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Abstract Diversity of T cell receptor (TCR) repertoires, generated by somatic DNA

rearrangements, is central to immune system function. However, the level of sequence similarity of

TCR repertoires within and between species has not been characterized. Using network analysis of

high-throughput TCR sequencing data, we found that abundant CDR3-TCRb sequences were

clustered within networks generated by sequence similarity. We discovered a substantial number of

public CDR3-TCRb segments that were identical in mice and humans. These conserved public

sequences were central within TCR sequence-similarity networks. Annotated TCR sequences,

previously associated with self-specificities such as autoimmunity and cancer, were linked to

network clusters. Mechanistically, CDR3 networks were promoted by MHC-mediated selection, and

were reduced following immunization, immune checkpoint blockade or aging. Our findings provide

a new view of T cell repertoire organization and physiology, and suggest that the immune system

distributes its TCR sequences unevenly, attending to specific foci of reactivity.

DOI: 10.7554/eLife.22057.001

Introduction
The T-cell receptor (TCR), which is generated through random rearrangement of genomic V-D-J seg-

ments, is the mediator of specific antigen recognition by T lymphocytes. The collective variety of

these receptors expressed by an individual, the TCR repertoire, reflects the state of the adaptive

immune system and its history, as its composition changes throughout life in response to immune

challenges. The individual TCR repertoire is shaped by biases in the process of VDJ recombination

(Robins et al., 2010; Miles et al., 2011; Murugan et al., 2012; Ndifon et al., 2012), and by the

subsequent expansion and deletion of certain T cell clones upon antigen recognition during T cell

development in the thymus, and later in the periphery.

Here, we studied the organization of TCR repertoires using high-throughput TCR sequencing,

comparing data from mice and humans. We focused on the CDR3 (complementary determining

region 3) amino acid (AA) sequence of the TCRb chain, which is the most diverse segment of the

TCR and is positioned to interact with the antigenic peptide epitope presented by an MHC molecule

(Davis and Bjorkman, 1988). The organization of TCR repertoires of individual mice and humans
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was evaluated using network analysis, where CDR3 sequences were connected based on their level

of sequence similarity.

Results
Initially, we constructed TCR networks from a dataset of TCRb AA sequences obtained from splenic

CD4+ T cells from 12 healthy C57BL/6 mice (Madi et al., 2014). We obtained on average about

30,000 different CDR3 sequences from each mouse, which were found at varying abundances and

had an average length of 13.4 ± 1.4 (mean ±SD) AA. Figure 1A shows a network obtained using the

thousand most frequent CDR3 sequences from a single mouse, which in terms of abundance corre-

spond to 34% of the total sequences obtained for that mouse. CDR3 sequences (nodes) were con-

nected (by edges) if they were separated by one amino acid difference (replacement/addition/

deletion of one AA) – a Levenshtein distance of 1(Levenshtein, 1966). A cluster was defined as a set

of two or more nodes that are connected to each other by any number of edges and intermediate

nodes (Figure 1A, inset). A similar analysis had previously revealed the existence of networks of

B-cell immunoglobulin heavy-chains, which were attributed to clonally derived sequences generated

by somatic hyper-mutations (SHM) (Ben-Hamo and Efroni, 2011; Bashford-Rogers et al., 2013).

Our analysis demonstrated the existence of networks also for TCRb sequences. As T cells do not

undergo SHM, other factors lead to the formation of TCR similarity networks.

We repeated this analysis for all 12 mice, and found that of the thousand most frequent CDR3

sequences in each mouse (with an accumulated frequency of 34.5 ± 8% of total sequences),

647 ± 104 (mean ±SD) were clustered, with 1282 ± 383 edges. In contrast, networks composed of a

thousand randomly selected CDR3 sequences from a single mouse (with an accumulated frequency

of 5 ± 0.7% of total sequences) were much sparser (Figure 1B), with only 225 ± 64 sequences clus-

tered, and with 152 ± 52 edges (average values for 10 independent randomized sets of sequences).

These results were not sensitive to the number of sequences used for the analysis (Figure 1—figure

supplement 1).

To contrast the TCR networks with their BCR counterparts, we tested whether these networks are

structurally similar. BCR networks have been shown to center around highly abundant clones, repre-

senting a snapshot of the individual-specific local evolution driven by SHM. However, we found no

correlation (R2 = 0.11 ± 0.07) between the abundance of a TCR CDR3 sequence and its degree of

connectivity in the network (number of edges connecting it to other sequences). We further found

that each cluster typically contained sequences of a single (or in some cases two) specific J segment

(Figure 1—figure supplement 2). V usage, in contrast, was not cluster-specific; any cluster con-

tained sequences with many different V segments (Figure 1—figure supplement 2). This reflects

the higher number of V segments compared with J segments, as well as their lower overlap with

CDR3 and the relative similarity of their 3’ ends. Networks of similar connectivity were obtained also

for the top 1000 CDR3b sequences from CD8 T cells, and for CD4 T cells of a different mouse strain

(C3H.HeSnJ), that bears a different MHC haplotype (H2k; Figure 1—figure supplement 3, Fig-

ure 1—figure supplement 4).

We found a parallel network organization also in human TCRb repertoires: we analyzed previously

published data containing the TCRb repertoires of 39 human subjects of different ages

(Britanova et al., 2014), and found that the most abundant CDR3 sequences formed connected

clusters in human TCR repertoires (Figure 1C, Supplementary file 1, and Figure 1—figure supple-

ment 1), though with a lower connectivity than that found in the similarity networks of inbred mice.

From the thousand most frequent CDR3 sequences (accumulated frequency of 17.1 ± 6.6% of total

sequences) in each of the 11 young human subjects in that study (ages 6–25 years), 207 ± 79 nodes

were clustered, with 367 ± 201 edges. Networks composed of randomly selected sequences from

the individual subjects generated only 8 ± 4 clustered nodes with 4 ± 2 edges. We thus conclude

that these newly discovered TCR similarity networks are likely to be driven by conserved evolutionary

forces, as opposed to BCR networks that are generated by SHM that operates within individuals.

Next, we tested whether these TCR networks reflect our previous finding that TCRb CDR3 AA

sequences express a range of sharing levels between individual mice. As a measure of sharing level,

we used a reference dataset of 28 mice (Madi et al., 2014) and assigned to each CDR3 AA

sequence in a network a sharing level ranging from 1 (private, found in only one mouse in the refer-

ence dataset) to 28 (public, found in all 28 mice in the reference dataset) (Madi et al., 2014).
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Figure 1. Mouse and human TCR repertoires manifest dense similarity networks surrounding public CDR3b sequences. (A) Networks formed by the

thousand most frequent CDR3 AA sequences expressed in the TCRb repertoire of splenic CD4 T cells from a single mouse. Nodes (CDR3 AA

sequences) were connected by edges defined by a Levenshtein distance of 1 (one AA substitution/insertion/ deletion). Node size reflects its log

frequency (scale at the bottom). The nodes are colored according to their sharing levels in a reference dataset of 28 mice (Madi et al., 2014), from

Private CDR3 sequences (white, found in only one mouse in the reference dataset) to public (black, shared by all 28 mice). Inset shows a blowup of the

marked cluster with labeled CDR3b AA sequences (nodes) and edges which represent a Levenshtein distance of 1 between connected nodes. (B)

Networks formed by a thousand CDR3b sequences randomly chosen from the repertoire of a single mouse. (C) A Network formed by the thousand

most frequent CDR3 AA sequences in the TCRb repertoire of a representative human subject (data from [Britanova et al., 2014]). Nodes are colored

by their degree of sharing among the 11 young subjects in that study (ages 6–25 years). (D) Mean degree of node connectivity as a function of sharing

Figure 1 continued on next page
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Interestingly, we found a strong association between the sharing level of a CDR3 sequence and its

connectivity in the network: highly shared sequences are positioned at the center of network clusters

(Figure 1A). This is indicated by a statistically significant correlation between the degree of node

connectivity (number of edges connecting it to other nodes in the network) and its sharing level

(Figure 1D), (R = 0.69 ± 0.03, p-value<2.2e-16; see also Supplementary file 1). An independent

method for estimation of node centrality, betweenness centrality, confirmed the correlation between

CDR3 sharing and centrality for the 1000 most abundant CDR3 sequences, but not for a random set

of expressed sequences (Figure 1—figure supplement 5, Supplementary file 1). As in mice, public

CDR3 sequences in humans manifested a higher degree of connectivity than did more private

sequences (Figure 1C, Figure 1—figure supplement 6), and sequence abundance was not corre-

lated with its level of connectivity (Supplementary file 1). Thus, private and public CDR3 sequences

are distributed differently across the mouse and human networks: public sequences are highly con-

nected to other similar sequences and are more central in network clusters; in contrast, more private

sequences are found at the edges of clusters, or as un-connected nodes, with rare similarity to other

sequences in the network.

These findings of a similar organization of mouse and human TCR networks prompted us to look

for the existence of shared CDR3b sequences between the two species. Interestingly, we found that

a substantial number of TCRb CDR3 AA sequences were shared by mice and humans. Out of

5,247,785 unique AA sequences in the human dataset (11 young individuals) and 371,977 in the

mouse dataset (28 animals), 27,337 were shared by at least one mouse and one human individual. In

general, CDR3 sequences with a higher level of sharing in mice were found to have an increased

probability of being found in human repertoires; similarly, sequences more shared in humans were

found more frequently in mice (Figure 2A, Figure 2—figure supplement 1). Of note, more than

25% of the public CDR3 sequences (found in all 11 young human subjects, or found in all 28 mice)

were found also in at least one individual of the other species (Figure 2A).

We defined a set of cross-species (CS) public CDR3 sequences that were public or relatively pub-

lic in both mice (found in at least 25 of the 28 mice) and humans (found in all 11 young individuals).

All these 86 CS-public sequences contained the human Jb2.7 or Jb2.3 segments, and the mouse

Jb2.5 or Jb2.7 segments. V usage was dominated by Vb20.1 in humans, but a more diverse V usage

was observed in mice. Examples of CS-public sequences are shown in Figure 2B. The CS-public

CDR3 sequences manifested a significantly higher degree of connectivity in human and mouse net-

works than did CDR3 sequences that were public only in humans, only in mice or not public in either

(Figure 2C,D and Figure 2—figure supplement 2). Moreover, we found a significant correlation

between the mean degrees of CS-public sequences in mouse and human networks (Figure 2—fig-

ure supplement 3); CS-public sequences that have more neighbors in mouse networks also tended

to have more neighbors in human networks, suggesting an evolutionarily conserved network struc-

ture. We note that while CS-public sequences are central in network clusters, their frequency is not

Figure 1 continued

level in a network formed by the top 1000 CDR3 sequences (blue) or by 1000 randomly chosen sequences (orange). Error bars indicate standard error

(SE) across the 12 mice used in this study.

DOI: 10.7554/eLife.22057.002

The following figure supplements are available for figure 1:

Figure supplement 1. Mean number of clustered nodes as a function of the sample size selected for generating the network.

DOI: 10.7554/eLife.22057.003

Figure supplement 2. CDR3b sequences form networks with clusters dominated by J-genes and heterogeneous for V-genes.

DOI: 10.7554/eLife.22057.004

Figure supplement 3. CD8+ T cell networks formed by the thousand most frequent CDR3 AA sequences expressed in two mice.

DOI: 10.7554/eLife.22057.005

Figure supplement 4. Networks from C3H.HeSnJ mouse strain bearing the H2k MHC haplotype.

DOI: 10.7554/eLife.22057.006

Figure supplement 5. Evaluating the level of node centrality vs. sharing level.

DOI: 10.7554/eLife.22057.007

Figure supplement 6. Node centrality vs. sharing level in human TCRb repertoires.

DOI: 10.7554/eLife.22057.008

Madi et al. eLife 2017;6:e22057. DOI: 10.7554/eLife.22057 4 of 17

Research article Computational and Systems Biology Immunology

http://dx.doi.org/10.7554/eLife.22057.002
http://dx.doi.org/10.7554/eLife.22057.003
http://dx.doi.org/10.7554/eLife.22057.004
http://dx.doi.org/10.7554/eLife.22057.005
http://dx.doi.org/10.7554/eLife.22057.006
http://dx.doi.org/10.7554/eLife.22057.007
http://dx.doi.org/10.7554/eLife.22057.008
http://dx.doi.org/10.7554/eLife.22057


Figure 2. TCR repertoires are focused around public and cross species- (CS-) public CDR3 AA sequences shared by mice and humans. (A) Human (left)

or mouse (right) CDR3 sequences are grouped according to their sharing level in the corresponding dataset. For each sharing group, we plotted the

percentage of sequences that were shared by at least one subject of the other species. (B) Examples of CS-Public CDR3 sequences, and their V and J

segments in mouse and human repertoires. (C) A network formed by the top 1000 CDR3 sequences of a single human subject. Node color represents

its sharing within or between species: Pink - shared by all 11 human subjects; Green - shared by at least 25 of the 28 mice; Black – CS-public nodes

shared by all 11 humans and at least 25 mice; Blue - not shared. (D) The mean number of edges per node (degree) in the 11 human and 28 mouse

networks, subdivided into the four categories as in C. Error bars mark SE.

DOI: 10.7554/eLife.22057.009

The following figure supplements are available for figure 2:

Figure supplement 1. Cross-species TCR sharing.

DOI: 10.7554/eLife.22057.010

Figure supplement 2. Sharing properties of the 86 observed CS-public CDR3 sequences in simulated data.

DOI: 10.7554/eLife.22057.011

Figure 2 continued on next page
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higher than that of other public sequences that are found only in humans or in mice. These findings

propose that similar driving forces may generate and expand particular public CDR3 TCR sequences

that contain conserved sequence motifs in the two species.

To further characterize the mechanisms that contribute to the generation of CS-public sequences,

we evaluated their existence in synthetic TCR repertoires that simulate the random generation of

TCR sequences (see methods). These simulations do not include any clonal selection, thus they allow

discrimination between genetic mechanisms that influence the generation of TCRs and selection

mechanisms that shape it somatically. We generated 100 datasets of simulated repertoires of 28

mice and 11 humans, the sizes of which matched the sizes of the experimental repertoires. The simu-

lated repertoires contained a somewhat larger number of CS-public CDR3 sequences than observed

in the experimental data (average of 221 ± 9 in the simulations, vs. 86 in the data). The simulated

CS-public sequences contained the same restricted set of mouse and human J segments, which are

highly similar between the two species (J2.7 mouse and human; J2.5 mouse/J2.3 human). Thus,

sequence homology of J segments contributes to the formation of CS-public TCRs, but is not suffi-

cient by itself, and is accompanied by other mechanisms that induce bias in the recombination pro-

cess (e.g. biased V segment usage, statistics of nucleotide deletions and insertions at V-D and D-J

junctions). We also asked whether the simulated repertoires contained the same CS-public sequen-

ces as those observed experimentally. We found that 54 out of the 86 experimentally observed CS-

public sequences were identical to simulated CS-public sequences, while 32 were not CS-public in

the simulations (Figure 2—figure supplement 4). The partial overlap between simulations and data

may result from inaccuracies in the assumptions of the simulations regarding the random TCR gener-

ation process, or indicate that selection mechanisms in the thymus and in the periphery further influ-

ence the existence of specific CS-public sequences.

We further evaluated the similarity between public sequences by analyzing the level of connectiv-

ity within a network composed of the most highly shared CDR3 sequences. A network formed by

the 1000 most public mouse sequences (found in >25 of the 28 mice) was highly connected, with

965 clustered nodes and 3387 edges (Figure 3A). In contrast, networks formed by the 1000 most

abundant private sequences (found in only one of the 28 mice) were very sparse, manifesting only

38 ± 15 clustered nodes and 20 ± 7 edges (mean ± SD, averaged over 28 mice). Similarly, a network

formed by the 1000 most public human CDR3 sequences was also highly connected (with 969 clus-

tered nodes and 4398 edges, Figure 3B).

The functional TCR is formed by a complex of TCR alpha and beta chains (Davis and Bjorkman,

1988), hence one cannot attribute specific antigen recognition to CDR3b segments alone. More-

over, the current level of understanding precludes the development of general predicting tools that

can computationally relate a TCR sequence to an antigen that it recognizes. Defining TCR antigen

specificity is further complicated by substantial TCR cross-reactivity (Burrows et al., 1997;

Wooldridge et al., 2012). Yet, TCRb sequences that bind the same pMHC antigen do contain

shared CDR3b sequence motifs (Klinger et al., 2015; Chen et al., 2017; Sun et al., 2017;

Tickotsky et al., 2017). Thus, some insight on antigen specificity can be gained by linking the

sequence-similarity networks to previously annotated TCR sequences. We have reported that 124 of

the CDR3b sequences in our mouse dataset were associated with various mouse immune reactivities

previously described in the literature (Madi et al., 2014). As a step towards relating antigen specific-

ity to the clusters of public CDR3 sequences, we looked for these 124 annotated CDR3b sequences

within the clusters of shared CDR3 sequences. The annotated sequences were grouped according to

four categories: a) Immunity to foreign pathogens; b) Allograft reactions; c) Tumor-associated T cells;

and d) Autoimmune conditions. Figure 3A includes these annotations in the network formed by the

1000 most public CDR3b sequences. Out of the 124 annotated sequences, 63 were either identical

to one of the existing nodes (n = 11), or linked to an existing node by a Levenshtein distance of 1

Figure 2 continued

Figure supplement 3. CS-Public CDR3 sequences are central in mouse TCRb networks.

DOI: 10.7554/eLife.22057.012

Figure supplement 4. Degree of CS-public sequences is correlated in mouse and human TCR networks.

DOI: 10.7554/eLife.22057.013
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(n = 52). The clustered annotated nodes were found to be enriched with annotations related to self

or self-like autoimmune, cancer or allograft reactions (self-related: 51/63 = 81% of network-clustered

sequences vs. 85/124 = 69% in all 124 annotated sequences, compared to non-self: 12/63 = 19% in

clusters vs. 39/124 = 31%; Fisher exact test p=0.0035).

We find that sequences with a similar annotation tended to be linked in the same cluster. Exam-

ples include twelve sequences of tumor infiltrating regulatory T cells (Sainz-Perez et al., 2012) which

were found in cluster #2; six COPD related CDR3 sequences (Motz et al., 2008) in cluster #6; and

four CDR3 sequences connected with cluster #2 that were associated with type 1 diabetes in NOD

mice in two different studies (Nakano et al., 1991; Tikochinski et al., 1999). However, different

annotations can also be found in the same cluster (Figure 3A); for example, mouse CDR3 sequences

associated with experimental autoimmune encephalomyelitis (EAE; [Menezes et al., 2007]) and col-

lagen-induced arthritis (CIA; [Osman et al., 1993]) were also connected to cluster #2. Figure 3B

shows that many previously annotated self/self-like sequences of humans and mice were also linked

Figure 3. Public CDR3 sequences form highly connected similarity networks in mice and humans and are enriched for self-associated immune

reactivities. (A) A network formed by the 1000 most shared mouse CDR3 sequences (found in >25 of 28 mice). Node size corresponds to the mean

abundance of the sequence. Nodes are colored according to their cluster association. 124 CDR3 sequences that were previously annotated (see

[Madi et al., 2014]) were added to the network and are presented as arrowheads. 63 annotated sequences were either identical to, or at a Levenshtein

distance of 1 from one of the nodes, and are listed next to each cluster (with the corresponding color). Annotations of 61 un-clustered sequences are

also listed. (B) A network formed by the 1000 most frequent public CDR3 sequences in humans (found in all 11 subjects). Previously annotated mouse

(n = 124) and human (n = 30) CDR3 sequences were added to the network as in A (arrowheads). The clusters were distinctly colored in order to visually

match between clusters and their annotated sequences, not to define antigen specificity of a cluster. A list of linked annotated CDR3 sequences is

shown next to each cluster (11 of 30 human and 23 of 124 mouse annotated CDR3 sequences), together with a list of unclustered annotated human

sequences.

DOI: 10.7554/eLife.22057.014

The following figure supplement is available for figure 3:

Figure supplement 1. Public CDR3 sequences form highly connected similarity networks in mice and are enriched for self-associated immune

reactivities.

DOI: 10.7554/eLife.22057.015
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to clusters in the network of public human sequences. Thus, the CDR3 clusters, which serve as reper-

toire foci, seem to be enriched with TCR sequences that are associated with self (or self-like) reactiv-

ities, whereas pathogen-associated TCR sequences are less clustered and so tend to be more evenly

spread throughout sequence space.

To analyze mechanisms involved in network formation, we investigated the contribution of anti-

gen selection using two complimentary approaches. First, we analyzed similarity networks formed by

CDR3 sequences of CD4-CD8-double-negative (DN) thymocytes. Rearranged TCRb chains in DN

cells are not subject to MHC-dependent selection, which only occurs at later stages of thymic devel-

opment. We found that networks formed by DN CDR3 sequences were significantly less connected

compared to splenic CD4+ T cells, which have undergone antigen selection (Figure 4A and

Supplementary file 2). In addition, DN thymocytes and CD4+ spleen T cells manifested different lev-

els of convergent recombination (Venturi et al., 2006, 2008). Public CDR3 AA sequences in DN thy-

mocytes were encoded on average by a low number of nucleotide (nt) sequences, whereas the same

AA sequences were encoded by a much larger number of nt sequences in CD4+ splenic T cells

(Figure 4C, Figure 4—figure supplement 1). The finding of relatively increased network clusters in

T cells that have undergone antigen selection suggests that the CDR3 AA sequences that are found

within clusters are positively selected; this antigen selection would extend any underlying physical

bias generated during TCR DNA recombination in the thymus (Murugan et al., 2012; Ndifon et al.,

2012).

To further study the impact of selection, we evaluated TCR networks formed in the repertoires of

splenic T cells from mice lacking four elements needed for physiological MHC-dependent antigen

selection: MHC-I and -II molecules together with CD4 and CD8 co-receptor molecules, so-called

Quad-KO mice (Van Laethem et al., 2007, 2013). In contrast to wild-type (WT) mice, the TCR of

Quad-KO mice are selected by MHC-independent ligands in the thymus and their T cells express a

diverse MHC-independent TCR repertoire in the periphery (Van Laethem et al., 2007;

Tikhonova et al., 2012; Van Laethem et al., 2013). We found that similarity networks formed by

the top 1000 CDR3 sequences from Quad-KO mice were significantly less connected than those of

the WT strain (C57BL/6) measured in the same set of experiments (Figure 4A and

Supplementary file 2). Together, these findings indicate that MHC-dependent thymic selection

plays a significant role in promoting the formation of dense clusters of TCR-similarity networks. Lack

of MHC-dependent selection in DN thymocytes and in Quad-KO mice is associated with TCR net-

works of reduced connectivity; in contrast, TCRs that are subject to MHC selection form dense net-

works with a higher level of convergent recombination. Thus, recombination biases combined with

clonal selection generate a TCR repertoire that is not uniform, but rather focused in specific regions

of sequence space that are preferentially associated with self-related antigen-reactivities.

Following these observations, we tested if the relative abundance of CS-public clonotypes is

increased by MHC-dependent selection. To this end, we compared the frequency of CS-public

sequences in repertoires of Quad-KO mice and DN thymocytes to those of control WT mice

(Figure 4B). The cumulative frequencies of the CS-public CDR3 sequences between two sets of

experiments done with WT mice (the 28 WT mice used in the network analysis, and the WT mice

used as controls in the Quad-KO experiment) show no significant difference (P value = 0.293). On

the other hand, the Quad-KO repertoires exhibited lower total frequency of the CS-public CDR3s

compared with both 28 WT mice (P value = 4.318e-09) and the Quad-WT mice (P value = 0.01781).

The cumulative frequency in the DN shows a similar trend, with no statistical significant (P

value = 0.1877). Together, these results indicate that, although sequence homology of V and J

germline segments between mice and humans and bias in the recombination process influence the

probability for a sequence to be shared between the two species, additional selection forces are

influencing its abundance.

Since the composition of the TCR repertoire of an individual changes in response to immune chal-

lenges throughout life, we tested the effects of both immunization and aging on the network organi-

zation of the TCR repertoire. We immunized naı̈ve mice with p277, a self peptide derived from

HSP60 (heat shock protein 60), or with a foreign peptide, derived from ovalbumin (OVA). Peptide

p277 was previously found to be recognized by the C9 public TCR in NOD mice (Tikochinski et al.,

1999), and the CDR3b sequence of the C9 clone was also public in C57BL/6 mice (Madi et al.,

2014). Additionally, we analyzed the network structures in the TCR repertoires of T cells from the

immunized mice that were further cultured in vitro with antigen presenting cells loaded with the
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specific peptide. The distribution of sequence abundances and repertoire evenness were evaluated

using the Gini inequality coefficient, which ranges from 0 for a repertoire where every sequence is

present in equal abundance, to 1 for a repertoire dominated by a single sequence, with other

sequences present at zero abundance (Bashford-Rogers et al., 2013; Thomas et al., 2013).

We found that immunization with either peptide resulted in repertoires that contained a set of

expanded CDR3 sequences and had an increased abundance inequality. In vitro re-stimulation fur-

ther increased inequality (Figure 5A–C and Supplementary file 3). This inequality was associated

Figure 4. MHC-dependent public CDR3 sequences form highly connected similarity networks. (A) Mean number of clustered nodes in networks formed

by the top 1000 CDR3 sequences from the following repertoires: DN thymocytes (CD4�CD8�) (n = 3), CD4+ spleen T cells (n = 3), Quad-KO mice

(Van Laethem et al., 2007) (lack MHC-I, MHC–II, CD4 and CD8) (n = 4), and their WT controls (C57BL/6) (n = 4). Error bars signify standard error. (B)

Cumulative frequency of the 86 CS-public CDR3 sequences (observed in the reference datasets of 28 WT mice and 11 healthy humans) is shown for: DN

thymocytes (CD4-CD8-) (n = 3), CD4+ spleen T cells (n = 3) (left), Quad-KO mice (n = 4), and their WT controls (C57BL/6) (n = 4). Error bars signify

standard error. (C) Cumulative frequency of nucleotide sequences coding for two annotated (C9 and COPD, top) and two unknown (bottom) public AA

CDR3 sequences from repertoires of DN thymocytes and CD4+ spleen T cells (sequences from 3 mice are shown). Each color represents a different

nucleotide sequence.

DOI: 10.7554/eLife.22057.016

The following figure supplement is available for figure 4:

Figure supplement 1. DN thymocytes manifest lower convergent recombination.

DOI: 10.7554/eLife.22057.017
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Figure 5. Immunization, in vitro antigen re-stimulation, anti-CTLA4 antibody treatment and aging perturb TCR networks coupled with an increase in

repertoire skewness. (A–C) Networks of the thousand most frequent CDR3 sequences are shown for (A) a naı̈ve mouse, (B) a mouse Immunized with a

self-peptide (p277), and (C) T cells from the spleen of an immunized mouse, which were re-stimulated in vitro with the p277 peptide. (D) Mean number

of clustered nodes in networks formed by the top 1000 CDR3 sequences from the following repertoires: Left: naı̈ve mice (n = 12); p277 immunized mice,

Figure 5 continued on next page
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with the emergence of private clones that dominated the post-immunization repertoire, such that

the relative weight of public clones was reduced (Figure 5E). Interestingly, immunization was also

associated with network disruption; the number of clustered nodes and the number of edges both

fell after immunization in vivo and fell further after in vitro re-stimulation (Figure 5D, Figure 5—fig-

ure supplement 1). Both the increased inequality and the decreased network connectivity reversed

spontaneously in the OVA-immunized mice 2 months following immunization (Figure 5D,E (right),

Figure 5—figure supplement 1). Similar to immunization, repertoires in aged mice (Figure 5F, Fig-

ure 5—figure supplement 2) and in aged humans (Figure 5G, Figure 5—figure supplement 3)

were more unequal and less connected than those of young individuals, and private CDR3 sequen-

ces became relatively more abundant with age (Figure 5—figure supplement 4). Altogether, we

found a strong anti-correlation between the Gini Coefficient of TCR inequality and the number of

connected nodes in TCR networks in mice (Figure 5F, Spearman correlation = �0.661) and in

humans (Figure 5G, Spearman correlation = �0.865).

Another factor that impacted network structure was immune checkpoint blockade. We used pub-

lished CDR3b sequence data (Robert et al., 2014) from subjects who had undergone CTLA4 (cyto-

toxic T–lymphocyte-associated protein 4) blockade with tremelimumab. Previous analysis of these

data showed that this treatment diversified the peripheral T-cell pool. Applying TCR similarity net-

work analysis, we now show that the 1000 most abundant CDR3 sequences after check-point block-

ade are less connected than pre-treatment (p value<0.05 ranked Wilcox paired test, Figure 5H left);

moreover, this reduction in connectivity was detected concurrently with a decrease in the number of

public CDR3 sequences and an increase in the frequency of private ones (p-value=0.01947, ranked

Wilcox paired test, Figure 5H right, Figure 5—figure supplement 5). Thus, broadening of the

peripheral repertoire following CTLA4 blockade reduces the presence of public clones and enhances

the expansion of private clones, similar to the changes we observed in aging or after immunization.

This finding raises the possibility that check-point associated immune regulation also could be

involved in the prominence of network connectivity of public T cells. Finally, we analyzed TCR reper-

toires of patients with the autoimmune disease Juvenile Idiopathic Arthritis (JIA)(Henderson et al.,

Figure 5 continued

7d post immunization (n = 5); and in-vitro re-stimulated with p277 (n = 5). Right: naı̈ve mice (n = 12); OVA immunized mice, 7d post immunization

(n = 5); in-vitro re-stimulated with OVA peptide (n = 3); and immunized mice, 2 months post-immunization (n = 5). Error bars indicate standard error. (E)

Frequency of the top 1000 most frequent CDR3 sequences by sharing level, for the same repertoires as in (D). Sharing levels were calculated based on

sharing in the reference dataset of 28 mice. (F) The Gini Coefficient (a measure for repertoire evenness) plotted vs. the number of clustered nodes, for

the top 1000 CDR3 sequences from the repertoires from (D, E) and from aged mice (n = 3). (G) The Gini Coefficient plotted vs. the number of clustered

nodes for 39 human samples (Britanova et al., 2014) divided into 4 age groups. (H) The number of clustered nodes (left) and the number of public

clonotypes (right, shared by all 11 young human samples in a reference cohort [Britanova et al., 2014]) for the top 1000 most abundant CDR3

sequences in 21 paired samples of patients at baseline and 30 to 60 days after receiving CTLA4 blockade treatment with tremelimumab (data from

[Robert et al., 2014]). (I) Number of public clonotypes (defined as in H) out of the top 1000 most abundant CDR3 sequences in either healthy donors

(left) or Juvenile Idiopathic Arthritis patients (right). (J) A conceptual figure of the evolution of repertoire structure. In young and healthy individuals the

repertoire is focused and even (top-right), with public and CS-public CDR3 sequences at the center of network clusters. Following an immune response,

or with aging, the repertoire becomes more skewed and spread in sequence space (bottom-left), due to preferential expansion of private clones at the

expense of more public clones.

DOI: 10.7554/eLife.22057.018

The following figure supplements are available for figure 5:

Figure supplement 1. Immunization and in vitro antigen stimulation affect network architecture.

DOI: 10.7554/eLife.22057.019

Figure supplement 2. Mouse TCR Networks become less connected with aging.

DOI: 10.7554/eLife.22057.020

Figure supplement 3. Human TCR Networks become less connected with aging.

DOI: 10.7554/eLife.22057.021

Figure supplement 4. With aging, the repertoire becomes more skewed and spread in sequence space due to preferential expansion of private clones

at the expense of more public clones.

DOI: 10.7554/eLife.22057.022

Figure supplement 5. CTLA4 blockade results in a repertoire that is more skewed and spread in sequence space, due to preferential expansion of

private clones at the expense of more public clones.

DOI: 10.7554/eLife.22057.023
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2016). We found that there was a strong increase of public (network promoting) TCRs in the periph-

eral blood of JIA patients compared to healthy donors (P value = 0.0006, Figure 5I). Thus, while

immune perturbations such as immunization and aging lead to reduced levels of public clonotypes

and a reduction in network connectivity, this specific autoimmune condition is associated with an

increased level of public clones which are putatively associated with self-antigens.

Discussion
Our application of network analysis to TCRb CDR3 sequencing data reveals a hitherto unrecognized

structure of the TCR repertoire in both mice and humans: In young, healthy individuals, the most

abundant TCRb CDR3 sequences are distributed unevenly in sequence-space, with clusters centered

around public CDR3s, and in particular around CS-public sequences, which are public both in mice

and humans (Figure 5J top-right, even and focused repertoire). The clustering of the most abundant

CDR3 sequences in young and healthy individuals results in a repertoire that is much more restricted

than would be expected from the random process of TCR somatic recombination. This basic network

architecture is modified by immunization and aging due to the dominant expansion of more private

CDR3 clonotypes. Thus, public CDR3s that serve as hubs of the TCR networks become less promi-

nent, leading to reduced connectivity of the TCR networks combined with a more skewed repertoire

(Figure 5J bottom-left, skewed and spread repertoire). We find that network organization and rep-

ertoire evenness are restored with the resolution of immune responses. It might be the case that

incomplete resolution of immune responses throughout life lead to accumulation of changes in the

TCR repertoire that eventually result in the skewed and spread (less clustered) repertoires that we

observe in aged individuals. Interestingly, TCR repertoires from patients with the autoimmune condi-

tion JIA showed increased levels of public TCR sequences. This aligns with our observation that pub-

lic TCR networks are enriched with self-associated TCRs. Taken together, our analysis supports the

idea that the level of network connectivity, frequency of public TCRs and repertoire evenness are

linked to each other, and are concurrently modulated by the individual’s immune state (disease/

immunization/ aging).

Mechanistically, we found that MHC-dependent antigen selection contributes to the formation of

dense networks, since reduced network connectivity was observed in pre-selection DN thymocytes

and also by inhibiting MHC-dependent selection, in the Quad-KO mice. These results can be

explained by preferential selection and increased survival, in both the thymus and periphery, of T

cells that carry specific CDR3 sequences that recognize self-antigens presented by MHC molecules.

Different T cell clones, which carry different CDR3 nt sequences but encode the same AA sequence,

would appear to enjoy a common selective advantage and accumulate in the peripheral repertoire.

This mechanism can explain our observations of increased convergent recombination in splenic

CD4+ T cells compared to DN thymocytes (Figure 4—figure supplement 1). Antigen selection can

also account for the enhanced network connectivity of TCRs that differ by one AA in their CDR3

sequences; such related CDR3 sequences may be selected by the same peptide-MHC complex,

albeit with different affinities (Moss et al., 1991; Serana et al., 2009; Zoete et al., 2013). This work-

ing hypothesis needs to be tested experimentally to see if linked CDR3 sequences really cross-react

with the same or similar peptide-MHC complexes. MHC-antigen selection of public CDR3 sequences

takes place on a background of biases in the biophysical process of DNA recombination

(Elhanati et al., 2014). Combined, these processes lead to the formation of dense network clusters

of the most abundant public TCR sequences, as we report here. In contrast, the most abundant pri-

vate TCR sequences generate poorly connected networks. B cell receptor (BCR) sequences (Ben-

Hamo and Efroni, 2011; Bashford-Rogers et al., 2013), unlike the T-cell repertoire networks we

disclose here, have long been known to generate networks in individual subjects by affinity matura-

tion that is mediated by SHM; T cells do not undergo SHM so TCR networks must be generated in

the developmental process. Thus, dominant and public T cell clonotypes have a higher sequence

similarity than non-dominant and private ones. In contrast, BCR networks have a distinct structure

resulting from the SHM process, in which abundance and degree are correlated, which is not the

case in TCR networks.

Our finding that TCR CDR3 networks include identical and related sequences that are not con-

fined to individuals but are shared by most individuals of the same species and even cross the spe-

cies divide between mice and humans, suggests the likelihood of some fundamental evolutionary
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advantage in such sequences. As noted above, antigen specificity of a TCR cannot be defined based

on its CDR3b alone. However, the same or very similar CDR3b sequences are frequently observed

within repertoires of T cells specific for a given antigen, in combination with flexible or preferential

pairing with TCRa (Klinger et al., 2015; Chen et al., 2017; Tickotsky et al., 2017). Hence, we

hypothesize that T cell clones bearing the conserved, CS-public, CDR3 sequences recognize similar

antigenic epitopes that are conserved across species. These antigens may be derived from evolu-

tionarily conserved regions of self proteins, forming a core of T cell reactivities to specific self epito-

pes, with potential implications for self-maintenance, autoimmunity and cancer. Further studies

relating TCRa, TCRb and peptide specificity will enable to experimentally test this hypothesis.

Our results indicate that T lymphocytes ‘focus their attention’ to specific regions in sequence

space. These new findings on the organization of TCR repertoires and their dynamics raise intriguing

questions, for example, does the existence of network clusters indicate a healthy immune state? Can

restoration of network structure reinstate immune function in the elderly or prevent excess inflamma-

tion and autoimmune disease? The theory of the immunological homunculus composed of self-rec-

ognizing B cells and T cells (Cohen, 1992, 2000) might be relevant here.

Materials and methods

Mice
Female 5–8 weeks old C57BL/6 mice were obtained from Harlan Laboratories. Analysis of TCR

sequences from aged mice is based on data that was previously described in Shifrut et al. (2013).

Analysis of TCR sequences from repertoires which are not subject to MHC-dependent selection, is

based on Quad-KO mice, which are lacking four elements needed for physiological MHC-dependent

antigen selection: MHC-I and -II molecules together with CD4 and CD8 co-receptor molecules, and

matched control WT mice (Van Laethem et al., 2007, 2013) and DN thymocytes, which represent

the landscape of generated TCRs before thymic selection.

Human data used in this study
Dataset of 39 healthy Caucasian donors, ages 6–90 years, was obtained from Britanova et al.

(2014) (Robert et al., 2014). CTLA4 blockade data was obtained from Robert et al. (2014). Juve-

nile Idiopathic Arthritis (JIA) data of patients compared to healthy donors was obtained from

Henderson et al. (2016).

Immunization and in vitro stimulation
Mice were injected intra-peritonealy (IP) with 100 mg of either Chicken Ovalbumin (OVA) or peptide

277 (p277) emulsified in CFA (1:1 ratio). Spleens were harvested on day 7 post immunization and T

cells were extracted for TCR analysis. in vitro stimulation: T cells from spleens of immunized mice

were harvested on day 7 and were re-stimulated with irradiated splenocytes and the relevant pep-

tide antigen. Five of the OVA-immunized mice received a boost IP injection of 100 mg OVA + CFA

on day 14, and spleens were harvested on day 60 for TCR analysis (Supplementary file 3).

Library preparation for TCR-seq and data pre-processing
Libraries were prepared and pre-processed as published (Ndifon et al., 2012). Briefly, T cells were

purified from splenocytes by magnetic bead separation, total RNA was extracted and reverse tran-

scribed using a TCR Cb-specific primer linked to the 3’-end Illumina sequencing adapter. cDNA was

amplified using PCR with a Cb�3’adpater primer and a set of 20 Vb-specific 5’ primers, followed by

ligation of a 5’Illumina adaptor and a second PCR using universal primers for the 5’ and 3’ Illumina

adapters. The libraries were sequenced using Genome Analyzer II or HiSeq 2000 (Illumina).

Sequence filtering, VDJ annotation, normalization and translation to AA sequences were performed

as published (Ndifon et al., 2012). Libraries for TCR-seq of Quad mice and C57BL/6 controls were

sequenced using Illumina sequencers, performed by Adaptive Biotechnologies Corp (Seattle, WA).

In brief, abT cells were isolated by cell sorting, washed in PBS and lysed in Trizol. RNA was extracted

using the RNEasy protocol (Qiagen) and 2 mg per sample reverse transcribed to cDNA by oligo (dT)

priming with the SuperScript TM III First-Strand Synthesis System (Invitrogen). cDNA was sequenced

by Adaptive Biotechnologies Corp.
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Statistical analysis and visualization
Statistical analysis was performed using R Software (Core Team, 2013). We used the following pack-

ages: ‘ShortRead’ (Morgan et al., 2009) for the pre-processing pipeline; ‘ineq’ (Zeileis, 2012) and

‘reldist’ (Handcock, 2014) to calculate the Gini coefficient; ‘Igraph’ (Csardi and Nepusz, 2006) to

create network objects, obtain the degree of a node and its betweeness; ‘stringdist’ (van der Loo,

2014) to calculate Levenshtein distances; and ‘ggplot2’ (Wickham, 2009) for generating figures. Sta-

tistical tests performed are stated in the text. All network figures were made using Cytoscape

(http://www.cytoscape.org/) (Cline et al., 2007; Smoot et al., 2011; Saito et al., 2012).

Data access
The sequence data from this study have been made publicly available (https://usegalaxy.org/u/

erezgrn/h/network-tcrs).
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