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S U M M A R Y

The Middle East respiratory syndrome coronavirus (MERS-CoV) has infected over 1600 individuals with

nearly 600 deaths since it was first identified in human populations in 2012. No antiviral therapies or

vaccines are available for its treatment or prophylaxis. Approaches to the development of MERS vaccines

are discussed herein, including a summary of previous efforts to develop vaccines useful against human

and non-human coronaviruses. A striking feature of MERS is the important role that camels have in

transmission. Camel vaccination may be a novel approach to preventing human infection.

� 2016 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
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1. Introduction

Middle East respiratory syndrome (MERS), caused by a novel
coronavirus (MERS-CoV), was first identified in 2012 in patients
with severe respiratory disease in Jordan and Saudi Arabia.1 Since
its discovery, approximately 1600 cases have been reported,
amounting to about 40 cases per month. While this number is low,
the worrisome features of the disease are its propensity to cause
severe disease in patients with underlying conditions, including
diabetes, renal disease, lung disease, or an immunocompromised
state, and its apparent ability to readily spread within hospital
settings.2 In addition, MERS-CoV has been identified in camel
populations throughout the Arabian Peninsula and Africa,3–5 and
epidemiological evidence suggests that it is periodically intro-
duced into human populations.6 Further, coronaviruses have a
well-described propensity to mutate and recombine.7 Consistent
with this propensity, the genomic sequence of MERS-CoV has
changed since it first entered human populations in 2012, but
these changes have not enhanced the ability to effect human-to-
human transmission.8 This lack of increased transmissibility is
encouraging, but, on the other hand, the continued introduction
into human populations from infected camels coupled with
coronavirus mutability means that measures to prevent infection
are important to develop anticipatorily.

Following the demonstration of the key role of hospitals in
secondary spread,9,10 efforts were made to introduce careful
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infection control measures into affected hospitals. These appear to
have been effective in reducing virus transmission and greatly
decreasing the number of MERS cases. However, these measures do
not affect the acquisition of primary cases of MERS, which likely
occur either directly or indirectly from camels. These primary cases
are the source for subsequent hospital outbreaks, so preventing
transmission from camels or within the community might be the
best way to provide subsequent secondary cases and hospital spread.

‘In addition to the appropriate infection control measures, virus
transmission would be most effectively prevented by a combination
of rapid and efficient diagnosis, treatment with antiviral therapy to
decrease virus loads, and prophylactic treatment with an interven-
tion that prevents infection or at least disease manifestations. Most
often, the latter approach involves passive or active immunization,
which will be discussed in this review. Efforts to prevent MERS by
immunization are based in part on the extensive information gained
from studies of coronavirus vaccines used to prevent infections
in domesticated and companion animals. Additionally, a key piece
of information required for the rational design of vaccines is
knowledge of a protective immune response. Immune responses
to some non-human coronaviruses have been characterized and
these responses are also described below.

2. Protective immune response in animals experimentally
infected, or patients naturally or experimentally infected with
coronaviruses

In general, protective immune responses to coronaviruses
involve a combination of virus-specific antibody and T-cell
responses.11 The neutralizing antibody response is primarily
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directed against the surface (S) protein, responsible for binding to
the host cell receptor. The N terminal S1 fragment of the S protein
binds to the host cell receptor, elicits neutralizing antibody, and
perhaps not surprisingly, is also the part of the virus that is most
variable between isolates.12 This variability explains why neutraliz-
ing antibodies are generally virus strain-specific and do not provide
cross-reactive protection against even closely related corona-
viruses.13 On the other hand, coronavirus-specific CD8 and CD4
T-cells recognize epitopes from across the genome, some of which
are in conserved proteins, which do not readily undergo mutation.

Prior to the onset of severe acute respiratory syndrome (SARS)
and MERS, many studies on protective immune responses used
mice infected with the murine coronavirus, mouse hepatitis virus
(MHV). These studies showed that virus clearance from infected
mice required the development of an effective T-cell response.
Both CD4 and CD8 T-cells were required for optimal kinetics of
clearance.14 The studies also showed that the T-cell response could
be immunopathological.14–16 Thus when irradiated mice or mice
lacking T- and B-cells were infected with a strain of MHV that
causes demyelination, the mice developed minimal clinical disease
and showed no evidence of demyelination. However, within a few
days of receiving virus-specific T-cells, severe myelin destruction
occurred, along with hind limb paralysis. Neutralizing antibodies
were also important in immune protection, serving at least two
roles. First, in the absence of neutralizing antibody, MHV was
cleared to very low levels by T-cells, but later recrudesced,
resulting in lethal disease.17 Second, virus-specific antibodies were
most important for protecting mice against further challenge. Of
note, immune protection was long-lived in immunocompetent
mice that survived experimental infection with MHV, possibly
because the infection was systemic, involving the central nervous
system, or in some cases, the liver.

In marked contrast, coronaviruses that are primarily mucosal
induce short-lived protection. This is most evident in studies of
patients or human volunteers infected with respiratory corona-
viruses such as HCoV-229E or HCoV-OC43.18,19 These viruses
generally cause mild upper respiratory tract disease and only
rarely cause severe disease. In human volunteer studies, the
presence of pre-existing anti-HCoV-OC43 or HCoV-229E anti-
bodies did not provide protection against experimental challenge
with the same virus, in terms of clinical disease or virus titers.
Similarly, experimental challenge provided only partial protection
against subsequent re-challenge and this protection waned over
several months. In these studies, systemic antibodies were
generally measured, so less is known about the levels of IgA,
which are likely most important for protection against viruses that
remain confined to the upper respiratory tract.

From these data, one might predict that infection with MERS-CoV
or SARS-CoV would result in a long-lived protective response, since
SARS-CoV and MERS-CoV cause severe respiratory illness based in
the lungs, and SARS-CoV (and perhaps MERS-CoV) causes a systemic
infection.20 However, this may not be the case. While only a few
SARS survivors have been followed longitudinally, anti-SARS-CoV
antibody titers were not detectable after 6 years.21 Longitudinal
studies of T-cell responses in these patients are even fewer in
number, but T-cell responses were detected at low levels in some
survivors.21–24 While these data suggest that coronavirus-specific T-
cells are more likely to persist than B-cells, it is still possible that
there are sufficient numbers of residual memory T- and B-cells to
protect patients from infection or severe disease on rechallenge.

3. Previous studies of coronavirus-vaccinated domesticated
and companion animals

Prior to the outbreak of SARS, coronaviruses were considered
most important as causes of infections of domesticated and
companion animals. Vaccines to prevent several of these diseases
were developed over the years, but none were very successful in
preventing disease. Infectious bronchitis virus (IBV) is an
economically important infection of young chickens, causing
bronchitis as well as renal disease (reviewed by Cavanagh25). Live
attenuated vaccines were developed, which were efficacious in
providing short-term protection to challenge with homologous but
not heterologous IBV strains. Levels of circulating IBV did not
diminish substantially because many strains of IBV co-circulate in
chicken populations. Recombination between the vaccine and
circulating strains resulted in the emergence of novel strains of IBV.

Live attenuated vaccines were also developed for a swine
coronavirus, transmissible gastroenteritis virus (TGEV), which
causes fatal diarrhea with associated high mortality in very young
pigs.26 These vaccines were administered to pregnant sows but did
not protect piglets to a great extent; the use of virulent virus in
sows was more successful in protecting baby animals from lethal
disease. Remarkably, however, a deletion variant of TGEV, porcine
respiratory coronavirus (PRC), appeared in swine populations in
North America and Eurasia.27 PRC caused only a mild respiratory
disease, but induced an immune response that was cross-reactive
and protective against TGEV, resulting in the disappearance of
TGEV from most locales.

Finally, feline infectious peritonitis virus (FIPV) causes a lethal
granulomatous disease in domestic cats and other felines, with wet
(pyogranulomatous, effusive) and dry (classic granulomatous)
forms.28 FIP is uncommon and most often occurs in animals
chronically infected with feline coronavirus (FCV), which mutates
during the course of persistence. A vaccinia virus-based vaccine
expressing the FIPV surface (S) glycoprotein was developed, and
was shown to induce high levels of anti-FIPV neutralizing
antibody.29 However, this anti-S antibody was not protective
against challenge with virulent FIPV. Rather, it induced an
antibody-dependent accelerated and enhanced disease after
challenge. Of note, antibody-dependent enhancement has never
been observed in naturally infected felines, but the possibility that
it might develop has been a concern as vaccines for SARS-CoV and
MERS-CoV are developed.30

4. Development of anti-SARS-CoV and MERS-CoV vaccines

Vaccines useful for preventing SARS or MERS have been
developed, based on information learned from the studies
described above (Table 1). Because both SARS and MERS tend to
spread extensively within hospital settings, initial efforts were
directed at developed reagents that could be used for passive
immunization; more recent efforts have focused on methods
useful for active immunization. In this section, vaccines targeting
SARS-CoV are described first, since many of the approaches used in
developing MERS vaccines were initially investigated in the
context of SARS.

4.1. Passive immunization

4.1.1. SARS

Monoclonal antibodies (mAb) with neutralizing activity against
SARS-CoV have been isolated from non-immune human volun-
teers.31,32 The advantage of this approach is that protective
antibodies can be isolated, cloned, and propagated without the
need to obtain patient specimens. Other approaches have included
identifying and cloning memory B-cells obtained from SARS
survivors and amplifying those that produce the most potently
neutralizing antibodies.33 In all of these vaccines, neutralizing
antibodies have been directed against the S protein. Stockpiled
anti-SARS-CoV antibodies would be especially useful in the



Table 1
Middle East respiratory syndrome coronavirus vaccines

Vaccine Target Use Advantages Problems

Anti-MERS-CoV

monoclonal antibodies

Surface (S) glycoprotein Passive immunization;

prophylaxis or treatment at

early times p.i.

High titer preparations; can be

produced in large amounts

Short half-life; needs to be re-

administered for continued efficacy

Human polyclonal anti-

MERS-CoV antibodies

Virus structural proteins Passive immunization;

treatment at early times p.i.

Polyclonal antibody so antibody

escape unlikely; human antibody

Short half-life; needs to be re-

administered for continued

efficacy; few MERS survivors

available as donors

Inactivated virion vaccines Virus structural proteins;

anti-S neutralizing

antibodies most important

Active immunization High titer antibody to S protein Response may not be long term; on

challenge may induce

immunopathological disease; may

be ineffective in aged populations

Live attenuated vaccines

(e.g., viruses deleted in

envelope (E) protein;

viruses with reduced

fidelity (mutated in

nsp14)

Mostly virus structural

proteins

Active immunization Generally safe; induce antibody

and T-cell responses; long-term

immunity

May not be safe in

immunocompromised patients;

may regain virulence by reversion

or recombination with circulating

CoV

Viral vector (attenuated)

vaccines: poxvirus, AAV

adenovirus,

parainfluenza virus,

rabies virus, measles

virus, VSV

S protein Active immunization Safe; non-replicating; induce

antibody and T-cell responses

Long-term immunity, but not as

long as live attenuated vaccines

Replicon particles (e.g.,

VEEV or VSV-based)

S protein or any viral

protein

Active immunization Safe; non-replicating; induce

antibody and T-cell responses;

useful for mucosal immunity

Production is complex

Subunit vaccines (e.g. RBD

of S protein)

Generally S protein Active immunization Safe; non-replicating; induce high

antibody titers; may also induce T-

cell responses

Duration of response not known

DNA vaccines Generally S protein Active immunization Safe; induce high antibody titers

and T-cell responses

Immunogenicity variable; may

induce

anti-DNA immune response

MERS-CoV, Middle East respiratory syndrome coronavirus; p.i., post infection; AAV, adeno-associated virus; VSV, vesicular stomatitis virus; VEEV, Venezuelan equine

encephalitis virus; RBD, receptor binding domain.
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healthcare or family setting to provide prophylaxis or treatment if
administered very soon after exposure.

Convalescent sera from SARS survivors have also been used to
treat patients.34,35 Efficacy was not demonstrated, but this may
well have reflected the administration of sera after disease had
already developed; the clinical presentation of SARS is non-
specific, making it difficult to identify infected patients at an early
time during the disease course. Convalescent sera would be most
useful in an outbreak setting in which a large fraction of patients
with respiratory disease might be expected to have SARS and
therefore benefit from treatment.

4.1.2. MERS

Similar strategies have been used to isolate and amplify
antibodies with MERS-CoV neutralizing activity. Initial reports
described the isolation of neutralizing antibodies from naı̈ve
human antibody populations using phage display and yeast
display.36–38 In another approach, a mAb with high avidity for
the MERS-CoV S proteins was isolated from B-cells harvested from
a MERS patient after cloning into a mammalian expression
system.39 This antibody was shown to efficiently accelerate the
kinetics of virus clearance and diminish pathological changes in
mice infected with MERS-CoV. Mice are not naturally infectable by
MERS-CoV because the virus cannot use the mouse MERS-CoV
receptor (dipeptidyl peptidase, DPP4) to enter cells. In this
instance, mice were sensitized to MERS-CoV by prior transduction
with an adenovirus engineered to express human DPP4 (hDPP4).40

In another approach, fully human antibodies with MERS-CoV
neutralizing activity were developed using mice that expressed
human antibody heavy and k light chains. In this study, efficacy
was examined in mice that had been engineered to express hDPP4
in lieu of mDPP4 (‘knock-in’, KI mice).41 The humanized anti-S
mAbs accelerated virus clearance and reduced pathological
changes in mouse lungs.

The use of convalescent sera from MERS survivors has been
proposed based on studies of SARS patients.35 However, the limited
availability of convalescent sera may make its use infeasible.
Camels are considered the primary reservoir for human MERS and
appear to be periodically reinfected by the virus. Consequently,
MERS-CoV antibody titers are elevated. The administration of sera
from previously infected camels to MERS-CoV challenged hDPP4-
transduced mice was shown to accelerate MERS-CoV clearance and
reduce pathological changes in the lungs.42

4.2. Active immunization

4.2.1. SARS

Most vaccines have been directed at developing anti-S
neutralizing antibody responses. Vaccines have included inacti-
vated whole virus vaccines, live attenuated virus DNA vaccines,
viral vector vaccines, subunit vaccines, and DNA vaccines. DNA
vaccines were shown to induce anti-S antibodies in mice and
were later shown to induce virus-specific neutralizing antibody
and T-cell responses in a phase I human trial.43,44 Inactivated
SARS-CoV vaccines were developed and tested in experimentally
infected animals as well as in phase I human trials.45 These
vaccines induced strong anti-S antibody responses if adminis-
tered with adjuvants such as b-propiolactone or formalin,46 but
subsequent studies suggested that they also induced eosinophil-
ia and other signs of immunopathological disease upon
challenge.47,48 Human phase I trials testing this reagent were
halted based on these putative immunopathological changes.
Live attenuated vaccines offer the best opportunity for develop-
ing both antibody and T-cell responses without eosinophilic
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infiltration or other manifestations of immunopathological
disease in the lungs.

Engineering of live attenuated vaccines has been facilitated by
the development of reverse genetics systems for SARS-CoV, as well
as other coronaviruses, including MERS-CoV.49,50 Using one of these
methodologies, viruses deleted in the small envelope (E) protein
were developed. These viruses were shown to be attenuated and to
induce protective humoral and cell-based immune responses in
hamsters and mice after SARS-CoV challenge.51–53 Further inves-
tigations showed that this vaccine was not genetically stable, with
partial duplication of the transmembrane (M) protein detected upon
repeated passage. Remarkably, this genetic change resulted in
re-acquisition of a PDZ binding motif (PBM) important for protein–
protein interactions.54 If the E protein was only partially deleted
so that the PBM was retained, the virus was genetically stable,
attenuated, and immunogenic. In another approach, virus mutated
at the catalytic site of a protein critical for genome fidelity during
replication (nsp14) resulted in an attenuated virus that did not
revert upon repeated passage in cells and mice, was safe even in
highly immunocompromised mice, and induced a strong anti-S
antibody response.55 Further efforts to maximize the biosafety of
these live attenuated vaccines include the introduction of additional
mutations into non-essential proteins or into non-coding regions of
the genomic RNA, which minimize the likelihood of a virulent virus
arising after recombination with circulating coronavirus strains.56,57

Attenuated poxvirus,58 adenovirus,59,60 adeno-associated vi-
rus,61 parainfluenza virus,62 rabies virus,63 measles virus,64,65 and
vesicular stomatitis virus66 vectors expressing either full-length
SARS-CoV S protein or the S1 extracellular domain have been
engineered. These vaccines also induced high levels of SARS-CoV
neutralizing antibody titers. Venezuelan equine encephalitis virus
replicons (VRPs) expressing viral proteins have been shown to
induce potent T-cell and antibody responses and to act as self-
adjuvants. A major advantage of VRPs is that since they are non-
replicating, they are not infectious and will not recombine with
circulating CoV to generate new variants. VRPs expressing the S or
nucleocapsid (N) protein, like other vaccines, were found to be less
effective in senescent mice and VRP-N was reported to induce
immunopathological disease.67 Similar immunopathology was
observed after SARS-CoV challenge of mice previously immunized
with the N protein.68

Potent neutralizing antibody responses have also been induced
in mice immunized with constructs expressing the receptor
binding domain, the part of the SARS-CoV protein that actually
binds to the receptor (angiotensin-converting enzyme 2, ACE2) on
target cells.69 These subunit vaccines exhibit high safety profiles
and have minimal side effects in addition to being immunogenic.

4.2.2. MERS

Many of the approaches described above have been used to
develop MERS vaccines. Recombinant adenoviruses,70 pox-
viruses,71 and measles virus72 expressing full-length S protein or
the extracellular S1 domain have been engineered and tested in
experimentally infected animals. All were able to induce an anti-S
protein antibody response. Although not examined, it is likely that
some or all of them also induced CD8 and CD4 T-cell responses.
Live attenuated MERS-CoV vaccines have not yet been described,
although it is likely, based on SARS-CoV data,55 that virus mutated
in the catalytic site of the exonuclease of nsp14 would be an
excellent vaccine candidate.

DNA vaccines that induce MERS-CoV-specific antibody and
T-cell responses have been described and shown to be efficacious
in non-human primates.73 Vaccines expressing the MERS-CoV
receptor binding domain (RBD) induced potent neutralizing
antibodies in mice and neutralizing antibodies and T-cell
responses in non-human primates.74,75 Vaccination resulted in
accelerated virus clearance and diminished pathological changes,
but did not prevent infection.

While vaccine development usually targets human populations,
MERS-CoV infects a much greater number and higher percentage
of camels than humans in the Arabian Peninsula and in Africa. Thus
camel vaccination is an approach to decrease the amount of
circulating virus and also diminish the amount of virus secreted by
infected animals. A recent study showed that this approach is
feasible. Camels were immunized with an orthopoxvirus vector
(modified vaccinia virus Ankara, MVA) expressing the S protein.76

After challenge with MERS-CoV at 3 weeks after boosting, clinical
signs (rhinitis) and infectious virus titers in the upper respiratory
tract, the main site of replication in the camel, were diminished in
immunized compared to control animals.

5. Conclusions and future directions

While several promising MERS vaccine candidates are under
development, several issues need to be resolved. First, an
important consideration is whether humans or, alternatively,
camels should be vaccinated. Humans but not camels develop
severe respiratory disease, but only a relatively small total number
of infected individuals have been identified and many of these have
had co-morbidities, which would impair vaccine responsiveness.
In the absence of a greater disease burden in human populations, it
seems unlikely that human vaccination would ever be economi-
cally viable. On the other hand, a high percentage of camels are
infected with MERS-CoV and vaccination reduces virus load,
although without inducing sterilizing immunity. The longevity of
the camel immune response is not known but may be short, since
camels appear to be readily re-infected with MERS-CoV. Further,
the large size of camels plus the number of camels potentially
requiring immunization would cause logistical problems.

Second, most vaccines induce anti-S neutralizing antibody
responses. The receptor binding part of the S protein, the target for
most neutralizing antibodies, is the most variable part of the S
protein so that antibodies are highly strain-specific. While the S
protein of MERS-CoV has not shown evidence of mutations that
result in antibody evasion, this is still a possibility because
coronaviruses are prone to mutation and recombination. Thus,
targeting the S protein may provide protection against MERS-CoV
but may not be useful against either a closely related strain or one
that evolves in response to immune or other pressure in humans.
This possibility was highlighted in a recent study that showed that
two bat strains of SARS-like CoV were closely related to human
SARS-CoV and used the same ACE2 receptor to enter cells.77,78

However, anti-SARS-CoV S antibodies could not neutralize one of
these strains.78

Third, T-cell responses in MERS and SARS survivors have not
been investigated widely, but these tend to target more conserved
regions of the viral genome and will provide protection against
strains that differ in the RBD. Analysis of the T-cell response is
facilitated by the identification of CD8 or CD4 T-cell epitopes. T-cell
epitopes have been identified in some inbred strains of mice,40 but
are more difficult to identify in human populations because of
inter-individual human leukocyte antigen (HLA) diversity. The
extent to which vaccines should be formulated to induce T-cell
responses as well as neutralizing antibody responses is not yet
resolved.

Fourth, prior to use in humans, vaccines need to be carefully
evaluated in experimentally infected animals. No laboratory
animal infected with MERS-CoV develops disease with the same
pathogenesis as occurs in patients with severe respiratory disease.
Marmosets develop severe disease in some laboratory settings
but not all.79,80 Even if a lethal mouse-adapted MERS-CoV is
identified, disease in the mouse and untoward effects of vaccines



S. Perlman, R. Vijay / International Journal of Infectious Diseases 47 (2016) 23–28 27
may not mirror the human infection sufficiently. Better animal
models for MERS would facilitate more useful and accurate in vivo
vaccine evaluation.

In conclusion, it was learned from the Ebola pandemic that
preparedness for epidemic spread of a virus that has never
exhibited such spread in the past is critical. So far, there has not
been an upsurge in MERS cases during the Hajj or Umrah
pilgrimages. Nevertheless, consideration of how to develop tools
for passive and active immunization is critical.
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