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Laser speckle contrast imaging (LSCI) is a full-field, high spatiotemporal resolution and
low-cost optical technique for measuring blood flow, which has been successfully used
for neurovascular imaging. However, due to the low signal–noise ratio and the relatively
small sizes, segmenting the cerebral vessels in LSCI has always been a technical
challenge. Recently, deep learning has shown its advantages in vascular segmentation.
Nonetheless, ground truth by manual labeling is usually required for training the network,
which makes it difficult to implement in practice. In this manuscript, we proposed a
deep learning-based method for real-time cerebral vessel segmentation of LSCI without
ground truth labels, which could be further integrated into intraoperative blood vessel
imaging system. Synthetic LSCI images were obtained with a synthesis network from
LSCI images and public labeled dataset of Digital Retinal Images for Vessel Extraction,
which were then used to train the segmentation network. Using matching strategies to
reduce the size discrepancy between retinal images and laser speckle contrast images,
we could further significantly improve image synthesis and segmentation performance.
In the testing LSCI images of rodent cerebral vessels, the proposed method resulted in
a dice similarity coefficient of over 75%.

Keywords: laser speckle contrast imaging, vessel segmentation, CycleGAN, domain adaptation, blood flow
imaging

INTRODUCTION

Laser speckle contrast imaging (LSCI) is based on the scattering properties of moving particles
(e.g., red blood cells) in tissues (Fercher and Briers, 1981). When a coherent light beam illuminates
the diffusing surface, the back-scattered lights interfere and superimpose randomly, generating
bright and dark speckles (Briers et al., 2013). Full-field and high spatiotemporal flow map could
be obtained with spatial laser speckle contrast analysis (s-LASCA) (Briers and Webster, 1996)
or temporal laser speckle contrast analysis (t-LASCA) (Cheng et al., 2003). LSCI therefore could
provide both functional and structural information of blood vessels, and it has been widely used in
both clinical and biomedical researches for its merits of high resolution and low cost. So far, LSCI
has mainly been used to quantitatively or qualitatively monitor the blood flow or perfusion change
at a selected vessel or region of interest.
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Blood vessel segmentation is of high interest in biomedical
image processing, as the morphological characteristics like
diameter, tortuosity, and shape of blood vessels are critical
for early diagnosis, treatment planning, and evaluation (Fan
et al., 2019). So far, there have been high-performance
methods for blood vessel segmentation in computed tomography
angiography (CTA), magnetic resonance angiography (MRA),
and color fundus photography (CFP) (Moccia et al., 2018).
However, due to the low signal–noise ratio and relatively
much smaller sizes of the cerebral vessels, particularly in
rodent animal studies, segmenting the cerebral vessels has
always been challenging. In addition, real-time segmentation
is another technical challenge in vascular pattern recognition,
which is quite useful during intraoperative procedures. By and
large, there are limited literature on the real-time blood vessel
segmentation for LSCI.

Recently, deep convolutional neural network (DCNN)-
based biomedical image segmentation has become increasingly
popular (Soomro et al., 2019). In comparison with conventional
machine learning-based segmentation that requires for human
to interfere in the feature extraction, deep learning approaches
take the advantages of training with a large number of
images using the internal image features. The development
of fully convolutional network (FCN) (Long et al., 2015)
has greatly improved the vascular segmentation. Several FCN-
based segmentation networks have been proposed, such as
U-Net (Ronneberger et al., 2015) and SegNet (Badrinarayanan
et al., 2015). However, the efficiency of deep learning models
relies on the availability of a great number of labeled images,
while in many clinical cases, such annotated data may be
quite limited or even non-existing. Usually, manual annotation
is required to create the ground truth, which, however, is
quite time consuming and expensive in the cases of blood
vessel segmentation. Another challenge in deep learning is its
generalizability, i.e., models achieving high performance on
the training data may have poor performance on the testing
data. Deep learning models are more likely to achieve good
outcomes on testing images from the same domain as the
training data. However, its performance is compromised when
there is domain shift from training data to test data due to
variations in the acquisition device noise, tissue structures, etc.
(Javanmardi and Tasdizen, 2018).

So far, there have been few efficient approaches for vessel
segmentation in LSCI; for example, our group used the OTSU
method to segment cortical arteries and veins, which was
successful for segmenting the larger vessels (Zhao et al.,
2014). Although DCNN could potentially solve this problem,
obtaining the ground truth for laser speckle contrast images
is laborious and time consuming due to the low signal–
noise ratio of LSCI and the non-homogeneity of illumination,
which also may degrade the performance of DCNN. In this
manuscript, we propose a real-time method for cerebral vessel
segmentation in LSCI based on unsupervised domain adaptation
without the ground-truth labels in the target modality. First,
synthetic laser speckle contrast images were obtained with
a synthesis network from the unpaired images of LSCI and
publicly available labeled datasets of Digital Retinal Images

for Vessel Extraction (DRIVE). Then, synthetic laser speckle
contrast images with corresponding ground truth of fundus
images in DRIVE were used to train the segmentation
network. To reduce the size mismatch between retinal images
and laser speckle contrast images, we further implemented
two strategies for size matching. With the same dataset,
we systematically compared the LSCI vessel segmentation
performances by different training methods and different size-
matching strategies, in comparison with the standard OTSU’s
threshold method.

RELATED WORK

Image Synthesis
When there are insufficient raw training images for training the
deep learning networks, domain adaptation has been a successful
alternative way in biomedical image segmentation. Domain
adaptation techniques usually construct synthesized images by
mapping the source and target images onto a common feature
space with the synthesis network.

Generative adversarial networks (GANs) have been
extensively applied to image synthesis and domain adaptation
(Osokin et al., 2017; Yi et al., 2019). Isola et al. (2017) proposed
a pix2pix algorithm for image-to-image translation with
conditional generative adversarial networks (CGANs), which
was trained with paired source and target images from different
domains. However, paired images for the same anatomical
structure usually are not easy to acquire in biomedical practice,
which thus greatly limits the application of pix2pix in practice. To
solve this problem, Zhu et al. (2017) proposed a cycle-consistent
GAN (CycleGAN) to be trained with unpaired images from
both source and target domains. CycleGAN, thus, has been
one of the most successful networks for image synthesis and
domain adaptation, for example, in the applications to data
augmentation of X-ray angiography (Tmenova et al., 2019),
lung CT images (Sandfort et al., 2019), and retinal images (Yu
et al., 2019) to enlarge the training dataset. Based on the existing
synthesis networks, Armanious et al. (2020) further proposed
a new GAN framework, called MedGAN, by introducing new
loss functions and a new generator architecture, which could be
applied to different synthesis tasks without application-specific
modifications to the hyperparameters.

Domain Adaptation for Biomedical
Image Segmentation
Although so far there has been quite limited work on the
segmentation of laser speckle contrast images, the extensive work
on other modalities of biomedical images based on unsupervised
domain adaptation and image-to-image translation could be
inspiring. Chartsias et al. (2017), for example, proposed a two-
stage approach for myocardial segmentation of MR images
without ground truth labels. First, synthesized MR images were
obtained from the publicly labeled myocardial CT images with a
CycleGAN. The synthesized MR images then were used to train
the myocardial MR image segmentation network with similar
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architecture to the U-Net. Huo et al. (2019) proposed the end-
to-end SynSeg-Net for multiorgan segmentation of CT images
without manual labeling, by connecting the synthesis network
(CycleGAN) and segmentation network (nine block ResNet)
with a one-step training strategy. Different from Agisilaos’
two-stage approach, the segmentation loss in SynSeg-Net was
backward propagated through the whole network other than
only optimizing the segmentation network so that the two
networks were jointly trained in an end-to-end framework.
Zhang et al. (2018) also proposed an end-to-end framework
called TD-GAN for multiorgan segmentation of X-ray images,
which incorporated a pretrained segmentation network (DI2I)
with a modified CycleGAN. CycleGAN network has also been
well developed to facilitate different applications in practice.
For example, in order to eliminate the geometric distortion in
cross-modality synthesis, Cai et al. (2019) proposed a cycle-
and shape-consistent GAN for multiorgan segmentation, which
ensured consistent anatomical structures in synthetic images
by introducing a novel shape-consistency loss. Chen et al.
(2018) proposed a semantic-aware CycleGAN named SeUDA
for chest X-ray segmentation, which preserved more structural
information during image transformation by embedding a nested
adversarial learning in semantic label space. Jiang et al. (2018)
proposed a tumor-aware CycleGAN for CT to MRI translation
and lung cancer segmentation, which could better preserve tumor
structures in synthetic images by introducing a novel target-
specific loss called tumor-aware loss.

MATERIALS AND METHODS

Datasets
The DRIVE dataset (Staal et al., 2004) was used as the source
dataset to synthesize the labeled LSCI images and train the vessel
segmentation network for its public availability, high signal–noise
ratio, and well-recognized labeling as the ground truth. DRIVE
includes 40 digital fundus images captured by a Canon CR5
3CCD camera with a resolution of 584 × 565 pixels. DRIVE
has been one of the most popular datasets for retinal vascular
segmentation. A sample of fundus image and the corresponding
ground truth are illustrated in Figure 1. The laser speckle
contrast images to be segmented were the target dataset, which
were selected from the animal experiments for our previous
studies (Bo et al., 2018, 2020), including 140 cropped images
with a resolution of 400 × 280 pixels. The laser speckle images
were collected from animal experiments. The experimental
protocols were approved by the Institutional Animal Care and
Use Committee (IACUC) of Shanghai Jiao Tong University.
The images were captured by a CCD camera (DCU224M,
Thorlabs, Newton, NJ, United States) during cerebral blood flow
(CBF) monitoring in rat stroke model. The 140 images were
randomly split into training images and testing images with the
proportions of 80%:20% or 112 and 28 images, respectively, in
this case. The testing images were manually segmented by three
trained individuals independently, and the final ground truth was
generated using a majority voting strategy. A sample of laser

speckle contrast image and the corresponding ground truth are
shown in Figure 2.

Image Preprocessing
Image preprocessing techniques included grayscale conversion,
image normalization, and contrast limited adaptive histogram
equalization (CLAHE). Gamma correction was adopted to
enhance the contrast and reduce the noises in both source and
target domain images.

Data Augmentation
A large number of images are usually required to train the
DCNNs. When the number of training images was limited, data
augmentation was often used to reduce the risk of overfitting
and improve the network performance. In this study, we used an
augmentation strategy called patch extraction. Six hundred forty
patches of 256 × 256 pixels were extracted from source domain
images, and another 896 patches of the same size were extracted
from target domain images.

Size Matching of Source and Target
Domain
Considering the fact that the sizes of the most retinal vessels
were much smaller than the cerebral vessels of rats in our case,
we adopted size matching processing between source and target
domain images before training the synthesis network. The same
strategy was applied to the fundus manual labels for training the
segmentation network to guarantee the consistency of the vessel
sizes. Two matching approaches were adopted.

Size Matching by Vessel Dilation
The first approach for size matching method is based on vessel
dilation, as defined by Eq. 1, which aims to scale the diameter of
the retinal vessels by a morphological transformation,

X ⊕ K = ∪
k∈K

Xk, (1)

where X is the set of Euclidean coordinates corresponding to
the source images, K is the set of coordinates for the structuring
element, also called kernel, which is the basic operator in
morphology, and Xk is the translation of X by k. For our dataset,
we used a 3× 3 structuring element with connectivity 1, that is,

K=

 0 1 0
1 1 1
0 1 0

 . (2)

The comparison between original and dilated fundus images is
shown in Figure 3A, showing clearly enlarged vessel diameter
after the size matching (Figures 3A-i vs. A-ii).

Size Matching by Patches Selection
Alternatively, we delicately selected those source patches with a
significant proportion of large vessels to train the image synthesis
network by controlling the ratio of vascular pixels to non-vascular
pixels:

Np

Nt
> th, (3)

Frontiers in Neuroscience | www.frontiersin.org 3 November 2021 | Volume 15 | Article 755198

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-755198 November 24, 2021 Time: 13:39 # 4

Chen et al. Vessel Segmentation for LSI Images

FIGURE 1 | (A) A sample of fundus image and (B) its ground truth from the digital retinal images for vessel extraction (DRIVE) dataset.

FIGURE 2 | (A) A sample of laser speckle contrast image and (B) its ground truth by manual labeling.

FIGURE 3 | Examples of size-matching strategies in source domain. (A) The original fundus image (A-i) was transformed to the dilated image (A-ii) after the size
matching method by vessel dilation (vdSM), and (B) in the size matching method by patches selection (psSM), the fundus image with the proportion of vessel pixels
below threshold (B-i) was removed from the source domain, while that with more thick vessels (B-ii) was reserved.
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where Np denotes the number of vascular pixels, and Nt denotes
the number of total pixels in the source domain patch. Only
those patches satisfying (3) will be used for training the synthesis
network, e.g., th value of 0.13 was set empirically (Figure 3B).

Network Architecture
Figure 4 shows the architecture of the networks to be used,
including the image synthesis network and image segmentation
network. Two types of training strategies, i.e., two-stage
and end-to-end trainings, were implemented, respectively.
Intuitively, the fundus images should be directly used as
the source domain dataset with their labels only used in
segmentation network, which, however, presented poor
performances due to the low contrast ratio after transformed
into grayscale images. Therefore, we trained both synthesis
and segmentation networks with fundus manual labels. To
distinguish the training images in two networks, we call
the synthesis network training images as fundus images
hereafter instead.

Two-Stage Training
In two-stage training, synthetic laser speckle contrast images were
obtained by synthesis network trained with manually labeled
fundus images and unlabeled laser speckle contrast images. Then,
the synthetic laser speckle contrast images and the corresponding
fundus labels were further used to train the segmentation
network, which would be applied to real laser speckle contrast
images to identify the blood vessels.

The image synthesis network was built with CycleGAN (Zhu
et al., 2017), as shown in Figure 5. The nine block ResNet
was employed as the two generators GA→B and GB→A, and the
PatchGAN was employed as the two discriminators DA and
DB. The objective to the image synthesis network training is to
minimize the loss function:

L (GA→B, GB→A, DA, DB) = λ1LGAN (GA→B, DB)+ λ2LGAN

(GB→A, DA)+ λ3Lcyc (GA→B, GB→A) (4)

Where λ1, λ2, and λ3 control the weights of adversarial loss and
cycle consistency loss.

The image segmentation network was built with U-Net
(Ronneberger et al., 2015), and the Dice Coefficient loss was
employed as the loss function to be minimized during the
training:

Ldice = 1−
2
∑N

i pigi∑N
i p2

i +
∑N

i g2
i
, (5)

where pi denotes the predicted segmentation binary result of each
pixel, dotes the ground truth, and N is the number of pixels.

End-to-End Training
With the end-to-end training strategy, the image synthesis
network and the image segmentation network were jointly
trained, so that the two networks could be optimized by a single
loss function. The synthetic network and segmentation network
were the same as those in two-stage training, with the input
of which were also fundus images and laser speckle contrast

images. The full loss function is expressed as the weighted sum
of adversarial, cycle consistency, and segmentation losses:

L (GA→B, GB→A, DA, DB) = λ1LGAN (GA→B, DB)+

λ2LGAN (GB→A, DA)+ λ3Lcyc (GA→B, GB→A)+ λ4 Ldice. (6)

where λ4 controls the weight of segmentation loss.
Adam optimizer (Kingma and Ba, 2014) was used to minimize

all the loss functions (Eqs 4–6) in both training strategies.

Training and Testing
In the two-stage training approach, CycleGAN was first trained
from scratch with 150 epochs with a learning rate of 0.0002
for the first two thirds of epochs and then linearly decayed
to zero over the rest epochs. The loss weights in Eq. 4 were
empirically set to λ1 = λ2 = 1 and λ3 = 10. Adam optimizer
was implemented with a batch size of 1. After image synthesis, the
U-Net was trained for 100 epochs with a learning rate of 0.0001.
Batch normalization and a drop rate of 0.4 were used to reduce
the risk of overfitting. Adam optimizer was implemented with a
batch size of 8.

In the end-to-end training approach, CycleGAN and U-Net
were jointly trained for 150 epochs with a learning rate of 0.0002.
The loss weights in Eq. 3 were empirically set to λ1 = λ2 =

λ4 =1, and λ3 = 10.
In the testing stage, the trained segmentation network (U-

Net) was employed to real laser speckle contrast images.
Patches (80 × 80 pixels) were extracted from the testing
images and were up-sampled to 256 × 256 pixels for further
segmentation. The output patches of U-Net were down-sampled
to 80× 80 pixels again to reconstruct the segmented laser speckle
contrast images.

The training and testing were carried out on a
Windows10 PC with a NVIDIA GeForce RTX 2080Ti
GPU (11 GB memory) and CUDA 9.0 runtime library.
The codes of networks were implemented in Python 3.6
using Keras.

Evaluation Metrics
The dice similarity coefficient (DSC), precision, sensitivity,
and specificity were employed to evaluate the segmentation
performances as in Eqs 7–10. They were calculated from true
positive (TP), true negative (TN), false positive (FP), and false
negative (FP), based on the pixel-wise comparison of predicted
results with the ground truth.

DSC =
2TP

FP + 2TP + FN
, (7)

precision =
TP

TP + FP
, (8)

sensitivity =
TP

TP + FN
, (9)

specificity =
TN

TN + FP
. (10)
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FIGURE 4 | The overall framework of the proposed method. (A) Two-stage training approach. First, synthetic laser speckle contrast images were obtained by
training an image synthesis network with labeled fundus images and unlabeled laser speckle contrast images. Then, the synthetic laser speckle contrast images and
fundus manual labels were used to train a segmentation network. (B) End-to-end training approach. The image synthesis network and segmentation network were
jointly trained, and the obtained segmentation loss was backward propagated to optimize the two networks. (C) Testing stage. The trained segmentation network
was applied to unlabeled laser speckle contrast images to obtain the segmentation results.

EXPERIMENTAL DESIGN AND RESULTS

Experimental Design
The following six different configurations of the segmentation
network were implemented and tested, and their
performances were compared.

(a) OTSU’s threshold segmentation. OTSU aims to separate the
original image into foreground and background by setting
the threshold adaptively through maximizing the between-
class variance.

(b) Two-stage training without size matching (2StepOnly).
(c) Two-stage training using the size matching approach of

vdSM (2Step_vdSM);
(d) Two-stage training using the size matching approach of

psSM (2Step_psSM);
(e) End-to-end training using the size matching approach of

vdSM (E2E_vdSM);
(f) End-to-end training using the size matching approach of

psSM (E2E_psSM).

Results
Image Synthesis Results
An example of image synthesis is shown in Figure 6. It is noted
that the synthetized laser speckle contrast image was very alike
the real one. The cosine similarity between the fundus images and
the binary synthetic images is used for evaluating the synthesis
performance. The average similarity coefficients are 0.918, 0.943,

and 0.933 in 2StepOnly, 2Step_vdSM, and 2Step_psSM strategies,
respectively. Synthetic images maintain most morphological
information well, e.g., vessel location, curvature, and capillaries,
etc. Besides, the consistency of the vessel diameter between
the input and synthetic data is measured by the ratio of the
vessel pixel proportion in two groups of images. Without size
matching, the image transform resulted in 1.695 × increase
in vessel diameter in the synthesized images (Figures 6A-ii
vs. A-iv), which would definitely further affect the following
segmentation and accounts for the lower similarity coefficient.
After size matching, the vessel diameters in the synthetic and
original fundus images were comparable with the ratio of 1.013
(Figure 6B), which proves the validity and necessity of the size-
matching method.

Image Segmentation Results
Figure 7 shows the samples of segmented laser speckle contrast
images (Figure 7A) corresponding to the six models as described
in Experimental Design (Figures 7B–G), and the ground truth
(Figure 7H). Table 1 summarizes the performances of the six
models on the 28 testing images. The segmentation is about 10
fps when the parallel GPU calculation was adopted.

The standard OTSU’s threshold segmentation shows the
poorest performances due to the high speckle noise and low
resolution of laser speckle contrast images. In contrast, any
of the domain adaptation methods remarkably outperformed
OTSU. Compared with 2StepOnly, those models using vessel
size matching processing (vdSM or psSM) could further
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FIGURE 5 | The architecture of cycle-consistent GAN (CycleGAN) and the image flow. (A) CycleGAN contains two generators and two discriminators trained in an
adversarial way, where the architectures of generator and discriminator are shown in Panels (C,D). The first generator GA→B transforms images from domain A to
domain B, and the discriminator DA is trained to distinguish synthetic images from real images. The objective is to make the discriminator unable to discriminate
between real and synthetic data. Similarly, the second generator GB→A transforms images of domain B back to domain A, and the discriminator DB is trained to
distinguish synthetic images from real images. The synthetic images should also be able to be transformed back to the original domain by the other generator, and
the objective is to minimize the difference between the transformed images and the originals. (B) The image flow of CycleGAN. The upper panels represent the path
from domain A to domain B, and the lower ones show the reverse path. In this study, domains A and B correspond to the fundus images and the laser speckle
images, respectively. (C) The architecture of the generators GA→B and GB→A. (D) The architecture of the discriminators DA and DB.

FIGURE 6 | Examples of image synthesis. (A) Image synthesis result without size-matching; (B) image synthesis result with vdSM. Columns (from left to right)
indicate the input fundus image, the comparison of small vessel details, and the synthetic laser speckle contrast image, respectively.
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FIGURE 7 | Examples of laser speckle contrast image segmentation. (A) Raw images. Segmentation results from: (B) OTSU’s threshold segmentation, (C)
two-stage training without size matching, (D) two-stage training with vdSM, (E) two-stage training with psSM, (F) end-to-end training with vdSM, and (G)
end-to-end training with psSM. (H) Ground truth.

TABLE 1 | Quantitative evaluation results for the testing images.

Model Quantitative results (mean ± SEM)

DSC (%) Precision (%) Sensitivity (%) Specificity (%)

OTSU 54.24 ± 6.68 37.96 ± 6.71 97.33 ± 1.76 58.99 ± 6.34

2StepOnly 70.77 ± 1.32 94.71 ± 0.45 51.68 ± 1.22 99.29 ± 0.05

2Step_vdSM 75.81 ± 1.26 90.29 ± 0.82 61.98 ± 1.80 98.34 ± 0.14

2Step_psSM 73.00 ± 0.47 83.39 ± 0.95 58.03 ± 1.10 97.12 ± 0.15

E2E_vdSM 70.60 ± 0.55 80.56 ± 1.12 60.65 ± 0.97 96.35 ± 0.19

E2E_psSM 70.18 ± 0.71 87.99 ± 0.83 58.02 ± 1.20 98.02 ± 0.13

The best performances by the deep learning methods are highlighted.

improve the segmentation. In aspect of DSC, two-stage
training approaches (2Step_vdSM and 2Step_psSM) had
better quantitative performance than the end-to-end training
approaches (E2E_vdSM and E2E_psSM).

CONCLUSION AND DISCUSSION

This manuscript presents a real-time laser speckle contrast
image segmentation without using ground truth labels in the

target modality. Using unsupervised domain adaptation and size
matching between fundus images and laser speckle contrast
images, we achieved good segmentation performance for the test
dataset. The proposed method could potentially be applied to
automatic blood vessel segmentation for LSCI, for example, in an
auxiliary system for surgical operations.

With the selected source domain images, the proposed
method could also be extended to other imaging modalities like
laser Doppler imaging (LDI), optical intrinsic imaging (OIS),
and optical coherence tomography (OCT) for blood vessel
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segmentation. The real-time segmentation could facilitate its
intraoperative applications. Table 1 shows that the traditional
vessel segmentation method, OTSU’s threshold segmentation,
had poor performance because the threshold is susceptible
to the background noise. After domain adaptation by deep
learning, e.g., 2StepOnly, the vascular network could be well
segmented though with smaller vessel diameter than the ground
truth, which was caused by the geometry discrepancy of the
blood vessels in two domains. After further matching the vessel
sizes using vdSM and psSM prior to the segmentation, the
performance was significantly improved. Besides, it was also
noted that the two-stage training (2Step_vdSM and 2Step_psSM)
could outperformed the end-to-end training (E2E_vdSM and
E2E_psSM). It might be related to the selection of intermediate
synthetic results, which has an influence on the training of
segmentation model. In two-stage strategy, we visually inspected
all the intermediate results in aspects of the style, vessel integrity,
signal–noise ratio (SNR), and contrast. We then selected
relatively better ones for training the segmentation network.
The lack of intervention in end-to-end strategy might lead to
the inferior performance of segmentation. By all means, the
difference between two-stage and end-to-end strategies deserves
a further comprehensive study.

It was noted that some capillary vessels were bolder in the
segmentation results after size matching processing (Figures 7D–
G), which was more prominent by vdSM than psSM, in either
two-stage or end-to-end training approach. In case when the
capillary vessels are of interest, we need to further improve
the segmentation algorithm, for example, using super-resolution
algorithm to reconstruct a high-resolution image from a low-
resolution one (Chen et al., 2020). Besides, for our dataset,
the size matching was achieved by a structuring element with
connectivity 1 in vdSM, while in practice, the connectivity
number could be vessel dependent.

The segmentation speed could be further improved by
optimizing the hardware and algorithm. In our experiments, for
example, we used the same weight configuration for generative
adversarial loss, cycle consistency loss, and segmentation
loss as in Huo et al. (2019). Further investigation on the
tuning hyperparameters of the model could be conducted
on the cross-validation as recommended. Besides, we used
nine block ResNet as the generators and PatchGAN as the
discriminators for the image synthesis network adopted
from the original CycleGAN manuscript (Zhu et al., 2017),
and U-Net was used as the image segmentation network.
A recent work by Yu et al. (2019) compared different
generators for CycleGAN, including U-Net, ResNet, and
ResU-Net, and demonstrated that U-Net performed better
than nine block ResNet in the cases of retina image
synthesis. Therefore, selecting appropriate generators and/or

simplifying the network architecture with consideration on
the segmentation speed and performance is also an interesting
topic in practice.

A previous work by Jiang et al. (2018) included a small
set of real labeled images into the synthetic images to train
the segmentation network and showed that such kind of semi-
supervised segmentation could further boost the segmentation
accuracy. Therefore, we speculated that including a small number
of labeled raw laser speckle contrast images, if available in
practice, would train the networks more efficiently.

The selection of the training images for the segmentation
network was subjective. Although we assessed the outputs of
synthetic network in the aspect of cosine similarity, which
however, was not used for selecting the intermediate results
in this study, in this manuscript, we focus on the blood
vessel segmentation rather than synthesis. Therefore, the image
synthesis was simply visually inspected. Future study may
consider to objectively select the intermediate results using the
indices like image structure clustering (ISC) (Zhu et al., 2017),
structure similarity (SSIM), or peak signal-to-noise-ratio (PSNR)
(Sandfort et al., 2019).
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