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Recent studies with children and adults have shown that the abilities of the Approximate
Number System (ANS), which operates from early infancy and allows estimating the
number of elements in a set without symbols, are trainable and transferable to symbolic
arithmetic abilities. Here we investigated the brain correlates of these training effects,
which are currently unknown. We trained two Groups of first grade children, one in
performing nonsymbolic additions with dot arrays (Addition-Group) and another one in
performing color comparisons of the same arrays (Color-Group). The training program
was computerized, throughout seven sessions and had a pretest-posttest design. To
evaluate cognitive gains, we measured math skills before and after the training. To
measure the brain changes, we used electroencephalogram (EEG) recordings in the
first and the last training sessions. We explored the changes in N1 and P2p, which are
two electrophysiological components sensitive to nonsymbolic numeric computations.
A passive Control-Group receiving no intervention also had their math skills evaluated.
We found that the two training Groups had similarly gain in math skills, suggesting no
specific transfer of the nonsymbolic addition training to math skills at the behavioral
level. In contrast, at the brain level, we found that only in the Addition-Group the P2p
amplitude significantly increased across sessions. Notably, the gain in P2p amplitude
positively correlated with the gain in math abilities. Together, our results showed that
first graders rapidly gained in math skills by different interventions. However, number-
related brain networks seem to be particularly sensitive to nonsymbolic arithmetic
training.
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INTRODUCTION

Mathematical skills are crucial to succeed in modern societies (e.g., Duncan et al., 2007; Ritchie and
Bates, 2013; Schley and Peters, 2014). Converging evidence suggests that these skills are partially
built from an evolutionarily ancient nonsymbolic number sense, supported by the so called
Approximate Number System (thereafter ANS). ANS allows us to make quantitative estimations
without symbols (Dehaene, 2005; Hubbard et al., 2008; Libertus et al., 2013). Indeed, ANS capacities
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observed in 14-year-old children positively correlate with
children’s past scores on symbolic math tests, including their
kindergarten scores (Halberda et al., 2008). Although this
and other studies have reported similar associations between
ANS capacities and symbolic mathematics (see meta-analysis
in Fazio et al., 2014), others have failed to observe such
associations (De Smedt et al., 2013) or either have suggested
a predominant role of domain-general functions in explaining
these associations (Gilmore et al., 2013). Recent training studies
have addressed these issues, providing evidence for causal links
between nonsymbolic and symbolic math abilities (Park and
Brannon, 2013; Hyde et al., 2014). Here we investigated the brain
correlates of these training effects.

In a series of studies, Park and Brannon (2013, 2014)
showed transfer effects from nonsymbolic arithmetic training
to symbolic arithmetic in adults. They observed that subjects
trained in solving approximate additions or subtractions of
dot arrays, under conditions that prevent them from counting,
outperformed subjects trained in other cognitive tasks in a
subsequent symbolic arithmetic test. More recently, Hyde et al.
(2014) reported similar results with children, showing that
their performance in a symbolic exact arithmetic test enhanced
significantly more after practicing nonsymbolic addition than
after training other non-numeric tasks (see also Wang et al.,
2016). Most importantly, these effects cannot be explained by
exercising domain-general functions such as inhibitory control
or attention, nor can be accounted for by expectation or placebo
effects (Dillon et al., 2015).

While these studies provide converging behavioral evidence
of transfer effects from ANS to symbolic math skills, the
brain mechanisms underlying these effects remain unknown.
Indeed, although several studies have explored the brain basis
of numerical cognition throughout development, pointing to the
Intraparietal Sulcus (IPS) as a key brain region (e.g., Nieder and
Dehaene, 2009), it is still unknownwhether themalleability of the
ANS has detectable brain correlates, and whether those changes
may relate to transfer effects on symbolic numerical abilities.

Recent electrophysiological studies have identified two main
brain signatures of the ANS, i.e., N1 and P2p, both observed
over parietal electrodes (Dehaene, 1996; Temple and Posner,
1998; Libertus et al., 2007; Hyde and Spelke, 2009; Rubinsten
et al., 2013). The N1, is the first negative component peaking
around 150 ms poststimulus, and the P2p, the second positivity
extending from nearly 200 ms to 450 ms poststimulus. N1 and
P2p would represent the early and late steps of the number-
related processing. P2p is thought to arise from the recruitment
of parietal networks involved in numerical processing (Piazza
et al., 2004) and the increase of its amplitude would reveal
the effort to discriminate between arrays of elements, which
is a function of its ratio i.e., the Weber law, (Dehaene, 1996;
Temple and Posner, 1998; Libertus et al., 2007; Liu et al.,
2018). Some studies have reported that P2p amplitude is
influenced by the evaluation of the perceptual visual features
of dots arrays (e.g., Gebuis and Reynvoet, 2013). However,
recent studies have shown that the simple exposure to large
numeric visual stimuli, such as dots arrays, did not associate
with increasing of the P2p amplitude, unless the participant

attention was committed to manipulate the numeric aspects
of those stimuli (Szücs and Soltész, 2008; Soltész et al., 2010;
Soltész and Szücs, 2014). These studies supported the idea
that, the changes in P2p amplitude reflect important aspects of
the numeric processing, besides the perception of the numeric
stimuli. Concerning the N1 component, children and adults’
studies have reported that its amplitude depends on the changes
in the absolute number of elements in small arrays, but
not on their ratio (Libertus et al., 2007; Hyde and Spelke,
2009, 2011). Since we used large number dots arrays in this
study, we focused our brain non-null hypothesis on the P2p
component.

Although the P2p component is recognized as an index
of ANS activity, it is unclear whether the malleability of the
ANS through intensive training experiences may correlate with
changes in this brain signature. More importantly, despite
the fact that this component has also been reported as
being the responsible for underpinning the processing of
symbolic numbers (Dehaene, 1996), just a few studies have
explored its direct relationship with paper-and-pencil symbolic
math skills either with children or adults (but see Hyde
et al., 2016). To examine these issues, we implemented a
computerized game-based training program for healthy first-
grade children. We used a pretest-posttest design comprised of
three experimental Groups: the first one was trained in solving
nonsymbolic approximate additions with dot arrays (Addition-
Group); the second one was trained in comparing the color of
the same dots arrays (Color-Group), which was comprised of
an active control group; and the third passive Control-Group
(Control-Group) did not receive any training. Before and after
the training, children of all Groups completed a battery of math
and verbal skills tests. The training program consisted of seven
sessions, one per day, mostly applied in consecutive days at their
school. Children in the Addition and Color Groups completed
sessions 1 and 7 in the laboratory, and their scalp electrical
activity was recorded by using an electroencephalogram (EEG).

At the behavioral level, our expectations were to show that:
(a) nonsymbolic approximate arithmetic would be trainable
in children (i.e., the Addition-Group would improve at the
training task); and (b) such training would transfer to symbolic
arithmetic math skills. We expected that the Color-Group
would also improve in their training task, but we did not
expect transfer effects to symbolic arithmetic tests, being
consistent with previous reports with children (e.g., Hyde
et al., 2014). It is worth noting that we used a larger battery
of math tests than those typically used in similar studies,
which commonly have assessed symbolic arithmetic skills (e.g.,
Park and Brannon, 2013, 2014; Hyde et al., 2014; but see;
Khanum et al., 2016). Thus, the aforementioned predictions
on transfer effects were held for the symbolic arithmetic
tests we implemented (i.e., Mental Operations and Written
arithmetic). But in complement, we also evaluated children
in the Number Line tasks and in a Numeration test. The
Number Line task measures children’s ability to associate spatial
and numerical magnitudes (Siegler and Booth, 2004). Based
on previous evidence showing positive associations between
performance in this task and performance in a nonsymbolic
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number comparison task (Fazio et al., 2014), we predicted
improvements in the Number Line task in the Addition-
Group only, albeit these effects had been reported as weaker
than those for the arithmetic tests (see Khanum et al., 2016).
We also expected some benefits for the Color-Group in
this task, since solving the color comparison task required
them to exercise the comparison of a continuous magnitude
(i.e., more or less similar in color intensity, with regards to
the color of the whole dots array), which would benefit the
processing of spatial magnitudes (see Khanum et al., 2016).
Regarding the Numeration test, it measured children’s basic
conceptual knowledge of numbers such as counting. We did not
have a pre-conceived expectation regarding this test, although
it would not be particularly improved by the nonsymbolic
arithmetic training. Additionally, we assessed children’s acuity
for nonsymbolic number comparison (Halberda et al., 2008,
i.e., Panamath). Here we expected improvements for the
Addition-Group and not for the Color-Group, although they
may not be strong (see Hyde et al., 2014). Finally, vocabulary
skills were evaluated to test the specificity of our intervention in
the realm of math. We expected that all Groups would equally
gain in this task.

At the brain level, we expected that: (a) the Addition-
Group would show significantly greater changes in the P2p
component (between session 1 and 7) than the Color-Group,
revealing specific brain changes underpinning the improvements
in nonsymbolic arithmetic computations; and (b) the gains
in at least one symbolic arithmetic skill would correlate with
changes in this ERP component. This was expected under the
assumption that the P2p component reflects the brain activity
of a parietal network involved in processing both symbolic and
nonsymbolic numerical magnitudes (e.g., Piazza et al., 2004).
If our predictions were correct, then we would have identified
valuable neurocognitive evidence linking intuitive and formal
math abilities in young children.

MATERIALS AND METHODS

In this study, we explored whether a brief computerized
intervention, comprised of seven sessions of nonsymbolic
approximated addition: (a) improved its accuracy,
demonstrating that it is trainable in first-grade children; (b)
was associated with gain in symbolic math performance,
demonstrating transfer effects; (c) was associated with
adaptations in the brain response (i.e., the amplitude of the
P2p); and (d) revealed significant correlations between the gains
in training performance and/or math skills with the gain in P2p
component.

Participants
Eighty-two healthy first-graders were recruited for participating
in the study. One participant was excluded from the study
because she did not complete the training protocol. Fifty-nine
children were pseudo-randomly assigned either to the Addition
or the Color Groups. Groups were counterbalanced by taking
into account their scores in a series of cognitive assessments
obtained before the beginning of the intervention. We assured

thus that the participants of both Groups did not already
differ in cognitive abilities prior to the intervention. In the
Addition-Group (n = 30, 15 females, mean age: 6.03 years, range:
6–7 years), participants were instructed to mentally add two sets
of dots, while in the Color-Group (n = 28, 15 females, mean
age: 6.05 years, range: 6–7 years), children had to compare the
color intensity of a target dot array, with the color of one of the
two arrays previously seen (see below). By using a 64-channels
EEG, EGI Inc. system, 23 children from the Addition-Group and
21 from the Color-Group had their brain activity recorded during
the first and last training sessions (i.e., 1st and 7th sessions). Two
children from the Addition-Group and seven from the Color-
Group were excluded from statistical analyses of the EEG data
because their recordings had less than 15 free-of-artifact trials,
thus 21 and 14 children remained for the analyses of brain
signals from each Group respectively. To estimate the influence
of other factors in math skills such as school instruction during
the intervention period, we also evaluated a passive Control-
Group (n = 33, 15 females, mean age: 6.06 years, range: 6–7 years)
who did not receive any training. We applied to this Group
the same cognitive assessment battery used for the other two
Groups, in two occasions, separated by the time equivalent to
the average duration of the training in the intervened groups. All
children were evaluated during the first 3 months of their school
year. We estimated the sample size in n ∼30 per Group, taking
into consideration the sample size reported by previous studies
with adults and children (Park and Brannon, 2013, 2014; Hyde
et al., 2014). The study was aproved by the Ethical Committee of
the School of Psychology of the Pontificia Universidad Católica
de Chile. Children gave verbal assent and parents signed a
written consent form to allow each child to participate in the
study.

Training Tasks
Participants were trained in Groups of 10–12 students in a
quiet room at their school, throughout seven sessions, mostly in
consecutive days. Each child practiced on a personal computer.
Before starting a session, a Group of examiners registered each
child’s personal information and reminded them the instructions
of the game. The trial structure was the same in both training
tasks, and it was similar to the one implemented by Hyde
et al. (2014). Each trial was comprised of six visual events that
are illustrated in Figure 1. Event 1: a central, non-transparent
yellow square appeared in the middle of the screen for 500 ms;
Event 2: an array of dots (N1) appeared on the left side of the
central square and moved behind it in 1500 ms; Event 3: the
central square remained alone for 500 ms; Event 4: a second
array (N2) appeared on the right side of the central square
and moved behind it in 1500 ms; Events 5: the central square
remained alone for 1250 ms; and in Event 6 the central square
disappeared, uncovering a third array of dots (N3), which was
presented until a response was provided, or a timeout equal to
3000 ms was reached. All dots array images were generated by
using the Matlab script provided by Dehaene et al. unpublished
manuscript.

Children from the Addition-Group had to decide if N3 had
more or less dots than the sum of N1 and N2. If they thought
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FIGURE 1 | Schematic distribution of the events in each trial. In event 2 and 4, the gray arrows represent the movement of the dots behind the central square from
the left and the right sides, respectively.

this sum had less dots than N3, they would press a key on the
left side of the keyboard, or if they thought this sum had more
dots than N3, they would press a key on the right side. The short
time of arrays presentations prevented children from counting
the dots, thus motivating the use of ANS estimation to solve
the task. The arrays for N1, N2 and N3 were presented in the
same color but with different levels of saturation (which was
perceived as difference in color intensity). In order to obtain
as many similar trials for ERP analyses as possible, we selected
only two levels of numeric difficulty for this task. Nonsymbolic
addition task difficulty was thus controlled by varying the ratio
between the actual sum of the addends (N1 and N2) and the
number of dots displayed in the third array (N3). Half of the
trials were ‘‘Easy’’ with a ratio of 0.57, and half of them were
‘‘Hard’’ with a ratio of 0.71. The number of dots in each array
ranged from 7 to 43 (17 dots on average). The values of the
actual sums ranged from 16 to 56 dots (36 dots on average).
To prevent children from using non-numerical parameters that
co-vary with numerosity when solving the task, half of the trials
presented dots equated in the occupied area, and the other half
presented dots with the same individual area (as typically done in
nonsymbolic number studies, e.g., Hyde and Spelke, 2009; Fazio
et al., 2014).

Children from the Color-Group were exposed to identical
stimuli and experimental protocol as the Addition-Group, but in
this case, they were asked to compare the color of the dots arrays
and decide if N3 was more similar in color to N1 or N2. The idea
of the sum of the dots was not even suggested to the children of
this Group. The correct response consisted in selecting the closest
arrays in color. Indeed, the arrays differed in color intensity in
such a way that the N3 array was closer in color intensity to either
the N1 or the N2 array. The closer distance was 0.51 points in the
RGB color model saturation scale, while the farthest distance was
0.71 points in the same scale. In half of the trials, the N3’s color
saturation was closer to the N1 array and in the other half of the
trials to the N2 array (randomly ordered within each session).

Previous studies have demonstrated that although
nonsymbolic addition and color comparison tasks involve the
processing of magnitudes, they are essentially different (Gilmore
et al., 2010). Indeed, while the nonsymbolic approximate
addition is numeric in nature, the color comparison required
for the processing of a continuous magnitude, even when the
stimuli are composed of arrays of discrete elements. Moreover,
to succeed in our addition task, children should somehow
neglect the perceptual properties of the dots arrays and focus

on the arithmetic manipulation of their numeric properties. In
contrast, to succeed in the color task, children should focus on
the perceptual properties of the dots arrays, i.e., color intensity,
disregarding the numeric ones. Furthermore, we believed that
our tasks provided children with similar opportunities to train
their general cognitive abilities, such as working memory,
although those improvements would entail different aspects
of this ability, depending on the goal of the task. Indeed, to
solve the tasks children would have to keep in their mind the
numeric or the perceptual properties of N1 and N2 arrays until
N3 (the target) appeared, which happens 3 s after the onset of
the trial. While the color task would rely on holding the visual
information available to make the perceptual matching (being
closest to a short-term memory process), the addition task
would require the manipulation of the stored information, in
the domain of arithmetic. In sum, the tasks we designed here
aimed to capture as many differences as possible in the cognitive
and brain adaptations that young children developed when
they manipulate stimuli physically identical, in the domain of
approximate mental arithmetic, i.e., approximate addition task;
vs. when they manipulate them as a nonnumerical comparison
i.e., color comparison task.

Nevertheless, in order to avoid any eventual influence of the
perceptual factors of our visual stimuli on any aspects of our
results, in further analyses we compared the data of the set of
Easy and Hard trials of the Addition-Group with the identical set
of trials of the Color-Group. We also called them Easy and Hard
trials in the Color-Group, although they did not differ in their
level of difficulty.

Trials were presented in a random order. The 1st and 7th
sessions (were coupled with EEG recordings and conducted
in the laboratory) included 80 trials, while the other sessions
(conducted in the school) were comprised of 40 trials each.
School sessions lasted from 10 min to 15 min each while EEG
sessions lasted 40–45 min, including technical issues. To keep
children engaged in the training, we varied the color of the dots
across sessions, with blue, green, red, magenta and cyan for
school sessions, and gray for the two EEG sessions. All children
were requested to provide their answer as fast and accurate as
possible.

Cognitive Assessments
Cognitive assessments were comprised of the tasks described
below. They were individually applied to each child by
psychologists, who were blind to the objectives of this research,
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from 1 weeks to 2 weeks before the intervention began and from
1 weeks to 2 weeks after the intervention ended.

Symbolic Math
Weused three subtests of the Key-Math battery (Connolly, 2007).
The ‘‘Mental Computation and Estimation’’ (thereafter Mental
Operations) and ‘‘Addition and Subtraction’’ (thereafter Written
Arithmetic) subtests, which were critical to estimate the symbolic
arithmetic knowledge, since they evaluate children’s arithmetic
procedural skills. The third subset was ‘‘Numeration,’’ which
assessed the children’s conceptual knowledge of numbers and
their basic operations (e.g., counting). The internal reliability of
these subset for Key Math battery has been reported with a Mean
Split-Half Reliability coefficient > 0.9 in first graders.

Number Line Task
This task measures children’s spatial representation of numbers
(Barth and Paladino, 2011). We used the same 26 digits and the
protocol that were previously used by Slusser et al. (2013). In each
trial, children were requested to mark with a pencil the position
where each digit was supposed to be on a 23 cm long number
line, drawn on paper, depicting the number 0 at the beginning
and the number 100 at the end, on their left and right extremes
of the line, respectively.

Nonsymbolic Number Comparison Task
We implemented the task developed by Halberda et al. (2008,
i.e., Panamath). During the task, children were presented with
a series of pairs of dot arrays and they had to decide which array
had more elements. One of the arrays depicted yellow dots and
the other one, blue dots. The time presentation of the stimuli
prevented the kids from counting. We presented approximately
100 trails per children and they followed the same protocol as the
one presented in Fazio et al. (2014).

Vocabulary
We applied the TEVI-R test (Echeverría et al., 2002), which
was used to evaluate comprehensive vocabulary. In each trial,
children heard a spoken word and had to match it with the
corresponding image from a slide containing four different
images. It is analogous to the Peabody Picture Vocabulary Test
(Dunn and Dunn, 1981). The reported internal reliability of this
test has a Cronbach alpha > 0.85 for first graders.

The cognitive assessments were administered in a quiet room
at their school, in one session with a brief break between
tests. The testing order was always Symbolic Mathematic first,
followed by Vocabulary or Number Line. Evaluation session
lasted ∼50 min per child. The nonsymbolic number comparison
task was applied on a separate day in a specially adapted room
with computers. The Symbolic Math and Vocabulary tests were
applied before the training was started, which allowed us to
equate the Groups in these abilities prior to performing the
intervention. We specifically computed a composite measure
by pondering each symbolic math subtest score with 0.25 and
vocabulary test with 0.25, being math notion pre-eminent
(75%) over vocabulary (25%). The time between pre- and

post-training evaluation was on average 54.4 days (range:
42–63 days).

EEG Data Acquisition
Scalp voltages were continuously recorded by using a 64-channel
EEG system (EGI Inc., Eugene, OR, USA), digitized at a
sampling rate of 500 Hz. EEG was first filtered (bandpass
filter = 0.5–20 Hz) and then segmented into 1.4 s long epochs
including 200 ms before to N3’s onset. Channels contaminated
by eye or motion artifacts (i.e., voltage fluctuations exceeding
100 µV or transients exceeding 100 µV) were automatically
rejected and trials with more than 10% of bad channels were
excluded. Maximal impedance was 40 k�. Non-rejected trials
were averaged, baseline corrected across the 200 ms before the
N3’s onset and transformed into an average reference. The
number of the trials kept for further analyses ranged from 14 to
28 for the Easy trials and from 15 to 27 for the hard ones.
In the procedures described here, we used EEGLAB (Delorme
and Makeig, 2004), an open-source Matlab toolbox for EEG
analysis.

Data Analysis and Statistics
Training Data
To quantify the gains across sessions, we first computed the
accuracy (i.e., percentage of correct responses) and reaction time
(RT) of each child from each Group in every session. We then
submitted the values for those variables to a reliability test.
Cronbach’s alpha > 0.7 across sessions was used to consider
that accuracy and RT consistently measured similar cognitive
capacities in each Group. After confirming that the tasks were
reliable, we submitted the accuracy and RT to a series of statistical
comparisons.

Accuracy scores were compared against chance (50%) by
using a one-sample t-test (two tails, alpha 0.05) to evaluate if
children succeeded in the tasks in every session, and for each
Type of Trial. Just to remind, the classification of Easy and
Hard trials for the Color-Group corresponded to the trials that
were physically identical to the Easy and Hard trials in the
Addition-Group. We also submitted the mean accuracy and
mean RT for the correct and wrong responses to a series of
two independent samples t-test (two tails, alpha 0.05) so as to
identify differences between Groups in each Type of Trial and
session.

To measure the progress in the mean accuracy across the
seven sessions of each child, we computed the slope in accuracy
across the sessions in each Type of Trial. Then, we submitted the
slopes value to a comparison between Groups and against zero
(i.e., no linear change in mean accuracy across training sessions).
Moreover, we complemented this analysis by comparing, in each
Group, the mean accuracy in session 1 against the mean accuracy
in the rest of the sessions averaged together, for each Type of
Trial.

Gains in Cognitive Assessments
We first confirmed that Groups did not differ in math and
vocabulary test scores before the training was started, by
submitting the pre-training raw scores of the children of each
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Group in each task, to a series of two independent samples
t-test (two tails, alpha 0.05), one per task. We then verified
the internal consistency of the Key Math subtests by measuring
math skills with the children from the current study and
computing the reliability for the raw scores in numeracy,
mental operations and written arithmetic, for both pre- and
post-training evaluations in each Group. Cronbach’s alpha >
0.7 was considered reliable.

After demonstrating internal consistency for math tasks, we
proceed to analyze their gains. To measure the effects of the
training in cognitive tasks, we standardized the gain scores
by subtracting each participant’s pre-training score from the
post-training one and dividing it by the standard deviation of the
pre-training scores across all participants, as it has been applied
in previous ANS training studies (Park and Brannon, 2013,
2014). To compute the standardized gain scores in symbolic
math and vocabulary, we used the raw scores (ceiling—errors).
For the number line task, we used each child’s Percentage of
Absolute Error (PAE) averaged across all digits, computed as:
100 ∗ (estimated position − true position)/(length of the line).
Results at p < 0.05 were considered statistically significant for
this test.

For each cognitive task, we assessed the transfer by testing
whether each Group significantly improved after the training
(i.e., obtained gains scores above zero), and by testing if there
were differences in the observed gains between Groups. We
used planned t-tests for our a-priori hypotheses that were
inspired by the literature and that were presented in the
Introduction. We corrected the significance level of alpha (0.05)
using Bonferroni criteria when testing either a small set of
exploratory post hoc hypotheses or a full range of post hoc
pairwise comparisons. These will be indicated in each case.
Finally, to check that the differences in the cognitive assessments
were not due to differences that the children already had before
the intervention, we submitted the gains in each task to an
ANCOVA analysis controlling by the scores observed before the
training started.

EEG Data Analysis
The EEG analysis considered exclusively the trials with
correct responses, because only three children from the Color-
Group and five from the Addition-Group had more than
15 non-rejected wrong trials, partially due to the fact that
those children made more movements when they provided
wrong responses. We started the analysis by using unbiased
statistics, to identify spatiotemporal clusters over which we
should run the statistical comparisons to test our hypotheses.
We applied cluster-based permutation analysis (Maris and
Oostenveld, 2007), a Fieldtrip function (Oostenveld et al.,
2011) integrated into Brainstorm (Tadel et al., 2011), both
open-source applications for brain recordings analyses. The
spatiotemporal clusters would thus indicate us where and when
the electrophysiological activity of the brain significantly differed
between Groups, training sessions and/or Type of Trial.

Initially, we looked for main effects of Group or Session
without any a-priori assumption regarding the electrodes and/or
time windows where we should have looked for statistical

differences, avoiding double dipping effects. We thus submitted
the EEG data from each child of each Group (Addition vs.
Color), regardless of the Type of Trial (Easy and Hard) and
Session (1st and 7th), to a cluster-based permutation analysis,
with 1000 iterations; threshold of p = 0.05, FDR corrected, over
the time window from 0 ms to 1200 ms after the N3’ onset.
Previous studies have shown that during this time window, the
symbolic and nonsymbolic processing of number, influences the
amplitude of the P2p component in adults (e.g., Dehaene, 1996;
Temple and Posner, 1998). We then proceeded in similar fashion
to explore the eventual main effect of Session by submitting
the data from each child per session (1st vs. 7th) to a cluster-
based permutation analysis, regardless of the Group (Addition
and Color) and Type of Trial (Easy and Hard).

After identifying the spatiotemporal clusters for significant
differences, we computed the average of voltage amplitudes over
the cluster, and the latency of the peak amplitude of those
averages, for each child of each Group (Addition and Color) in
each Type of Trial (Easy and Hard) and in each Session (1st and
7th). We then submitted those values of amplitude and latency
to an ANOVA with Session (1st and 7th) and Type of Trial
(Easy and Hard) as within-subject factors, and Group (Addition
and Color) as between-subject factor, with FDR correction for
multiple comparisons and noting partial eta squared (η2p ) effect
sizes for all significant effects and interactions.

Correlations
We submitted each of our gain data from cognitive assessments,
training and EEG recordings to correlation and regression
analyses, in an attempt to identify dependency relationship
between them.

RESULTS

Training Performance
As we found significant effects only in accuracy, not in RT in
the training tasks, therefore we focused on this measure. The
first analysis showed that the mean accuracy across all trials was
significantly greater than chance (50%) for every session in both
Groups (p< 0.031 for each comparison), indicating that children
succeeded in solving the tasks across sessions.

In the Addition-Group, we also found that the accuracy was
higher for the Easy than for the Hard trials in all sessions
(p < 0.05 for each comparison), except in session 2 for the
Hard trials (p = 0.301), confirming the two levels of difficulty for
this task.

Next, we evaluated the progress in accuracy across training in
each Group by regressing accuracy on training sessions, in each
child. When testing mean regression slopes against zero (i.e., no
training progress) for all trials (i.e., collapsing Easy and Hard
trials) we found significant improvements only for the Addition-
Group (t(59) = 3.170, p = 0.002, Cohen’s d = 0.260) with no
significant changes for Color-Group (t(55) = 0.394, p = 0.789).
We observed similar results when we separately analyzed the
slopes by Type of Trial, observing improvements in accuracy
for the Easy and Hard trials (t(29) = 2.312, p = 0.028, Cohen’s
d = 0.422 and t(29) = 2.162, p = 0.038, Cohen’s d = 0.395,
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FIGURE 2 | Logarithmic fitting for the mean accuracy across sessions per Group and Type of Trial. Fifty percent accuracy indicates performance level expected by
chance. In (A) we illustrate the data from all Types of Trials together, while in (B,C) those from the Easy and Hard trials. Dots correspond to the mean of the Group in
each session, and error bars indicate the standard error for each mean. The logarithmic fitting curve for the mean of the Group across sessions is plotted with a
black dotted line. The Pearson’s correlation coefficients and their corresponding p-value is shown for each plot.

respectively). Similar results were found when we submitted the
mean accuracy of each Group against Session to a correlation
analysis. We found a positive correlation of the mean accuracy
only for the Addition-Group for the Easy (Pearson’s correlation
coefficient = 0.661, p < 0.001) and Hard trials (Pearson’s
correlation coefficient = 0.588, p < 0.001) and for all trials
collapsed together (Pearson’s correlation coefficient = 0.510,

p < 0.001), see Figure 2. In contrast, the mean accuracy of
the Color-Group did not show any significant correlations for
similar comparisons (p > 0.150 for each comparison). Finally,
consistent with those results, we also observed that only in
the Addition-Group, the mean accuracy in the 1st session was
significantly smaller than the mean of the accuracy of the rest of
the sessions collapsing both, Easy and Hard trials (t(29) = 2.048,
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TABLE 1 | The mean score ± the standard deviation in each cognitive task for pre- and post-training evaluation per Group.

Color-Group Addition-Group Control-Group

TASK Pre Post Pre Post Pre Post

Numeration 8.2 ± 3.0 9.5 ± 3.5 8.4 ± 3.2 9.9 ± 3.3 7.4 ± 2.0 8.8 ± 2.0
Mental operation 4.0 ± 1.8 5.4 ± 2.4 3.8 ± 2.7 5.4 ± 2.5 4.5 ± 1.2 4.7 ± 1.5
Written arithmetic 4.2 ± 2.5 5.8 ± 2.3 4.5 ± 2.3 5.5 ± 3.0 4.9 ± 1.6 5.7 ± 2.1
Number line 18.3 ± 8.6 16.3 ± 8.3 20.6 ± 8.4 18.0 ± 9.2 22.5 ± 8.5 19.9 ± 7.8
Vocabulary 44.8 ± 7.9 45.6 ± 5.7 44.6 ± 9.1 44.1 ± 6.0 46.7 ± 5.3 45.3 ± 8.3

p = 0.028, Cohen’s d = 0.373 and t(27) = 2.052, p = 0.010, Cohen’s
d = 0.374, respectively).

Thus, our training results showed that both trained Groups
performed significantly above chance in all training sessions,
suggesting that both of them understood and were committed
to the training games. However, only the Addition-Group’s
task appeared to be trainable by the intervention. Indeed,
only the Addition-Group significantly improved in performance
across training sessions, while the Color-Group exhibited large
fluctuations in accuracy across sessions, converging into a flat
gaining slope. The fact that the participants from the Color-
Group have had high performance in the early sessions of the
training cannot completely explain the changes in accuracy
across sessions, since wemay have expected that their accuracy at
least remained near the performance observed in the first session.

Gains in Cognitive Assessments
The pre- and post-scores in each cognitive task and in each
Group are illustrated in Table 1, and Figure 3 summarizes the
gains in cognitive assessments. All Groups showed significant
gain in more than one cognitive task when we compared them
against zero-gain. Consistent with our predictions, the Addition-
Group showed significant improvement in both symbolic
tests i.e., Written Arithmetic (Mean ± SD = 0.458 ± 0.983;
t(29) = 2.530, p= 0.017, Cohen’s d = 0.832) andMental Operations
(Mean ± SD = 0.793 ± 0.924; t(29) = 5.323, p < 0.001, Cohen’s
d = 0.468). However, a similar pattern of gains was observed
in Color-Group (Mean ± SD = 0.793 ± 0.924; t(27) = 5.323,
p < 0.001, Cohen’s d = 0.468 for Written Arithmetic; and
Mean ± SD = 0.650 ± 1.119; t(27) = 3.540, p = 0.001, Cohen’s
d = 0.779 for Mental Operations), indicating that the gains in
these tasks were not specific to the training of nonsymbolic
arithmetic.

The gain in symbolic math for the Color-Group could
be explained by improvements in the continuous magnitude
processing as well as in domain-general cognitive skills such as
working memory that have been previously reported as causal
agents for improvements in numeric processing (e.g., Kolkman
et al., 2013; Xenidou-Dervou et al., 2013). However, further
studies are necessary to explore those possibilities.

The results on the Number Line task revealed significant
gains in the Addition-Group (Mean ± SD = −0.297 ± 0.784;
t(29) = −2.124, p = 0.042, Cohen’s d = 0.382) but not in the
Color-Group, showing that this spatial task did not benefit from
exercising the manipulation of color as a continuous magnitude.
Although the Addition-Group showed a marginal advantage
when compared to the Color-Group in this task, this gain was not

FIGURE 3 | Standardized gain scores in cognitive tasks per Group. Error bars
indicate the standard error of the mean. All the Groups significantly gain when
they are compared against zero-gain (p < 0.05). The asterisk indicates the
only significant difference observed between groups, i.e., between Addition
and Control Group at p = 0.017.

exclusive for this Group considering that we also found it in the
Control-Group (Mean ± SD = −0.295 ± 0.671; t(32) = −2.543,
p = 0.016, Cohen’s d = 0.444), suggesting that other than the
training program could be at the basis of the gains in the Number
Line task.

In the Numeration test, we observed equally significant
gains across all experimental Groups (Control-Group:
Mean ± SD = 0.573 ± 0.580; t(32) = 6.173, p < 0.001, Cohen’s
d = 1.074; Addition-Group: Mean ± SD = 0.569 ± 0.679;
t(29) = 5.073, p < 0.001, Cohen’s d = 0.926; and Color-Group:
Mean ± SD = 0.477 ± 0.871; t(27) = 3.204, p = 0.003, Cohen’s
d = 0.605), suggesting that other than the training factors could
be at the basis of the gains in this task.

Also contrary to our expectations, no gains were observed in
ANS acuity (i.e., Weber fraction) in any Group (data not shown),
although previous studies have shown similar lack with school
children (Hyde et al., 2014). This lack of gain could be associated
with the briefness of the current training or to the fact that our
stimuli conveyed just a few (i.e., two) numeric ratio, which could
be not variable enough to train and benefit ANS acuity.

Finally, as expected, in none of the Groups did we observe
improvements in Vocabulary, suggesting that the gains in
symbolic representations were restricted to the realm of math.

Despite the fact that we did not find any cognitive task in
which only the Addition-Group showed significant gain, the
comparison between Groups revealed interesting results. Indeed,
the comparison of the standardized gains between Groups
showed a significant main effect of Group only in Mental
Operations (F(2,89) = 4.274, p = 0.017; η2p = 0.089), with the
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Addition-Group showing a significantly greater gain than the
Control-Group in this task (F(1,62) = 7.340, p = 0.009; η2p = 0.107),
with no differences between the Addition and Color-Group
(p = 0.714) or between Color and Control-Group (p = 0.213).
This result could not be explained by differences between Groups
that already existed before the training had started. Indeed,
when we submitted the gains in cognitive assessments to an
analysis of covariance (ANCOVA), with pretest scores in each
task entered as covariates, we confirmed the significant effect
of Group on Mental Operations (F(2,90) = 5.434, p = 0.023,
η2p = 0.083) with a negligible Group × Mental Operations
pre- training scores interaction (F(2,90) = 1.687, p = 0.191;
η2p = 0.038). Similar analyses did not show significant differences
inWritten Arithmetic, Number Line, Numeration or Vocabulary
pretraining scores (p > 0.190 in each comparison); and no
significant interactions of those scores with Group (p > 0.206 in
each comparison). Bonferroni correction was applied to each
multiple comparison reported in this paragraph.

Taken together, cognitive assessments results suggest a
slightly significant transfer effects from the nonsymbolic addition
training to symbolic arithmetic skills, particularly to the Mental
Operation task. However, the lack of difference between the
Addition and the Color-Groups suggests that this effect was not
specific to the Addition-Group. The improvements seen in the
Color-Group (although nonsignificantly different from the time
Control-Group) were contrary to our predictions and could be
related to the engagement of continuous magnitude processing,
test re-test effects, or to the training of the general abilities such
as working memory, which is required to solve color-matching
tasks (e.g., Geary, 2011; Kolkman et al., 2013). Although this
null result reflected that both Groups behaved and similarly
benefitted from a training program, the underpinning brain
adaptations associated with those gains might differ between
them. The brain evidence that we will present next can help shed
light on this issue.

ERP Results
As in previous analyses, we compared the data from the Easy and
the Hard trials of the Addition, with the identical trials of the
Color-Group, in order to avoid that our P2p amplitude analyses
were influenced by perceptual factors (e.g., Gebuis and Reynvoet,
2013; Liu et al., 2018).

Cluster-based permutation analysis allowed us to identify
two spatiotemporal clusters (Figures 4A–C), in which the mean
amplitude of the brain response to N3 stimulus significantly
differed between Groups (p < 0.005, FRD correction) regardless
of the sessions and types of trial. The first cluster corresponded
to a tendency (p = 0.073), observed over the right-frontal
side of the skull, expanding from 104 ms to 1058 ms
after N3’s onset, and involved 2–6 right-frontal electrodes.
This component was similar in the spatial distribution and
shape to the contingent negative variation (CNV; Walter
et al., 1964), a long lasting frontal negative ERPs related to
the engagement of selective visual attention and expectancy
processes. Alternatively, it may reflect the recruitment of frontal
networks engaged in nonsymbolic numerical processing in
children of this age (Cantlon and Brannon, 2006). As previous

ERP studies on number representation have not reported
a similar component and as we did not have pre-defined
hypotheses regarding its behavior, we did not further analyze this
trend.

The second cluster extended from 276 ms to 754 ms after
the N3’s onset and involved 2–5 left-parietal, 1–2 centro-
parietal and 5–7 right-parietal electrodes. This response highly
overlapped in time and scalp location to the P2p component
previously reported for nonsymbolic number processing in
adults (e.g., Dehaene, 1996; Temple and Posner, 1998) and
young children (Hyde and Spelke, 2009). We thus thereafter
referred to our response as P2p. The permutation procedure
removed the components of the brain response that were
common to both tasks, indicating where and when we should
look for statistical differences between Groups, but did not
provide us with specific statistical index about those differences
(see e.g., Tadel et al., 2011). Thus, to test our hypothesis,
which states that the P2p amplitude would be significantly
greater for the Addition-Group than for the Color-Group,
we first computed the average of the P2p amplitude over
the cluster in each child, regardless of Session and Type of
Trial, and submitted those averages to a one-way ANOVA
with Group (Addition and Color) as between-subject factor
(Lilliefors test showed normality for each Group, p > 0.05).
The grand average over this cluster in each Group is illustrated
in Figure 4D. We found a significant main effect of Group
(F(1,39) = 13.499, p < 0.001, η2p = 0.262, Bonferroni corrected),
confirming that the P2p amplitude was significantly greater
for the Addition than for Color-Group across all sessions
and trials. However, to evaluate if this greater amplitude were
associated with the training program, we proceeded to look
for spatiotemporal clusters associated with P2p changes across
sessions.

Whenwe looked for clusters distinguishing the brain response
across sessions, we did not find any significant one, suggesting
that the amplitude of the P2p response was affected by the group,
but not by the training factor alone.

However, since we predicted specific significant effects of
training for the Addition-Group, we looked for significant
interactions between Session and Group, in each Type of Trial,
what would have revealed specific differences attributed to the
training. To identify such spatiotemporal clusters, in which
Groups differed across sessions, to each Type of Trial, we
ran a series of cluster-based permutation analysis comparing
separately the data from each Group in each Type of Trial,
without any a-priori assumption about where or when those
effects should emerge, avoiding thus double dipping effects. For
instance, in one run, we compared the data from the Addition
vs. the Color-Group in the first session for the Easy trials; in
another run, we compared the data from the Addition and Color-
Groups in the 7th session for the Hard trials, and so on. With
this procedure, we did not identify any cluster in which the two
training Groups differed in session 1 (with p > 0.9 for each
comparison), indicating that at the beginning of the training,
the brain responses of both Groups were similar. Crucially, in
session 7, we did identify two parietal clusters in which the
mean P2p amplitude for the Addition and the Color groups

Frontiers in Integrative Neuroscience | www.frontiersin.org 9 July 2018 | Volume 12 | Article 28

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Gouet et al. Neurocognitive Gains of a Non-symbolic Addition Training

FIGURE 4 | Spatiotemporal cluster for significant differences between Groups, regardless of Session and Type of Trial. Zero time indicates the N3’s onset. (A) Draws
the scalp topography of the values of the Student’s t over the parietal and right-frontal clusters, averaged from 276 ms to 754 ms after the N3’s onset. In (A–C), the
red color indicates a greater amplitude of the ERP response in the Addition than in the Color Group, while the blue color indicates the contrary. (B) Plots the variation
in time of the t-value in each electrode. (C) Plots the cluster size, illustrating the variation in time of the t-values across all the electrodes of each cluster. The depicted
p-values indicate the statistical probability for each spatiotemporal cluster that emerged when we compared differences between Groups. We further analyzed only
the parietal cluster, with a p < 0.05. In (D), the middle figure plots the grand averages of the P2p amplitude for the Addition and Color Groups (in magenta and cyan
lines, respectively). These means were computed by averaging the electrodes of the parietal cluster delimited by the black dotted in the voltage map images for the
Addition-Group (left voltage map, magenta arrow) and Color-Group (right voltage map, cyano arrow), from 100 before to 1200 ms after N3’s onset. The dashed
rectangle indicates the time window when Groups significantly differed in the parietal cluster.

significantly differed. One cluster appeared when we compared
the Hard trials of the Addition-Group against the same trials
from the Color-Group. It extended from 256 ms to 754 ms
after N3’s onset and involved from 3 to 9 bilateral parietal
electrodes (p = 0.041; Figure 5A). The other cluster emerged
when we compared the Easy trials of the Addition-Group against
the corresponding ones from the Color-Group, extending from
246 ms to 558 ms after N3’s onset and involving four right-
parietal electrodes (p = 0.029; Figure 5D). Both clusters partially
overlapped over the right parietal electrodes and were similar
in latency, duration and polarity to the cluster described above
indicating the spatiotemporal differences between groups. The
larger extension of the parietal cluster for the Hard than for the
Easy trials in the Addition-Group was congruent with previous
results showing that P2p is often modulated by the difficulty
of the task and manipulated as increasing the proximity of the
number of dots of the arrays that are being compared (Hyde et al.,
2016).

After identifying these two clusters when Groups differed
across sessions, one for the Easy and one for the Hard
trials, we proceeded to look for statistical differences. For
each child, we averaged the mean P2p amplitude over each
cluster and submitted those averages to two separate repeated
measures ANOVAs, one for each Type of Trial, with Session
(1st and 7th) as within-subject factor and Group (Addition
and Color) as between-subject factor. The grand averages over
the two clusters per Group and Type of Trial are illustrated
in Figures 5B,E. For the Hard trials we found a significant
Group × Session interaction (F(1,33) = 4.517, p = 0.041,
η2p = 0.120), due to the P2p mean amplitude was significantly
greater in session 7 than in session 1 in the Addition-Group
only (F(1,20) = 4.824, p = 0.040, η2p = 0.194), with no significant
change in the Color-Group (p > 0.45; Figure 5C). For the
Easy trials we found a strong tendency for a Group × Session
interaction (F(1,33) = 3.916, p = 0.055, η2p = 0.109), due to
the P2p mean amplitude was greater in session 7 than in
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FIGURE 5 | Spatiotemporal cluster for significant differences between Groups per session and Type of Trial. (A–C) Illustrate the differences observed between
Groups for the Hard trials, across sessions. (A) plots the scalp topography of the parietal cluster, indicating the values of Student’s t averaged from 256 ms to
754 ms after the N3’s onset, over nine parietal electrodes. The red color indicates the electrodes where P2p amplitude was greater for the Addition than for the Color
Group at 7th session. (B) draws the time course of the grand averages of the P2p per Group and Session. The magenta and cyan lines correspond to the Addition
and Color Groups respectively. The thin and wide lines indicate the averages for session 1 and session 7 respectively. The dashed rectangle indicates the time
window when Groups significantly differed in session 7. (C) shows the grand average of the P2p amplitude computed over the time and electrodes indicated by the
parietal cluster, in the Color and Addition Groups and in session 1 and session 7. The vertical lines show the standard error of the mean. The written p-value
corresponds to the p-value of the Group × Session interaction that was obtained when we submitted average of each child to a repeated measure ANOVA (see the
text). Panels from (D–F) draw the same type of data described for (A–C) but now referred to the differences between Groups for the Easy trials across sessions.

session 1 in the Addition-Group (F(1,20) = 4.165, p = 0.055,
η2p = 0.172) with no significant change in the Color-Group
(p> 0.5; Figure 5F). Greenhouse-Geisser correction for multiple
comparison was applied in each repeated measures ANOVA
described here.

Together, our brain results indicated that a brief training of
nonsymbolic approximate arithmetic was associated with brain
adaptations, which were somehow specific to number processing.
Indeed, the increase in P2p amplitude across training sessions
may have reflected a larger recruitment of the neural networks
involved in number processing, since the amplitude of P2p
amplitude in the Color-Group did not change across sessions,
although the participants of this Group largely succeeded in the
training task.We then proceeded to look for correlations between
brain and cognitive/behavioral results.

Correlation Analysis
We focused our correlation analyses on the relationship between
standardized gains scores in the cognitive tasks, and the ‘‘gain’’
in P2p mean amplitude, computed as the subtraction of the P2p
amplitude obtained in session 1 from the amplitude observed
in session 7 (see Hyde et al., 2016 for a similar approach
of using differences in the brain response, although in their
case between two experimental conditions). We hypothesized

that if P2p is a brain signature of ANS processes, reflecting
the activity of brain regions associated with the processing
of nonsymbolic and symbolic numbers, then we may find
correlations between the gains in symbolic arithmetic skills and
the changes in P2p.

Indeed, we found that in the Addition-Group only, the
gain in P2p amplitude for the Hard trials positively correlated
with the standardized gains in Mental Operations (Person’s
R coefficient = 0.466, p = 0.033), and that for the Easy trial
positively correlated with the standardized gains in Written
Arithmetic (Pearson’s R coefficient = 0.436, p = 0.047; Figure 6).
Consistent with these results, the multiple regression analysis
revealed that, only in the Addition-Group, the gain in P2p
amplitude for the Hard trials was a significant predictive
variable for the standardized gain in Mental Operations
(Beta = 0.466, t = 2.990, p = 0.033). Although being non-
significant, we also found that the P2p amplitude for the
Easy trials predicted the Written Arithmetic in this Group
(Beta = 0.375, t = 1.762, p = 0.094). We did not find any
significant correlation concerning the Color-Group (p > 0.456
for each comparison).

These results suggested that the covariance between the gain
in math skills and the gain in the P2p amplitude across the
training in Addition-Group might reveal the two faces of a single
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FIGURE 6 | We draw the scatterplot for gain in P2p mean amplitude over the parietal clusters for the Hard and Easy trials against the standardized gain in Mental
Operation and Written Arithmetic, respectively. R and p-values for each Group are drawn.

process, that is, the training of the activation of neural networks
involved in nonsymbolic and symbolic numeric processing in
young children.

DISCUSSION

The major findings of our study showed that the improvements
in a nonsymbolic approximate arithmetic training in 1st grade
children are related to functional changes in brain activity, and
that such changes were associated with the gains observed in
symbolic arithmetic tasks after training.

Consistent with previous training interventions, we observed
that children in the Addition-Group provided responses
increasingly more accurate as the training progressed, suggesting
that ANS abilities aremalleable through intensive experience.We
also observed that children in this group displayed significant
gains in a test of symbolic arithmetic (Mental Operations) when
compared to a passive Control-Group, indicating some transfer
effects from nonsymbolic to symbolic arithmetic skills. However,
the fact that we did not observe differences in cognitive gain
patterns when compared to the Color-Group, suggests that these
transfer effects were nonspecific.

Based on previous evidence reported by Hyde et al. (2014),
we did not expect the gains in symbolic arithmetic observed in
the Color-Group (although it was not significantly different from
the passive Control-Group). They found that children trained
in nonsymbolic addition with dot arrays performed better
than children trained in performing brightness comparison,
in a subsequent symbolic exact arithmetic test. It is possible
that the longer duration of our training compared to theirs
(7 sessions vs. 1 session) may have been enough to enhance
performance in our Color-Group. This is consistent with studies
that have shown cognitive interference effects between number
and brightness processing, and with the overlapped activations
described over the parietal cortex when solving both types of
tasks (Cohen-Kadosh et al., 2008; but see Pinel et al., 2001).

More generally, this result fits with the notion of a generalized
magnitude system, according to which all magnitudes (numeric
and non-numeric) are processed on a single mental scale and
are expected to interface similarly with symbolic math abilities
(Walsh, 2003; Lourenco et al., 2012; see Lourenco, 2016 for a
review). However, our brain results challenge this interpretation,
as they revealed marked differences between Groups precisely in
a brain signature associated withmagnitude comparison (the P2p
component).

In fact, only the Addition-Group exhibited an increase in
the amplitude of P2p, despite that both Groups exposure to
identical stimuli, suggesting that both Groups exercised different
mental computations during the training. In particular, since
the P2p component linkage to the processing of numerical
information in different experimental settings (e.g., Hyde et al.,
2016; Szücs and Soltész, 2008), the specific increase of this
variable in the Addition-Group may reflect that numeric
brain regions became more sensitive to the processing of
numerical information across the training. Note that this effect
cannot be explained by differences in the difficulty of the
tasks, since we observed it in both Hard and Easy trials,
the latter exhibiting similar behavioral performance between
Groups.

Moreover, the fact that we observed a correlation between the
increase in P2p amplitude and the gains in symbolic arithmetic
tasks only for the Addition-Group, not only does reinforce
the idea that this ERP component indexes numerical-related
processes, but further suggests differences between both training
programs. Indeed, the enhancements in symbolic arithmetic
skills for the Color-Group could relies on different mechanisms
than those attributed to the improvement in math skills in
the Addition-Group. Although we did not directly measure
working memory abilities in this study, the color task may
have exercised it in every trial, by requesting to keep the color
intensity of the three consecutive stimuli in mind to provide
the correct response. The practicing of this memory effort may
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be transferable in some ways to math skills. Indeed, even very
simple tasks, such as color comparison, impose a memory load as
they require simultaneous and sequential processes of perceiving,
coding, interpreting, and comparing information (e.g., Geary,
2011; Kolkman et al., 2013). Alternatively, as this Group did not
show differences from the passive Control-Group, the increase in
symbolic arithmetic tests may simply reflect learning experiences
with numbers at their school. It is important to notice that
the lack of a significant gain in the training accuracy across
sessions in the Color-Group might not prevent the transfer
to math skills. Previous studies have pointed out (e.g., Park
and Brannon, 2016) the fact that a training group does not
show improvements in a training task, does not preclude the
possibility of transfer effects to a target task (because the relevant
connection would not be between the observable performance in
the training and target tasks, but rather between the unobservable
cognitive elements underlying the training and target tasks).
Finally, since every numeric task is to some extent influenced
by the magnitude aspects of the stimuli (e.g., Soltész and Szücs,
2014), further design in the current color task, such as using
different levels of difficulty, would be necessary to precise
better the brain response associated with the color training
task.

As mentioned in the ‘‘Introduction’’ section, besides
examining the brain correlates of nonsymbolic arithmetic
training, we sought to obtain a wider picture of its potential
transfer effects to symbolic math abilities. As aforementioned
above, previous studies have focused on assessing transfer
to symbolic arithmetic abilities, and that was the core of our
math evaluations. However, we also included the Number Line
task (see also Khanum et al., 2016) and a Numeration test as
complementary tasks. Although we did observe gain in Number
Line for the Addition-Group, this gain was similar to the one
exhibited by the Control-Group, showing that this spatial
number task was not sensitive to the nonsymbolic arithmetic
training.

Concerning the Numeration task, the lack of gains suggests
that, at least after applying our short intervention, the practice
of ANS-computations may not be related to basic conceptual
knowledge of numbers. This is consistent with a recent ERP study
(Hyde et al., 2016), which shows that a brain signature associated
with the processing of small nonsymbolic numbers (the early
N1 component), but not with the ANS (P2p), was related to
counting proficiency with preschool children after controlling for
general cognitive factors.

While the increase in P2p amplitude for the Addition-
Group across training suggested that parietal networks became
more sensitive to nonsymbolic numerical magnitudes, it is
reasonable to suspect that these brain changes were specifically
targeted to the IPS, since previous studies described this region
as a cortical generator of the P2p (e.g., Hyde and Spelke,
2012). The malleability of the ANS by training could thus
have had its cortical origins in changes in the IPS activity.
Indeed, the IPS has been consistently related to numerical
processing in infants, children and adults (Izard et al., 2008;
Dehaene and Brannon, 2011), in multiple tasks using both
nonsymbolic and symbolic numbers. Our observation of a

positive correlation between the gain in P2p amplitude and
the gains in symbolic arithmetic for the Addition-Group is
consistent with this function of the IPS of processing numerical
magnitudes in general (nonsymbolic and symbolic). Moreover,
our results tentatively suggest that the improvements observed
in symbolic arithmetic may be caused by the changes in IPS
activation (under the assumption that the P2p is an index
of that activity). This possibility fits well with the proposal
which states that what drives transfer between nonsymbolic
and symbolic number abilities is an overlapping of brain and
cognitive structures (the Representational Overlap Hypothesis,
see Hyde et al., 2016). However, a couple of concerns warrant
caution on this interpretation. First, although P2p can be
associated with IPS activity, the changes in the amplitude of this
component may be a down-stream effect of changes occurring
in other brain structures during the execution of the task. In
this sense, it has been shown a tight association between mental
arithmetic and the processing of spatial information, pointing to
the Superior Parietal Lobule as a region linking both of them,
which can be dissociated from the IPS (Knops et al., 2009).
Under this scenario, the transfer effects could be explained by
shared mental operations between nonsymbolic and symbolic
arithmetic (i.e., manipulation and transformation of numerical
representations), rather than shared mental representations of
numerical information per se. This would be in line with the
Operational Overlap Hypothesis (Hyde et al., 2016). Second, we
observed a lack of gains in Weber fraction in the nonsymbolic
number comparison task (Halberda et al., 2008), which was
somehow unexpected, although other studies have reported
similar absence (e.g., Hyde et al., 2014; Khanum et al., 2016).
This negative result suggests that neither the improvements
in the nonsymbolic arithmetic task nor the potential transfer
effects to symbolic math were associated with fundamental
changes in the ANS acuity. Thus, if the Representational Overlap
account is valid, then the transfer effects may not involve
the sharpening of tuning curves in IPS neurons, supposedly
coding both symbolic and nonsymbolic numerical magnitudes
(Dehaene and Brannon, 2011) as previously suggested (Park
and Brannon, 2013). Further studies are certainly necessary to
decide between these possibilities and specify in more detail
the brain mechanisms underlying ANS and symbolic math
connections.

Finally, in a more applied vein, the weak transfer effects
we observed here, along with other recent reports, suggest
caution when considering our results as inputs to potential
applications of ANS training interventions to math education.
Indeed, a recent large-scale longitudinal experiment reported
weak long-term effects of an ANS-based training intervention
(Dillon et al., 2017). These authors observed that while practicing
ANS games with preschool children led to enduring positive
effects in nonsymbolic number abilities compared to a Group
trained in social games (measured up to around 1 year later), only
weak and short-lived effects were seen in symbolic math skills
after the intervention. As these and other authors have suggested
(Lewis et al., 2015), it is possible that stronger benefits in symbolic
math skills may be attainable if these training paradigms could
exercise simultaneously intuitive and formal aspects of math
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knowledge. Notwithstanding, more experimental designs, such
as those we and other previous studies have employed (e.g.,
Hyde et al., 2014), are necessary to better test and elucidate
eventual causal relationships between symbolic and nonsymbolic
abilities, which may serve as inputs to educational purposes.
Additionally, how to properly use and take the best advantage
of computer technologies in teaching math (or any subject)
is something that also warrants further research (Geary et al.,
2008).

CONCLUSION

Our study provides a new piece of neurocognitive evidence on
the links between intuitive and formal math abilities, showing
that a multi-session ANS arithmetic training led to behavioral
and brain changes in number specific networks in young
children. We believe that our data would serve as an input for
current models aimed at characterizing math cognition during
early development.
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