Prec-pres, and Prec-rec across the trials. To test for the reliability of
these estimates, we performed nonparametric bootstrapping anal-
ysis of correlation values. One thousand bootstrap iterations were
performed by randomly dividing the data set in two groups of sub-
jects. Trials of one group were used to estimate Prec for each word,
and another group was used to estimate the correlations. Nrec ex-
hibits negative correlation with Prec-rec (20.09+0.02) and small
but still positive correlation with Prec-pres (0.02+0.01). Figure
4D (upper panel) shows the histograms of obtained correlation co-
efficients. We conclude that the statistics of recall in terms of in-
teractions between easy and difficult words is similar for the
model and experiment (see Fig. 3). To stress this point further,
we compared our results with a “naı̈ve” model where each word
is recalled independently with the corresponding recall probabil-
ity (Fig. 4D, second panel). As expected, Nwr in this model is pos-
itively correlated to Prec-pres (0.13+0.01) and its correlation to
Prec-rec is very small (20.00+0.01), i.e., naı̈ve model exhibits
very different recall statistics than both the data and associative
recall model. The corresponding histograms obtained from simu-
lating the associative retrieval model (with sparseness parameter
f ¼ 0.02) are shown in Figure 4D, third panel.

Extension of the associative retrieval model
As opposed to more detailed models of free recall proposed in psy-
chological literature (Raaijmakers and Shiffrin 1980; Howard and
Kahana 2002; Laming 2009; Polyn et al. 2009; Lehman and
Malmberg 2013), our model cannot account for some of the clas-
sical effects on recall resulting from the presentation order, i.e.,
primacy (better recall of initial words), recency (better recall of
last words), and temporal contiguity (tendency to recall neighbor-
ing words in temporal proximity, see Murdock and Okada 1970;
Howard and Kahana 1999). Moreover, our model is completely
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Figure 2. Statistical properties of recall in associative retrieval model. (A) Probability to recall an item
across many trials versus the relative size of its neuronal representation. (B) Mean position of the item in
recall sequence versus its recall probability. (C,D) Fraction of items recalled when underlying represen-
tations are random with average sparseness f (C) and when the fraction of active neurons representing
particular word is exactly f (D).
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deterministic and hence cannot account for the distribution of in-
terresponse times observed experimentally (Murdock and Okada
1970). In order to verify that the results presented above are not
significantly affected by these effects, we extended the model by
modifying, for each trial, the similarity measures between pre-
sented items in a way that depends on their presentation order
and introduced weak stochasticity in the retrieval (see Materials
and Methods). The extended retrieval mechanism can be con-
sidered as a simple version of the classical Search Associative
Memory (SAM) model (Raaijmakers and Shiffrin 1980) with simi-
larities consisting of two components—one based entirely on the
internal neuronal representations of memory items and another
based on the associations acquired during presentation and re-
hearsal. More specifically, we assumed
that the similarity measures between pre-
sented words are modified, temporarily
for each trial, in a way that depends on
their presentation order (see Materials
and Methods). Briefly, the first presented
item has a strengthened representation
in the network (primacy), thus its simi-
larity to all other items presented on
the same trial is enhanced by a certain
amount. We also assumed that at the
time of each item presentation, one of
the previous items could be spontane-
ously recalled into short-term memory
and acquire an additional similarity to
a newly presented item, with probabil-
ity of the spontaneous recall decaying
exponentially with the serial distance
between the items (contiguity). This
mechanism of associating different items
in the presented list is similar to the one
considered in Raaijmakers and Shiffrin
(1980); however, we assume that previ-
ous items can reenter the short-term
memory even after falling out of it, due
to spontaneous recall between the pre-
sentations of new items. To account for
the asymmetric nature of contiguity,
the forward association is stronger than
the backward one. Finally, to account
for recency, we assumed that after the
list presentation, one of the last items re-
mains in the short-term memory and
consequently becomes the first item be-

ing recalled. We also introduced stochas-
tic retrieval mechanism by assuming that
the transitions occur probabilistically
with the corresponding probabilities in-
creasing with the similarities between
consecutive words, similar to SAM.

We found that the model is flexible
enough to fit the recall data well with re-
spect to serial position curve (recall prob-
ability versus position of a word in the
list; Fig. 5A) and the shape of the con-
tiguity effect as described in Howard
and Kahana (1999) (Fig. 5B). We also ob-
tained similar time course of recall, char-
acterized by the average cumulative
number of words recalled as a function
of time (Fig. 5C versus D) and average
time to recall a new word computed sep-
arately for trials with different number of

words recalled (Fig. 5E versus D, see also Murdock and Okada
1970). Comparing Figure 5C and D, one can estimate the frequen-
cy of oscillations to be �50 Hz, i.e., in the range of a Gamma
rhythm, but one should note that this estimate could depend
on the particular noise model we chose and could be different
in a more realistic neural network model. No precise tuning of pa-
rameters is needed to account for the data, illustrating the robust-
ness of the proposed recall mechanism (see Materials and
Methods for more details). Since the retrieval process in the ex-
tended model is stochastic, theoretically all presented items will
be recalled given enough time. We found however that even after
107 transition cycles the recall performance did not saturate. The
long-time behavior of the average number of recalled words is
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hard to calculate analytically, but we observed that in the large
range of times (between 102 and 105 cycles) it can be approximat-
ed as a logarithmic function (Fig. 5D, inset). This approximate
behavior implies that retrieving each new item requires �2.5
the time already elapsed since the beginning of the trial.

After establishing that the extended model describes classical
features of free recall experiments we tested whether the statistical
properties of the basic model are retained. To this end, we simu-
lated the recall experiment and compute the bootstrapped corre-
lation coefficients the same way we did with the data and the
basic model. Similar to the basic model, the word recall probabil-
ity is largely defined by the word size (correlation coefficient is
0.62, Fig. 6A). Mean word position is also negatively correlated
with word recall probability (correlation coefficient is 20.23,
Fig. 6B). We finally evaluated the statistical interactions between
the recall of easy and difficult words in the same way that we
did in the basic model above. We again found that the correlation
between the number of recalled words and average word recall
probability of recalled words was negative and the correlation be-
tween the number of recalled words and average word recall prob-
ability of presented words was close to zero (Fig. 4, cf. D and C).

According to the extended version of the model, similarities
between the presented items are composed of two components.
The first component is determined by the intrinsic overlaps be-
tween long-term representations of the items and thus stable for

the duration of the experiment, whereas
the second component depends on the
order in which the items are presented
and thus holds for the duration of a
single trial. The second component of
similarities can be manipulated by the
presentation protocol, e.g., presenting
some of the words twice, as in the classi-
cal list strength effect study (Tulving and
Hastie 1972). In accordance with the
contiguity mechanism described above,
when a word is repeated twice, it acquires
additional similarity to two words at the
previous positions, as opposed to words
that are only presented once. Hence
the probability for the repeated word to
be recalled is increased even though
its long-term neuronal representation is
not assumed to change. Following Tulv-
ing and Hastie (1972), we simulated the
model for lists of 16 words, with half of
them repeated twice. We found that the
probability to recall a repeated word is in-
creased compared with the control case
(lists of 16 words, each presented once),
while the probability to recall a word pre-
sented once is decreased due to suppres-
sion (0.64, 0.56, and 0.39, respectively).

Discussion

Our retrieval model is based on two as-
sumptions: that items are encoded by
random groups of neurons (representa-
tions) in dedicated memory networks;
and that retrieval of subsequent items
from memory is determined by the size
of the intersections between the cor-
responding neuronal representations.
Due to its deterministic nature and the
randomness of representations, retrieval

process enters into a loop before all of the items in memory are
reached. Those assumptions are sufficient to explain the difficulty
human subjects encounter when attempting to recall unrelated
lists of words. Moreover, the predictions arising from those as-
sumptions are confirmed by the analysis of the experimental data.

Several detailed models of free recall were developed in the
psychological literature (Raaijmakers and Shiffrin 1980; Howard
and Kahana 2002; Laming 2009; Polyn et al. 2009; Lehman and
Malmberg 2013). These models are characterized by precise match
to experimental data. Our model shares some of the features with
these detailed models, but is much simpler and is explicitly cast
in terms of neuronal representations of items in memory. This
allowed us to make several predictions regarding the data. More
specifically, we introduce the notion of average “recall probabili-
ty” for a given item determined by the size of its neuronal repre-
sentation, as measured in free recall experiments with randomly
composed lists of unrelated words. Indeed, analysis of the data
presented in this contribution showed that different words have
different recall probabilities consistently for different groups of
subjects (easy versus difficult words). The model also robustly pre-
dicts the pattern of recall statistics characterized by specific corre-
lations between the recall of easy and difficult words. Surprisingly,
due to the interaction between easy and difficult words, there is no
significant correlation between the average recall probability of
presented words are and how many of them will be recalled.
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Moreover, there is a negative correlation between the average re-
call probability of “recalled” words and their number. These pre-
dictions are supported by the analysis of the data. A more direct
test of the model would be to specifically assemble lists of either
most easy or most difficult words—the average number of them
recalled should not be significantly different.

One interesting issue not addressed by our model is how sub-
jects avoid reporting words not presented for recall. Analysis
showed that the rate of such mistakes (“intrusions”) is low, �0.3
intrusions per trial. Moreover, most of the intrusions involve
words that were presented to the subject in one of the previous tri-
als, i.e., may constitute a delayed recall. One possible mechanism
for restricting the recall to the current list is tying the neuronal
representations of the words together via the representation of a
list (“context”), as in the influential Temporal Context Model of
Kahana (Howard and Kahana 1999).

Our basic model can be extended to account for classical fea-
tures of free recall, namely primacy, recency, and contiguity. In
the extended model, similarities between the presented items
are determined by two components, the first one is constant
and determined by the intrinsic overlaps between long-term rep-
resentations of the items, and the second one is formed at each tri-
al and depends on the order in which the items are presented for
recall. The first component is a random one and is chiefly respon-
sible for the fact that only a diminishing fraction of words can be
recalled for longer lists, while the second component can poten-
tially improve the recall by overcoming the randomness of the
first one. We also showed that a weakly stochastic version of the
model results in temporal dynamics of recall that is similar to ex-
perimentally measured one.

Taken together, the results presented in this study strongly
suggest that associative search for information stored in memory,
based on internal representations of memory items, underlies re-
trieval process in free recall and similar experimental paradigms.

We note that similar process, termed
“latching dynamics” was suggested as a
mechanism of free association transi-
tions in the context of attractor neural
network models of cerebral cortex (Russo
et al. 2008). Some of the characteristic
features of this mechanism can be cap-
tured in simplified recall models that
provide a parsimonious explanation for
many of the classically observed charac-
teristics of recall. The model establishes
the size of long-term neuronal repre-
sentation of a word as an important fea-
ture that controls its recall probability.
The number of neurons that encode a
word in memory can in principle be
measured in neurophysiological experi-
ments (or possibly inferred from EEG/
MEG imaging, see e.g., Burke et al.
2013), which would constitute the direct
test of model predictions. Another future
research question is whether the word’s
recall probability can be “predicted”
by such observable attributes as its usage
frequency, emotional valence, ortho-
graphic, and syllabic length etc. In the
interesting recent study (Lohnas and
Kahana 2013), it was reported that words
of high and low usage frequency tend to
have higher recall probability compared
with words with intermediate frequency.
This tendency, even though statistically

significant, is however rather weak compared with the variability
in Prec of words with similar frequency, i.e., the latter is not
enough to predict the former on a word by word basis. We found
that word length is also significantly correlated with recall proba-
bility (Katkov et al. 2014; see also Shulman 1967 for earlier study
of recognition memory), but also this effect is weak. It will be in-
teresting to find how well a combination of measurable word attri-
butes can constrain its recall probability, and how it correlates to
the size of the word’s long-term neuronal representation.

Materials and Methods

Basic model
We assume that each word is represented by a randomly chosen
group of neurons in the dedicated memory network of N neurons
(Romani et al. 2013). To mimic the experimental protocol (see be-
low), we generated a large pool of such groups specified by binary
patterns {jw

i = 0;1} where w ¼ 1,. . .,W indicates different words in
the pool of size W ¼ 1638 and i ¼ 1,. . .,N indicates the neurons in
the network, such that jw

i = 1 if neuron i is participating in the en-
coding of the word w. The components jw

i were drawn indepen-
dently with probability of “1” given by the sparseness parameter
f, and were then fixed throughout the simulated experiment.
We then simulated numerous recall trials (matching experiment).
At each simulated trial, a set of L ¼ 16 items {w1,. . .,wL}was ran-
domly selected for presentation and the set of retrieved items
with serial positions {k1,k2,. . .,kr} was determined as follows: the
serial position of the first item to be recalled (k1) was chosen ran-
domly, and subsequent transitions between states were deter-
mined by the similarity matrix S between the items, each
element of which computed as the number of neurons in the in-
tersection between the corresponding representations:

Skm =
∑N
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Figure 6. Statistical properties of extended model. (A) Probability of correct responses as a function of
word size; (B) mean word position in recalled sequence as function of word-recall probability. (C)
Bootstrapped distribution of correlation coefficients between the number of recalled words and
(red), the average recall probability of presented words; (blue), the average recall probability for re-
called words.
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More specifically, the next retrieved item (kn+1) is the one
that has the maximal similarity to the currently retrieved item
(kn), excluding the item that was retrieved just before the current
one (kn21).

Extended model
W ¼ 1638 items were represented by random groups of neurons
in the network of size N ¼ 105, specified by binary patterns
jw(w ¼ 1,. . .,W) of length N. These representations were fixed
throughout the simulated experiment. The components of jw

were drawn independently with probability of “1” given by the
sparseness parameter f. At each trial, a set of L ¼ 16 items
{w1,. . .,wL} was randomly selected for presentation. Retrieval was
modeled as a series of states “visited” by the network. Following
Romani et al. (2013), transitions between states were determined
by the similarity matrix S between the items (see below). More spe-
cifically, if the system visited states corresponding to items
i1,i2,. . .,ik then the next item is ik+1 = ik is chosen with probability
P(ik+1|ik)ae−qSik+1 ,ik , where parameter q determines the degree of
stochasticity. The system was allowed to evolve for predefined
time T ¼ 3750 transitions, and a new item was retrieved when
the state corresponding to this item appeared in the sequence of
states for the first time. At that moment, random uniformly dis-
tributed time (from 0 to 75 transitions) was added to the system
to model the report of the recalled item.

At each trial, the similarity between the presented items wk

and wm was defined as the sum of three terms, Okm + Pkm + Ckm,
standing for “overlap,” “primacy,” and “contiguity” correspond-
ingly, each term defined as following.

Okm =
∑N

i=1

ji
wk
ji

wm
.

The primacy was modeled by increased overlap between first
and subsequent items - Pkm = {1kjwk

lkjwm
l}N when k or m¼1;0 oth-

erwise. Contiguity was modeled as increased overlap between an
item, m, and one of the previously presented items k: Ckm =
1kjwk

lkjwm
lN,Cmk = gCkm. Here k , m was drawn from distribution

P(k) � e2b(m2k), g ≤ 1 represents asymmetry of contiguity, and
1/b is the average number of previous items available for asso-
ciation. Recency was modeled by selecting initial item, wk, in
the recall sequence with distribution P(k) � e2b(L2k). Overall, the
model can be considered as stripped of SAM model (Raaijmakers
and Shiffrin 1980).

Model parameters
Parameters of the model were chosen the following way. Some
parameters after initial exploration were fixed at plausible values
that produce good fits to some of the features of experimental
data. Parameter f ¼ 0.02 was chosen as it produced the scaling de-
pendence between the average number of recalled words and
number of presented words similar to experimental observations
(Romani et al. 2013). Parameter g ¼ 0.8 was fixed to produce
the ratio between probabilities of recalling following and previous
words similar to those obtained from experimental data. The rest
of the parameters (b ¼ 1.06, d ¼ 0.098, 1 ¼ 0.33, q ¼ 0.9) were
rounded after fitting to experimental data using simulated anneal-
ing. The qualitative behavior of the model does not depend on ex-
act values of the parameters and the annealing procedure was used
to find the range of parameters leading to model behavior similar
to that observed in the data. For the optimization we used simulat-
ed annealing procedure, where each iteration we modeled free re-
call experiments with the same number of trials, and the cost
function consisted of weighted sum of square differences between
simulated and observed measures: the overall distribution of Nwr

across trials, serial position curve (recall probability versus posi-
tion of a word in the list) and distribution of recall chains of con-
sequently presented words.

Chain length
For each trial, recall was broken into sequences of items either in
the presented (positive length) or reverse (negative length) order.
Isolated items were assigned chain length 0. For example, a report
w1, w2, w7, w5, w4, and w3 consists of three chains: w1, w2, (length
2); w7 (length 0); w5, w4, w3 (length 23).

Experimental methods
The data reported in this manuscript were collected in the labora-
tory of M. Kahana as part the Penn Electrophysiology of Encoding
and Retrieval Study (see Miller et al. 2012 for details of the exper-
iments). Here we analyzed the results from the 141 participants
(age 17–30) who completed the first phase of the experiment,
consisting of seven experimental sessions. Participants were con-
sented according the University of Pennsylvania’s IRB protocol
and were compensated for their participation. Each session con-
sisted of 16 lists of 16 words presented one at a time on a computer
screen and lasted �1.5 h. Each study list was followed by an imme-
diate free recall test. Words were drawn from a pool of 1638 words.
For each list, there was a 1500 msec delay before the first word ap-
peared on the screen. Each item was on the screen for 3000 msec,
followed by jittered 800–1200-msec interstimulus interval (uni-
form distribution). After the last item in the list, there was a
1200–1400-msec jittered delay, after which the participant was
given 75 sec to attempt to recall any of the just-presented items.
Only trials without errors (no intrusions and no repeated recalls
of the same words) were used in the analysis.
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