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Abstract

The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the
fundamental mysteries of introns’ initial proliferation and persistence, the evolutionary forces acting on intron sequences
remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene,
and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We
report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and
striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong
39 consensus intron structures. This finding holds for both branch point sequence and distance between the branch point
and the 39 splice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus
Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one
much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable
branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures
are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist
lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of
genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with
very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of
ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern
lineages, and the impressive evolutionary malleability of eukaryotic gene structures.
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Introduction

Spliceosomal introns are genomically-encoded sequences that

are removed from RNA transcripts by the spliceosome, a massive

RNA-protein complex. The spliceosome and spliceosomal introns

are common and ancestral to eukaryotes [1–4], however

spliceosomal organization shows striking divergence across species.

Intron number per genome differs by orders of magnitude, from

fewer than ten known introns in the genomes of some protist

species [4,5] to nearly ten per gene in some metazoans [6,7].

Introns also vary dramatically in length, from the ‘bonzaied’ 19 nt

introns of the Bigelowiella natans nucleomorph [8] to the giant

kilobases-long introns of humans and other mammals.

Intron sequence elements, which are important for intron

recognition by the RNA and protein components of the

spliceosome, also vary significantly across species. In some species,

the consensus of an intron sequence is largely restricted to an

initial 59 GT dinucleotide (the ‘‘donor’’ site), a terminal 39 AG (the

‘‘acceptor’’), and a degenerate few nt ‘‘branch point’’ site, lying

somewhere within the intron. In other species, sequences are more

conserved. For instance, in the apicomplexan parasite Cryptospo-

ridium, 84% of introns begin with the most common sixmer

GTAAGT, enabling close complementary base pairing with the

U1 RNA of the spliceosome (compared with only 14% for humans;

see examples in Figure 1). We previously studied the phylogenetic

pattern of conservation of 59 intronic sequences and found a strong

correspondence between species with very few introns and those

with such strong 59 consensus sequences [9].

Clear differences are also observed in other structures. For

instance, branch points vary across species from a highly

conserved seven-mer (TACTAAC) in hemiascomycetous yeasts

(e.g., Saccharomyces cerevisiae) to several lineages in which previous

studies have failed to find branch points [10,11]. Here we report

studies of the evolution of 39 intron structures including the branch

point, poly-pyrimidine tract and 39 splice site across 50 species

spanning all major eukaryotic kingdoms (opisthokonts, amoebozo-

ans, red and green plants, chromalveolates, excavates and rhizarians,

Figure 2).
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Results

Branch Point Consensus Strength in Intron-Poor Species
The branch point is an internal intronic sequence that initiates

the splicing event through a hydrophilic attack by an adenosine 29

hydroxyl group at the 59 splice site [12,13]. As with donor sites,

branch point consensus strength varies across species: 84% of

Saccharomyces cerevisiae introns utilize the sequence TACTAAC and

94% have ACTAAC, compared to fewer than 20% of human

introns with the exact same sixmer at the branch point site

(Figure 1), and with Caenorhabditis nematodes, where no branch

points have been identified.

We first studied intron branch points in available genomes from

intron-poor species (Table 1; defined, as before, as those species with

,0.1 or fewer introns per gene on average [9]). Many of these

species exhibited clear branch point consensus sequences. First, we

found that the S. cerevisiae branch point consensus ACTAAC

(throughout, the putative branch point A is underlined) is found in

all fully-sequenced hemiascomycetous yeasts, with 66–100% of

introns in each species containing this motif. Extended branch points

of up to eight bases were found in some species (Table 1). We also

found an extended single ACTAACC branch point motif in all 26

known introns of the red alga Cyanidioschyzon merolae. Other intron-

poor species containing strong putative branch point motifs were the

two excavate species: 32/34 (94.12%) probable introns (see Materials

and Methods) in the flagellated protist Trichomonas vaginalis use

WCTAAC, and all five known introns in Giardia lamblia (four

published plus one unpublished instance) contain CTRACA.

Finally, excluding two questionable predicted introns (see Discus-

sion), all 13 introns in the microsporidium parasite Encephalitozoon

cuniculi contain a TAAYTT hexamer (9/13 have CTAAYTT). Thus

all lineages with strong branch points conformed to a general

WCTRAYN consensus.

However, in at least one intron-poor lineage we failed to find

such clear branch point sequences. Visual inspection and

computational analysis (see below) of the intron-poor apicom-

plexan parasite Cryptosporidium parvum failed to reveal a potential

branch point site. The case for the few introns of the Guillardia theta

nucleomorph is less clear. 14/16 predicted G. theta introns contain

a YAAY branch point-like sequence between 2 and 6 nucleotides

from the acceptor AG (compared to only 2/16 that contain such a

motif within the next 10 positions (7 to 17)). Intriguingly, a second

YAAY signal exists further upstream – 8/16 introns have a YAAY

24–28 nt from the 39 terminus. The single known intron in each of

the sequenced Trypanosomatid genomes does not show a clear

branch point structure; however it is of note that despite having

few cis-spliced introns, these species do have large numbers of 39

splicing boundaries due to the ubiquity of spliceosome-mediated

spliced leader trans-splicing [14,15].

Figure 1. Intron sequence structures. Examples of a species with (A) strong consensus structures (S. cerevisiae), and (B) weakly conserved
structures (human).
doi:10.1371/journal.pgen.1000148.g001

Author Summary

The spliceosomal introns that interrupt eukaryotic genes
show great number and sequence variation across species,
from the rare, highly uniform yeast introns to the
ubiquitous and highly variable vertebrate intron sequenc-
es. The causes of these differences remain mysterious. We
studied sequences of intron branch points and 39 termini
in 50 eukaryotic species. All intron-rich species exhibit
variable 39 sequences. However, intron-poor species range
from variable sequences, to uniform branch point motifs,
to uniform branch point motifs in uniform positions along
the intronic sequence. This is a more complex pattern than
the clear relationship between intron number and 59
intron sequence uniformity found previously. The corre-
spondence of sequence uniformity and intron number
extends to species of the green algal genus Ostreococcus,
in which the single intron-rich genomic region shows far
more variable intron sequences than in the otherwise
intron-poor genome. We suggest that different concen-
trations of spliceosomal complexes may explain these
differences. In addition, we report the existence of 39 polyT
tails in diverse eukaryotic protists, suggesting that this
structure is ancestral. Together, these results underscore
the complexity of ancestral eukaryotic splicing, the
qualitatively different evolutionary forces acting on intron
sequences in modern eukaryotes, and the impressive
evolutionary malleability of eukaryotic genes.

Convergent Evolution of Intron Structures
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Branch Point Consensus Strength in Intron-Rich Species
We next studied conservation of branch points in 33 more

intron-rich species. We studied the occurrence of motifs

conforming to the consensus branch point WCTRAY or

CTRAYN with varying levels of two-fold degeneracy (i.e. allowing

two possible nucleotides at each site). For instance, the ACTAAC

hexamer common to all C. merolae introns has no degeneracy,

whereas the CTRACA motif of G. lamblia has one degenerate site,

and the general consensus WCTRAY contains three two-fold

degenerate sites. As with the other sites, either one or two

nucleotides at a time were allowed at the final ‘‘N’’ site (CTRAYA,

CTRAYC, CTRAYR, CTRAYY…).

For each species, and for each level of degeneracy (zero to three

degenerate sites), we calculated the fraction of introns that contain

the same motif within the last 200 nt of the intron (see Methods).

Then, for each level of degeneracy, we identified the motif that

was present in the largest fraction of introns for that species. These

values are given in Table 2. As expected, the intron-poor species

discussed above give high values at all levels of degeneracy.

All intron-poor species with strong consensus discussed above

have values of at least 72% for one-site degenerate branch point

motifs.

By contrast, every studied intron-rich species shows much lower

scores, with lower than 22% of introns with the same putative branch

point motif (for example, 8.73% (ACTAAT) in Drosophila melanogaster

or 10.97% (ACTGAC) in Aspergillus fumigatus), and less than 36%

allowing one degenerate site. This relation between intron numbers

and branch point consensus strength is underscored in Figure 3. The

species are clearly distributed in two main groups (with two

exceptions, G. thetha NM and C. parvum (red asterisks)): intron-rich/

weak branch point consensus and intron-poor/strong branch

consensus (intron-poor, fewer than 0.15 introns per gene; strong

branch points, same BP-like hexamer in more than 50% of introns

(red lines in Figure 3A). Overall, there is a negative correlation

(r = 20.75) between intron numbers and branch point consensus

conservation (by a linear regression analysis, Figure 3B).

The Peculiar Case of Ostreococcus
Only the species Ostreococcus lucimarinus appeared to represent an

intermediate between strong and weak branch point species, with

Figure 2. Phylogenetic relationship between the species included in this study. Consensus phylogenetic tree of the species included in this
study. Red species names and discontinuous branches indicate intron-poor species. Note that representatives of all eukaryotic supergroups have
been included in this study. Based on [47,48].
doi:10.1371/journal.pgen.1000148.g002
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41.15% of predicted introns containing the same branch point-like

ACTGAC sequence (Table 2). However, given the high evolution-

ary distance of O. lucimarinus from other species with fully-sequenced

genomes and the relatively small number of available transcript

sequences, annotation in O. lucimarinus and distant congenitor O. tauri

is difficult and some intron predictions may thus be unreliable. To

identify a confident set of introns, we performed BLASTN searches

of the predicted intron-containing coding sequences against the

17,592 available O. lucimarinus EST sequences. Further computa-

tional and manual filtering for ambiguities and potential problems

associated with reverse transcriptase [16,17] yielded a total of 560

confirmed intron sequences.

The confirmed introns show a stronger signal, with 50.7%

containing the branch point sequence ACTGAC (and 37.9%

showing an extended branch point GACTGACG). The pattern

becomes even more striking when intron sequences are divided

along the lines of the previously reported genomic heterogeneity of

O. lucimarinus, with roughly half of chromosome 2 differing from

the rest of the genome in a variety of ways including much higher

intron density [18]. Confirmed chromosome 2 introns show very

weak branch point signal, with only 4.6% sharing the same sixmer

(CTGACG), while 87.2% of introns outside of chromosome 2

contain ACTGAC (Table 3), and 66.5% contain an extended

GACTGACG motif. Confirmed introns outside of chromosome 2

also show very strong 59 splice sites consistent with intron-poor

structures (4.8 bits), whereas confirmed chromosome 2 introns

show much weaker boundaries (1.9 bits) (Table 3). Notably, 59

splice boundaries outside chromosome 2 exhibit the atypical

consensus GTGCGTG, whereas chromosome 2 introns prefer a

more typical GTRNGT.

In contrast to O. lucimarinus, predicted introns in O. tauri show far

lower conservation of branch points (Table 2). The lack of EST

sequences for this species makes confirmation difficult, however a

few putative intron sequences identified by TBLASTN searches of

intron-containing non-chromosome 2 O. lucimarinus genes against

the O. tauri genome exhibited sequences similar to O. lucimarinus

introns, suggesting that O. tauri may exhibit a similar pattern.

Given this seeming discrepancy between all predicted and

confirmed O. tauri introns, we excluded O. tauri from the analysis.

Acceptor Site Conservation
Next, we studied acceptor sequence conservation within genomes.

The 39 sequences of spliceosomal introns generally show more

similarity across species, with most species showing a terminal YAG,

sometimes preceded by a poly-pyrimidine tract (Figure 1), although

most fungal species and some others lack the poly-pyrimidine tract

[19]. A survey of 50 widely diverged eukaryotic species showed 5

clear exceptions to this pattern. Three species, the protists T. vaginalis

and G. lamblia, and Yarrowia lipolytica, a hemiascomycetes fungus

(relatives of the baker’s yeast S. cerevisiae), show strikingly similar

patterns (Figure 4). The three species lack the 39 polypyrimidine

tract, and show clear anchoring of the branch point site at a specific

number of basepairs away from the 39 terminal AG (branchpoint-

AG (BP-AG)) distance; 2 nt (AC) in Y. lipolytica, 4 nt (ACAC) in T.

vaginalis and G. lamblia; Figure 4).

Non-chromosome 2 O. lucimarinus introns show a preference for

CGCAG, though notably weaker than that found in the in the

other three species (Figure 4). Interestingly, O. lucimarinus introns’

conserved 39 boundaries are associated with conserved BP-AG

distance, as branch points for confirmed non-chromosome 2 O.

lucimarinus introns show a broad peak ranging from around 20–

35 bp (data not shown). It is interesting then that both O.

lucimarinus and the constrained BP-AG distance species prefer a C

at position –5 and a R at position –4. We were unable to find an

explanation involving snRNA sequences for this preference.

Finally, C. elegans introns also show stronger 39 consensus,

matching TTTCAG with nucleotides -6 and -5 significantly more

conserved (Figure 4), as had been previously shown [20].

39 Evolution in Hemiascomycetous Yeasts
To better understand this pattern, we next studied available

relatives of Y. lipolytica. We studied all six hemiascomycetes species

with full genome annotations, as well as three additional Candida

species for which some intron sequences were available. The species

show pronounced differences, with three (including S. cerevisiae)

showing large variations in BP-AG length and five species showing

clear BP-AG constraint (differences in BP-AG length across

hemiascomycetes was previously reported in [10]). In Debaryomyces

hansenii, 65% of introns show a BP-AG distance between 6 and 8,

and 88% of introns have a BP-AG distance between 5 and 10 nt.

75% of introns in Eremothecium gossypii with well defined branch points

have BP-AG between 6 and 9 nt, with 66% between 6 and 11. The

small number of available introns in C. lusitaniae and C. guilliermondii

suggested preferred BP-AG distances of 4–5 and 3 nt, respectively.

This BP-AG constraint could partially reflect differences in intron

lengths, as mean/median lengths are lower for some of these species

across the clade (Figure 5). However, the species with the clearest

pattern of constraint, Y. lipolytica, has rather long introns relative to

the other species.

Intriguingly, in E. gossypii introns, sequences between the BP and

intron terminus varied considerably based on the BP-AG distance.

The 30 introns with a BP-AG distance of 6 nt (the shortest

distance with more than a few introns) showed a strong sequence

consensus at the 39 end of the sequence, with 80.0% having a G at

Table 1. Putative branch point consensus in the 16 studied
intron-poor species.

Hemiacsomycete yeasts

Candida albicans TACTAAC

Candida glabrata TACTAACA

Candida tropicalis ACTAAC

Candida guilliermondii ACTAAC

Candida lusitaniae ACTAAC

Debaryomyces hansenii TACTAAC

Eremothecium gossypii ACTAAC

Kluyveromyces lactis TACTAAC

Saccharomyces cerevisiae TACTAAC

Yarrowia lipolytica ACTAAC

Red algae

Cyanidioschyzon merolae ACTAACC

Guillardia theta NM Not clear

Excavates

Trichomonas vaginalis WCTAACA

Giardia lamblia CTRACA

Microsporidians

Encephalitozoon cuniculi CTAAYTT

Apicomplexans

Cryptosporidium parvum Not clear

CONSENSUS WCTRAYN

The active adenosine is underlined.
doi:10.1371/journal.pgen.1000148.t001
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Table 2. Intron features for the 50 eukaryotic species included in this study.

SPECIES NAME

% of introns containing most common branch point motif for given
number of degenerate sites

Introns
studied %AT INTRON LENGTH

0 1 2 3 Median Aver Std Dev

Aspergillus fumigatus 10.97% (actgac) 17.96% (ctgacw) 29.99% (ctracw) 43.18% (ctrayw) 18267 54.08 61 100.06 297.62

Anopheles gambiae 6.12% (actaat) 11.12% (wctaat) 18.04% (wctaay) 24.58% (wctray) 33443 56.18 91 1044.3 3533.97

Aspergillus nidulans 8.33% (ctaaca) 15.79% (actrac) 28.32% (ctracw) 42.78% (ctrayw) 25500 54.22 63 101.52 99.94

Arabidopsis thaliana 8.23% (tctgat) 14.95% (tctrat) 23.36% (wctrat) 30.99% (wctray) 134535 68.04 98 157.66 163.99

Bigellowiella natans NM 1.16% (ctaata) 1.39% (ctaatm) 1.39% (wctaay) 1.39% (wctray) 860 87.96 19 19.1 0.57

Cyanidioschyzon merolae 100.00% (actaac) 100.00% (wctaac) 100.00% (wctrac) 100.00% (wctray) 27 46.82 234 247.89 229.06

Candida albicans 95.43% (actaac) 96.45% (actaay) 96.95% (wctaay) 96.95% (wctray) 197 70.61 100 196.28 174.31

Caenorhabditis elegans 7.09% (ctaatt) 10.43% (ctratt) 15.13% (ctratw) 20.34% (ctrayw) 102420 68.07 65 303.49 677.7

Candida glabrata 66.25% (actaac) 72.50% (actaay) 75.00% (wctaay) 78.75% (wctray) 80 67.48 467 462.65 295.64

Chlamydomonas reinhardtii 7.29% (ctgacc) 13.22% (ctgacs) 19.51% (ctgays) 25.64% (ctrays) 105401 36.14 238 371.60 527.54

Ciona intestinalis 8.37% (ctaatt) 14.97% (ctaatw) 23.47% (ctaayw) 32.71% (ctrayw) 48942 66.74 337 540.56 1117.91

Cryptococcus neoformans 10.08% (ctgaca) 17.12% (ctgacw) 27.49% (ctgayw) 39.66% (ctrayr) 33059 56.76 55 67.36 55.1

Cryptosporidium parvum 9.39% (ctaatt) 14.08% (ctaatw) 17.37% (ctaayw) 20.19% (wctray) 213 77.96 61 82.08 72.97

Dictyostelium discoideum 18.66% (actaat) 24.67% (wctaat) 31.89% (wctaay) 33.31% (wctray) 17300 89.13 103 142.85 158.36

Debaryomyces hansenii 71.83% (actaac) 77.18% (actaay) 81.41% (wctaay) 83.38% (wctray) 346 66.23 89 171.86 166.52

Drosophila melanogaster 8.73% (actaat) 14.68% (wctaat) 21.63% (wctaay) 28.71% (wctray) 41049 59.93 71 892.93 3802.06

Danio rerio 8.57% (ctgatt) 15.17% (ctratt) 26.26% (wctrat) 37.70% (ctrayw) 200465 64.47 984 2864.33 11125.47

Encephalitozoon cuniculi 38.46% (ctaatt) 69.23% (ctaayt) 69.23% (ctrayt) 69.23% (ctrayw) 13 60.77 32 35.77 8.48

Eremothecium gossypii 82.03% (actaac) 85.71% (actrac) 87.10% (wctrac) 89.40% (wctray) 228 46.56 63 113.3 96.77

Entamoeba histolytica 5.95% (actaat) 9.09% (wctaat) 12.16% (wctaay) 14.95% (wctray) 3053 79.48 58 97.5 179

Giardia lamblia 60.00% (ctaaca) 100.00% (ctraca) 100.00% (ctraya) 100.00% (ctraym) 5 50.8 32 85 70.35

Guillardia theta NM 6.06% (actaac) 6.06% (wctaac) 6.06% (wctrac) 6.06% (wctray) 17 84.8 46 46.27 2.67

Gibberella zeae 15.88% (ctaaca) 24.62% (actrac) 38.10% (ctracw) 50.15% (ctrayw) 25853 56.92 56 92.84 94.09

Homo sapiens 7.90% (ctgacc) 14.06% (ctgacy) 22.80% (ctgayy) 34.32% (ctrayw) 197835 58.5 1507 5429.85 19221.6

Kluyveromyces lactis 99.22% (actaac) 100.00% (wctaac) 100.00% (wctrac) 100.00% (wctray) 130 65.53 266 344.69 252.34

Neurospora crassa 15.38% (ctaaca) 26.83% (ctraca) 42.59% (ctracm) 50.83% (ctraym) 5991 52.11 83 130.57 122.29

Ostreococcus lucimarinus 41.15% (actgac) 42.97% (actrac) 44.93% (wctrac) 47.16% (wctray) 2148 37.24 111 168.4 274.23

Ostreococcus tauri 9.55% (actgac) 10.53% (actrac) 11.83% (wctgay) 14.02% (wctray) 6450 39.27 52 83.39 85.39

Oryza sativa 7.86% (ctaatt) 14.40% (ctratt) 23.80% (wctrat) 33.73% (ctrayw) 102728 61.56 171 406.55 594.32

Paramecium tetraurelia 1.66% (tctaat) 2.72% (ctaatw) 3.12% (ctaayw) 3.55% (ctrayw) 90253 83.77 25 25.14 3.06

Plasmodium chabaudi 5.46% (ctaatt) 10.18% (ctaatw) 12.73% (ctratw) 16.02% (ctrayw) 6738 77.89 121 152.82 135.06

Plasmodium falciparum 3.30% (ctaatt) 5.93% (ctaatw) 7.31% (ctratw) 8.50% (ctrayw) 7370 87.77 144 176.73 136.85

Phytophthora ramorum 5.94% (ctgacg) 10.54% (ctgack) 19.15% (ctrack) 30.72% (ctrayk) 12829 49.8 74 132.37 371.64

Phytophthora sojae 5.42% (ctgacg) 9.87% (ctgack) 17.69% (ctrack) 26.92% (ctrayk) 17360 48.09 78 131.22 444.38

Plasmodium yoelii 5.37% (ctaata) 10.09% (ctaatw) 12.77% (ctratw) 15.76% (ctrayw) 7890 79.73 133 207.25 277.27

Rhizopus oryzae 4.77% (actaat) 8.78% (wctaat) 13.62% (wctrat) 20.37% (wctray) 40358 71.06 57 79.08 56.89

Saccharomyces cerevisiae 94.40% (actaac) 95.52% (actaay) 96.64% (actray) 97.39% (wctray) 260 66.46 148 241.53 175.93

Schizosaccharomyces pombe 21.61% (actaac) 35.26% (actaay) 50.46% (wctaay) 56.22% (wctray) 4722 71.47 56 82.27 68.21

Strongylocentrotus purpuratus 8.52% (tctaat) 16.08% (tctrat) 26.67% (wctrat) 36.30% (wctray) 120111 64.37 748 1628.48 4405.72

Toxoplasma gondii 4.54% (tctgac) 8.45% (tctgay) 14.06% (ctgayk) 17.75% (ctrayk) 27085 50.8 490 578.26 468.81

Theileria parva 9.03% (ctaatt) 14.38% (ctaatw) 18.13% (ctaayw) 21.43% (ctrayw) 3390 76.05 63 91.42 102.53

Trichomonas vaginalis 94.12% (ctaaca) 97.06% (ctaacm) 97.06% (ctracm) 97.06% (ctraym) 34 71.94 104 101.27 27.13

Ustilago maydis 11.64% (actgac) 17.78% (ctgacm) 24.77% (ctgaym) 29.50% (ctraym) 4859 49.67 95 126.88 109.79

Yarrowia lipolytica 70.72% (actaac) 78.73% (wctaac) 80.25% (wctrac) 82.87% (wctray) 719 51.48 204 268.75 225.59

Brassica oleracea 7.67% (tctgat) 12.88% (tctrat) 20.27% (wctrat) 27.12% (wctray) 1096* 67.97 93 165.67 316.9

Candida tropicalis 100.00% (actaac) 100.00% (wctaac) 100.00% (wctrac) 100.00% (wctray) 34* 72.19 81 199.26 175.43

Candida guilliermondii 76.92% (actaac) 84.62% (actaay) 84.62% (wctaay) 84.62% (wctray) 13* 63.51 65 100.54 94.49

Candida lusitaniae 90.00% (actaac) 90.00% (wctaac) 90.00% (wctrac) 90.00% (wctray) 10* 63.17 98 110.7 58.67

Dicyema acuticephalum 4.88% (ctaatt) 7.32% (ctwatt) 9.76% (ctwayt) 12.20% (ctwayk) 41* 69.89 25 24.93 2.51

Plasmodiophora brassicae 8.14% (tctgac) 13.95% (ctgacr) 22.09% (ctgayk) 26.74% (ctrayk) 86* 49.87 55 55.66 7.01

*No full genome sequence available.
doi:10.1371/journal.pgen.1000148.t002
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position -4 (compared to only 39.3% for other introns; p = 0.00004

by a Fisher’s Exact test), and 50.0% having an A at position -5

(compared to only 22.0% of other introns; p = 0.002 by a Fisher’s

Exact test). However no clear general trend towards stronger

boundaries for short BP-AG introns was observed: introns with a

BP-AG distance of 7 nt did now show a stronger 39 consensus than

Figure 3. Relation between branch point site consensus strength and intron number. (A) Percentage of introns with the most common
BP-like hexamer across eukaryotes. Dark colored bars show the percentage of introns with the most common branch-point hexamer; light colored
bars show the additional introns allowing for two-fold degeneracy at one of the six sites. The left red bar separates species with ‘strong’ BP motifs
(.50% of introns) from species with weaker BP motifs. The right red bar separate extremely intron-poor species (, 0.15 introns per gene). Asterisks
(*) mark the two exception to the correspondence between the two variables (strong BP/intron-poor vs. weak BP/intron-rich). (B) Logarithm of total
intron number (Y-axis) and percentage of introns showing the most common potential branch point motif with one site two-fold degeneracy (X-axis)
are plotted for all fully sequenced studied genomes. The species cluster in two different groups (with two exceptions) - intron-rich/weak BP
consensus, intron-poor/strong BP consensus. The two intron-poor species not showing strong consensus branch points, G. thetha NM and C. parvum,
are labeled. The line corresponds to a lineal regression analysis, showing the negative correlation (r = 20.75) between intron numbers and branch
point consensus conservation.
doi:10.1371/journal.pgen.1000148.g003
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introns with larger BP-AG distances. Y. lipolytica did not show

differences in strength of 39 sequence consensus for different BP-

AG distances.

Mapping of BP-AG distances across hemiascomyces shows a

complex phylogenetic pattern (Figure 5). The five species with

strong BP-AG constraint are intermingled on the tree with the

three less constrained lineages, suggesting convergent evolution of

BP-AG constraint. Importantly, the ‘‘preferred’’ BP-AG distance

varies across species – for Y. lipolytica, the most common BP-AG

distance is 2 nt, compared to 3 in C. guilliermondii, 4–5 for C.

lusitaniae, 6–8 for E. gossypii and 7–8 for D. hanseii.

It seems unlikely that a species with a strong preference for a

certain BP-AG distance would convert to a different distance, since

this would require indels of a very specific length occurring in

dozens of already constrained introns. It seems more likely that

this condition reflects ancestrally relatively unconstrained BP-AG

distance, and convergent evolution of constrained BP-AG

distances in different lineages.

Introns in Intron-Rich Species Orthologous to Retained
Introns in Intron-Poor Species

Convergent evolution of retained intron sequences in intron-

poor species is likely due to a combination of two factors:

preferential retention of introns with consensus-like (i.e. strong)

sequences and change of retained intron sequences to consensus

boundaries. However, the relative impact of these two factors is

unknown. We attempted to address this issue by identifying introns

in intron-rich species that were present at the exact homologous

position to introns in any available intron-poor species, and thus

are likely to be ancestral to both species. If strong consensus

sequences in intron-poor species are due to differential retention of

introns with conserved ancestral sequences, it is possible that

orthologous introns in intron-rich species could retain some of this

signal. For each intron-rich species (the apicomplexan Toxoplasma

gondii, H. sapiens, S. pombe, A. fumigatus, and A. thaliana), we

compared 59 splice site strength and branch point conservation

between introns putatively orthologous to introns retained in at

least one intron-poor species and the total set of introns in these

species. Significant differences for both intron structures were

found for A. fumigatus and T. gondii introns (Table 4).

Despite this analysis being perhaps the most direct way to test

the hypothesis of preferential intron retention available, it is deeply

undermined by the great phylogenetic distances between intron-

poor species and even their closest relatives (T. gondii-C. parvum and

A. fumigatus-hemiascomycetes diverged both many hundred million

years ago) and associated large amounts of sequence change.

Therefore, the finding of a positive signal for any of these

Table 3. Intron signal features for different intron subsets of O. lucimarinus.

Intron subset
Introns
studied

59ss strength
(bits)

% of introns containing most common branch point motif for given
number of degenerate sites

0 1 2 3

O. lucimarinus All introns All Chrom 2148 1.6 41.15% (actgac) 42.97% (actrac) 44.93% (wctrac) 47.16% (wctray)

Chrom 2 1748 1.8 5.53% (ctgacg) 8.79% (ctgack) 15.08% (wctrac) 20.35% (wctray)

Non-Chrom 2 396 1.8 49.12% (actgac) 50.65% (actrac) 51.56% (wctrac) 53.09% (wctray)

EST confirmed All Chrom 560 3.0 50.71% (actgac) 53.21% (actrac) 57.32% (wctrac) 60.36% (wctray)

Chrom 2 241 1.9 4.56% (ctgacg) 8.30% (ctgack) 12.45% (ctrack) 17.01% (wctray)

Non-Chrom 2 319 4.8 87.15% (actgac) 89.97% (actrac) 91.54% (wctrac) 93.10% (wctray)

doi:10.1371/journal.pgen.1000148.t003

Figure 4. Highly constraint BP-AG distances in Y. lipolytica and
T. vaginalis. (A) 39 intron boundary in Yaworria lipolytica. (B) 39 intron
boundary in Trichomonas vaginalis. Note that the difference between
both consensus is the existance of 1 (Y. lipolytica) or 2 (T. vaginalis) AC
dinucleotides between the BP motif and the terminal AG. Consensus
sequence for G. lamblia is similar to T. vaginalis. (C) 39 intron boundary
for confirmed introns from non-chromosome 2 genes in O. lucimarinus.
(D) 39 intron boundary in C. elegans.
doi:10.1371/journal.pgen.1000148.g004
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comparisons is surprising and intriguing. To further test whether

the observed stronger intron consensus sequence signal in intron-

poor organisms could truly reflect retained greater boundary

strengths from ancestor, we further divided the orthologous set

into those introns shared with a more closely related intron-poor

species (Y. lipolytica for A. fumigatus; C. parvum for T. gondii) and those

shared only with distantly related species. Whereas the former

could conceivably retain some specific ancestral signal due to lack

of change, the second set represent divergences dating back

upwards of a billion years ago to early eukaryotic evolution,

seemingly precluding similarities in trends across individual intron

boundary strengths representing lack of sequence change since

Figure 5. Phylogenetic distribution of BP-AG distance across hemiascomicetous yeasts. For each species, the distribution represents the
fraction of introns with a certain distance to the AG from base -50 (most left) to base -1 (most right, terminal G). Grey background highlights relative
lack of constraint BP-AG distance, and broken lines show the lineages that likely experienced the evolution of BP-AG distance constraint.
doi:10.1371/journal.pgen.1000148.g005

Table 4. Intron signal features.

Intron subset
Introns
studied

59ss strength
(bits)

% of introns containing most common branch point motif for given
number of degenerate sites

0 1 2 3

A. fumigatus All introns 18267 2.3 10.97% (actgac) 17.96% (ctgacw) 29.99% (ctracw) 43.18% (ctrayw)

Orthologous All 183 2.8 * 18.58% (actgac) * 28.42% (ctgacw) 41.53% (ctracw) 56.83% (ctrayw)

Cons. to Ylip 171 2.8 19.30% (actgac) 28.07% (actrac) 40.94% (ctracw) 56.73% (ctrayw)

Not Cons. to Ylip 12 3.6 33.33% (ctgaca) 50.00% (ctraca) 58.33% (ctraya) 75.00% (ctraym)

S. pombe All introns 4722 3.9 21.61% (actaac) 35.26% (actaay) 50.46% (wctaay) 56.22% (wctray)

Orthologous All 125 3.7 22.40% (actaac) 33.60% (actaay) 53.60% (ctaayw) 61.60% (ctrayw)

Cons. to Ylip 107 3.9 21.50% (actaac) 31.78% (actaay) 54.21% (ctaayw) 62.62% (ctrayw)

Not Cons. to Ylip 18 3.3 27.78% (actaac) 44.44% (actaay) 50.00% (wctaay) 55.56% (wctray)

A. thaliana All introns 134535 1.5 8.23% (tctgat) 14.95% (tctrat) 23.36% (wctrat) 30.99% (wctray)

Orthologous 128 1.9 14.06% (ctgatt) 23.44% (ctratt) 30.47% (ctraty) 38.28% (ctrayw)

H. sapiens All introns 197835 2.3 7.90% (ctgacc) 14.06% (ctgacy) 22.80% (ctgayy) 34.32% (ctrayw)

Orthologous 157 3.2 * 8.70% (ctgact) 16.15% (ctgayt) 28.57% (tctray) 40.99% (wctray)

T. gondii All introns 27085 2.5 4.54% (tctgac) 8.45% (tctgay) 14.06% (ctgayk) 17.75% (ctrayk)

Orthologous All 86 2.9 * 6.98% (ctgatg) 11.63% (ctgayg) 17.44% (ctrayg) 24.42% (ctrayk)

Cons. to Cpar 61 2.8 4.92% (actaac) 9.84% (actaay) 14.75% (ctrayg) 21.31% (ctrayk)

Not Cons. to Cpar 25 3.8 12.00% (tctgac) 24.00% (ctgayg) 28.00% (ctgayr) 32.00% (ctrays)

*Indicates that the subset of orthologous introns is statistically significantly different at the P,0.05 level from all introns. For branch points, only 0-fold degeneracy was
tested.

doi:10.1371/journal.pgen.1000148.t004
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that time. Unexpectedly, we observed that this second subset of

introns, shared only with older relatives, show stronger signal than

those introns shared with the closest intron-poor ancestor in T.

gondii (Table 4). This suggests that boundaries with greater strength

in intron-poor species does not reflect retained ancestral signal.

(There was an insufficient number of introns in the A. fumigatus

distantly-related group for comparison).

Another argument also argues that these intron subsets’ stronger

boundaries reflects not retention of ancestral boundary strength,

but something else: A. fumigatus and Y. lipolytica exhibit different 59

splice site consensus sequences, thus while A. fumigatus introns with

homology to retained Y. lipolytica introns do show greater

homogeneity in 59 splice site boundaries (matching the consensus

GTAAGT), they do not more closely resemble Y. lipolytica

boundaries (consensus GTGAGT). Indeed, we observe the

opposite trend: only 15.2% (26/171) of the A. fumigatus

introns shared with Y. lipolytica have a G in position +3, whereas

in the whole set of A. fumigatus introns, 21.4% have a G in that

position.

PolyT Distributions
Finally, we studied the distribution of characteristic intronic

polyT motifs along intron length. For each species, we calculated

frequencies of intronic minimal ‘‘polyT motifs’’ (following previous

studies, we define these as six consecutive nucleotides containing at

least 3 T’s and no A’s [19,21,22]) as a function of distance from the

acceptor site.

Almost all species conformed to one of 3 broad patterns, which

tend to be conserved within large phylogenetic groups (Figure 6).

For the most common distribution (found in metazoans, plants,

most apicomplexa and the heterokont Phytophtera species) polyT

motifs concentrate near the intron terminus (Figure 6A). The 59

limit of the distribution is likely determined by branch point

position in some species (,30 nt, similar to mean BP-AG distance

31.5 nt in mammals [23] and 27.6 nt in Arabidopsis thaliana [24]).

In other species (Caenorhabditis elegans, Ciona intestinalis, Drosophila

melanogaster, and the apicomplexan Theileria parva) polyTs are

concentrated in the last ,10 nt, and are underrepresented 10–

15 nt from the terminus. This pattern could suggest a more 39

Figure 6. Characteristic patterns of polyT motif distributions across eukaryotes. Examples of: (A) Most common and widely distributed
pattern. PolyT motifs concentrate at the 39 of the introns. Observed in plants, animals, apicomplexa and heterokonts. (B) Pattern characteristic of most
fungi and in T. pseudonana, characterized by relatively uniform polyT distribution. (C) Pattern of some intron-poor species. (D) Pattern observed in
amebozoa and in the fungus U. maydis. Species included in the study: Homo sapiens (Hsap); Caenorhabditis elegans (Cele); Drosophila melanogaster
(Dmel); Strongylocentrotus purpuratus (Spur); Arabidopsis thaliana (Atha); Oryza sativa (Osat); Plasmodium falciparum (Pfal); Phytophthora ramorum
(Pram); Schizosaccharomyces pombe (Spo); Aspergillus fumigatus (Afu); Giberella zeae (Gzeae); Cryptococcus neoformans (Cne); Candida glabrata (Cgla);
Eremothecium gossypii (Egos); Debaryomyces hansenii (Dhans); Yarrowia lipolytica (Ylip); Cryptosporidium parvum (Cpar); Saccharomyces cerevisiae
(Sce); Kluyveromyces lactis (Klact); Dictyostelium discoideum (Ddis); Entamoeba hystolitica (Ehys); Ustilago maydis (Umay).
doi:10.1371/journal.pgen.1000148.g006
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branch point position, although branch points in these species are

difficult to determine [25]. The rhizarian Plasmodiophora brassicae

seems consistent with this broad pattern; however, the small

number of available introns renders confident conclusions difficult.

Second, in most fungi, polyTs are roughly equally common

across the intron (with the exception of the position of the branch

point site, which typically falls ,13–25 nt from the terminus [19])

(Figure 6B). This pattern resembles that found in some intron-poor

species, including the T-rich introns of C. parvum as well as the

more moderate T-rich introns of hemiascomycete yeasts

(Figure 6C). S. cerevisiae shows a partial exception to the pattern,

with a pronounced peak ,10 nt from the terminus.

The third pattern is found in the two fully-sequenced

amoebozoans (Dictyostelium discoideum and Entamoeba histolytica) and

in the intron-poor fungus Ustilago maydis (Figure 6D). This pattern

shows a single peak in polyT occurrence, centered between 15 and

40 nt from the acceptor site.

Although the numerous exceptions make firm conclusions

difficult, the broad phylogenetic distribution of the first pattern (in

animals, plants, apicomplexans and heterokonts, and perhaps

rhizarians), suggests that the ancestral intronic structure had polyT

motifs concentrated between the BP and the terminal AG, and

that broader polyT distributions evolved early in fungal evolution.

Discussion

Evolutionary Convergence to Highly-Conserved Intron-
Exon Structures in Distant Eukaryotes

We report convergent evolution of strong branch point

consensus sequences and constrained branch points positions in

eukaryotic lineages ranging from fungi to plants to protists. These

observations join our previous findings of convergent evolution to

strong 59 splice site boundaries [9], as well as the pattern of

recurrent nearly-complete intron loss, as examples of convergent

intron-exon structure evolution across eukaryotes [26]. Interest-

ingly, these five patterns appear to be closely related. Those

lineages that are highly derived in intron number, having lost most

of their introns, are the same ones that exhibit constraint of their

few remaining introns’ sequences.

However, different intron sequence characteristics show differ-

ent degrees of co-evolution with intron number. Whereas strong

splice sites show a one-to-one correspondence with low intron

number across species [9], only a subset of intron-poor lineages

have strong branch point sequences, of which only a subset have

highly constrained branch point positions. Thus while intron

paucity may be necessary for the emergence of branch point

sequence and position constraint, it is not sufficient.

Difference in levels of intron structure constraint likely is

associated with (even perhaps driven by; see below) changes in the

spliceosomal machinery that have led to increased requirements

for adherence to consensus sequences [9,27]. Indeed, the intron-

poor species whose splicing apparatus has been most extensively

studied, S. cerevisiae, shows considerable alterations in the

mechanisms and protein components of its spliceosome [2,19].

Future work should explore spliceosomal changes in other intron-

poor lineages, in particular the possibility in evolutionary

convergence in spliceosomal machinery across lineages.

Notably, we failed to find intermediate stages. 59 splice site

strength shows a clear gap between intron-poor lineages (at least 5

bits of information content), and intron-rich (1–4 bits) [9]. Almost

all species have either clear and strong branch point consensus

(66–100% introns with same branch point hexamer) or much

weaker conservation (,30%). Branch point position also seems

bimodal, as clearly seen among the hemiascomycetous yeasts,

where either .80% of branch points fall within a few base pairs,

or fewer than 40%.

For 59 splice sites, this lack of intermediates is consistent with some

qualitative difference in the selective regimes acting within intron-

poor and intron-rich species, leading to a lack of intermediate

strengths. For branch point sequences and positions the case is more

subtle. Do weak branch points in some intron-poor lineages reflect

an ongoing process, or are these lineages somehow refractory 39

intron convergence? Repeated evolution of constraint in hemi-

ascomycetes may suggest an ongoing process, however in this case

we might expect to observe intermediate stages. Possibly, once put in

motion, intron structure constraint proceeds rapidly, which could

explain the lack of observed intermediates.

Opposed Intron Structure Evolution in Two Classes of
Reduced Eukaryotes

Widespread sequencing has underscored the complexity of

eukaryotic genome structure. While some genomes seem generally

complex (with large numbers of genes containing numerous long

introns and ubiquitous transposable elements) or simple (with short

intergenic regions flanking a modest complement of nearly intronless

genes), many genomes defy such straight-forward characterization.

Intron-exon structures provide a clear example: the three genomes

with the shortest known intron structures each have relatively high

intron densities (Paramecium tetraurelia, the nucleomorph of B. natans,

and Dicyemids, so-called mesozoans), whereas introns in very intron-

poor species are not particularly short (Table 2).

Interestingly, these two classes of reduced lineages appear to

show opposed patterns of intron evolution. Whereas intron-poor

lineages tend towards highly-constrained intron sequence ele-

ments, short-intron lineages seem to show very weak sequence

constraint. Available Dicyemid introns give the weakest known score

for 59 intron boundaries (0.5 bits) and 59 splice sites of P. tetraurelia

and B. natans are largely restricted to GT(A). These three lineages

also show no signature of branch points (Table 2). This does not

simply reflect an inability of short introns to accommodate branch

points or reduced splicing constraints associated with short introns

per se: E. cuniculi introns (35.8 nt on average) and many T. vaginalis

introns (,25 nt) are short, yet both show conserved 59 splice site

and branch point sequences (note that this also suggests that

species with both types of genome reduction exhibit strong

consensus, reflecting their intron paucity). This pattern under-

scores the importance of intron number, and not simply genome

reduction, in driving the emergence of strong consensus sequences.

Hypotheses for Intron Convergence and a Natural
Experiment in Ostreococcus

The finding of a general inverse correspondence between intron

number and splicing signals’ strength is unexpected and remains

unexplained. Previously, we suggested that in intron-poor species,

selection against aberrant splicing of cryptic splice sites would

drive changes in the spliceosome towards stricter splicing

requirements, which would in turn drive sequence change in (or

loss of) non-conforming introns [9]. In intron-rich species, this

evolutionary pathway would not be available since increased

spliceosomal strictness would imply deleterious inefficient splicing

of a much larger number of non-consensus introns [9].

The genome of the ultra-small green alga Ostreococcus lucimarinus

provides a rare natural experiment to test this hypothesis. While

genes in the majority of the genome exhibit very low intron

densities, the genes spanning roughly half of chromosome 2 show a

much higher density, well within that of ‘‘intron-rich’’ species [18].

That the two sets diverge so clearly in level of intron sequence
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constraint is clearly not predicted by general alterations of splicing

strictness due to changes in a (assumed) single spliceosome.

One possibility is that the two intron sets are serviced by

different spliceosomes (as is the case of U2 and U12 in different

eukaryotic lineages). However, a computational search turned up

only single copies of spliceosomal RNA components in congenitor

O. tauri [28]. Conceivably snRNA changes to complement the

divergent Ostreococcus 59 splice sites and branch points

(GTGCGTG and GACTGACG in O. lucimarinus) could have

thwarted their identification in the previous study, and this

possibility is worth exploring. Alternatively (though more difficult

to test), a single core RNA splicing machinery could associate with

different sets of protein components in distinct spliceosomes with

different splicing activities.

More likely, however, O. lucimarinus contains a single spliceo-

some, strongly suggesting that the constrained introns through

most of the genome, as well as those of intron-poor species that

they so closely resemble, do not reflect inherent changes in the

spliceosomal machinery. A simpler possibility is that differences in

local (in O. lucimarinus) or cellular (in other species) concentrations

of spliceosomal complexes is the driving factor. It seems possible or

even likely that spliceosomal complexes in intron-poor species are

downregulated. Such downregulation could reflect either selection

to reduce incorrect splicing of truly exonic sequence (i.e. fewer

spliceosomes, less chance of false splice boundaries being spliced),

or could be favored by reducing energetic costs associated with

transcription, processing, and translation of spliceosomal compo-

nents. If so, the lowered concentration of spliceosomal components

would require stronger binding affinity of individual splice sites to

corresponding snRNAs for efficient splicing, which would in turn

drive the evolution of stronger boundaries (or intron loss).

Differential local concentrations across genomic regions in

Ostreococcus could be maintained if spliceosomes were preferentially

recruited to the intron-rich genomic region. This scenario is

similar to our previous hypothesis in invoking a tradeoff between

the costs of efficient splicing of weak boundaries (maintenance of

high spliceosome concentration) and the costs of mis-splicing,

which we argue would likely be different in intron-rich and -poor

species. This hypothesis makes the testable prediction that

spliceosomal components should show reduced expression in

intron-poor species relative to intron-rich species.

Another hypothesis concerning the concentration of spliceo-

somal complexes, suggested to us by Tony Russell, sees a very

different role for selection. A predicted consequence of increasing

the length of snRNA-intron element base-pairing interactions is a

reduction in the overall rate of splicing, simply due to a tighter

association between intron and spliceosome. Such a decrease in

splicing rate will be tolerated in intron-poor species if spliceosomal

components are in excess relative to the number of introns.

However, in intron-rich species spliceosomal components may not

be in excess, in which case stronger base-pairing between intron

and snRNAs could be disfavored. Notably, these two hypotheses

make qualitatively different predictions. Whereas the latter

hypothesis predicts that strong boundaries would be disfavored

in intron-rich species, the former predicts that they would as or

more fit than weaker boundaries. Comparative analysis of closely

related species to test these predictions is underway.

Sequence Convergence versus Preferential Loss
Two factors could drive evolutionary convergence to strong

intron boundaries: sequence changes in existing intron sequences

to consensus sequences, and preferential loss of non-consensus

introns. The relative contributions of these factors may depend on

the precise evolutionary pathway from (ancestral) genomes with

many introns with weak boundaries and relatively lax splicing

requirements to fewer introns with strong boundaries and stricter

requirements.

First, widespread (mostly random) intron loss could lead to

selective conditions favoring the evolution of a spliceosome with

stricter sequence requirements for splicing (as argued above and in

reference [9]). Introns with non-consensus sequences would then

impose a burden, which could be resolved by sequence change or

intron loss. If intron loss rates in these lineages are at least

comparable to substitution mutation rates (for instance, 90%

intron loss over 500 million years is consistent with a constant loss

rate of 561029 per year, comparable to some estimated mutation

rates [29,30]), preferential loss could play an (or even the)

important role in convergence. In this case, intron loss would be a

self-catalyzing process, with widespread intron loss leading to

increased splicing requirements driving yet faster intron loss.

Alternatively, increased splicing requirements could come first,

driving intron loss (consistent with [31]). However evolution of

stricter splicing requirements in intron-rich organisms, where there

are large numbers of non-consensus introns, would lead to

widespread deleterious mis-splicing. Thus it is hard to imagine

such strict requirements arising prior to widespread intron loss.

Finally, even under lax splicing requirements, loss of non-

consensus introns could be more highly selected due to the effects

of the less efficient splicing of these introns (e.g. [32]), with stricter

splicing requirements gradually enabled by loss of non-consensus

introns. The viability of this scenario depends on significantly

higher selective costs of suboptimal boundaries in intron-rich

species respect to the optimal introns. Attempts to estimate these

selective costs by comparative analysis are underway.

In any case, it seems likely that intron loss, increased splicing

constraints, and intron sequence change will all be reinforcing of

one another, such that (perhaps past some critical threshold), the

three will proceed in tandem. Differences in the relative

contributions of the three phenomena will depend on mutation

rates and selective coefficients for different kinds of changes

(basepair substitutions, intron loss, spliceosomal changes), which

may vary considerably across times and lineages.

Convergent Evolution between U12-Type Introns and
Nearly Intronless Species’ U2-Type Introns

The convergent U2 intron structures observed here and

elsewhere in some intron poor species – strong 59 and branch

point consensus sequences, constrained BP-AG length – are

strikingly reminiscent of the U12-type intron structures found

across a wide variety of lineages [33,34]. One possibility is that the

U12-type intron structures represent a derived state (possibly

evolved in the ancestor of eukaryotes), and that these convergent

cases have similar causes – that U12-type introns’ low genomic

number has subjected them to the same pressures as those

experienced by U2-type introns in intron-poor lineages. Notably, if

the conservation across lineages of specific conserved U12 intron

sequence elements, as opposed to the differences in consensus

structures observed in U2-type introns across diverse intron poor

lineages reflects the emergence of these structures early on in

eukaryotic history, this interpretation would imply that U12-type

introns have been rare since very early in eukaryotic history.

Alternatively, the similar structures of U12 introns in general and

U2 introns in intron-poor species could have different explana-

tions. One possibility is that the U12 system represents an

intermediate between the type II introns that initially proliferated

in early eukaryotic ancestors, with their highly similar sequences

and structures, and typical highly degenerate U2 introns. In this

case the persistence of strong consensus sequences in U12-type but
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not U2-type introns remains somewhat mysterious, as does the

preponderance of U2 introns relative to U12.

Evidence that polyT Tails and Weak Branch Point Sites
Are Ancestral

We find different patterns of polyT motif distribution along the

introns in different lineages, which likely reflect differences in

polyT functionality and in how polyT-binding factors regulate

splicing in these lineages. Indeed, the differential conservation and

evolution of spliceosomal proteins binding polyT tracts (PTB,

SXL, TIA1, Nam8, etc.) in each species is likely to determine the

position of polyT motifs along introns and what role these motifs

play in splicing regulation.

Among these locations, we find that the so-called ‘‘polyT tail’’,

spanning from a position likely corresponding to the branch point

to the 39 intron terminus, is common to a wide variety of groups

ranging from plants to animals to various, widely diverged,

protists, strongly suggesting that the existence of a polyT tail may

be ancestral. Furthermore, we show that, as in the case of 59 splice

sites, strong branch point site consensus have evolved indepen-

dently in only intron-poor species, whereas all intron-rich species

have weak branch point sites. Since a wide variety of studies have

shown that eukaryotic ancestors have harbored relatively high

intron numbers [3,35–38], our results suggest that the eukaryotic

ancestors also had weak branch point site consensus, as with most

modern eukaryotic groups.

These conclusions extend an excellent recent study from Schwartz

et al. [27], who studied BP and polyY motifs in 19 opisthokonts and 3

other eukaryotic species, and reached similar conclusions about

ancestral intron structures. Our inclusion of a more diverse set of

species spanning all of known eukaryotic species allows us to reach

deeper into eukaryotic evolution, potentially getting much closer to

the initial origin of spliceosomal introns. In particular, we find that

sequences from the first characterized rhizarian, as well as for various

heterokonts, follow the patterns found in other kingdoms. This

striking similarity over very broad evolutionary distances significantly

strengthens our conclusions about ancestral eukaryotic splicing,

rendering them independent of the placement of the root of the

eukaryotic phylogeny.

The presence of these intronic features, polyT tail and weak

branch point sites, in the eukaryotic ancestors adds to the

developing picture of the spliceosomal system in early eukaryotes

– with highly developed spliceosome, weak 59 and branch point

sequences, a polyT tail and complex splicing patterns [2,9,39,40].

Quality of Predictions
One limitation of the data deserves comment. We analyze

annotated intron sequences, making our analysis subject to the

quality of available annotations. Problems with the annotations

may very directly influence the characteristics studied here, since

for instance more consensus-like sequences are more likely to be

identified as introns. Such concerns may also affect comparative

analysis if the annotation efforts for different species are

differentially sensitive to different kinds of introns.

However, it is very unlikely that such limitations are likely to drive

the qualitative differences we see here. For a ‘‘weak’’ species with for

instance 30% of its true introns exhibiting the same branch point to

be incorrectly identified as a ‘‘strong’’ species (with, say, 80% of

predicted introns with the same branch point) would require that the

vast majority of its non-consensus introns have gone unannotated.

For the reverse to occur, it would be required that there were so

many falsely predicted introns that it had drowned out the signal

almost entirely. Thus, while it is important to point out that our

results are likely not accurate to the second decimal place due to

problems with annotations, such problems are very unlikely to be

driving the large qualitative differences observed.

Strong 59 Splice Sites in E. cuniculi
Possibly, the most important impact of annotation errors could

be to reduce the signal in very intron-poor species. For instance,

further scrutiny suggested that 2 of the 15 predicted introns in E.

cuniculi may not in fact be introns at all: both are a multiple of 3

basepairs and lack inframe stop codons; these two introns have the

weakest 59 boundaries (matching the consensus (GT)AAGT at 1

and 2 out of 4 positions, compared to at least 3 matches for the

other 13 introns); and one intron has similar sequences at the two

boundaries, suggesting that this intron prediction could reflect a

reverse transcriptase artifact in EST preparation [17]. Notably, in

our previous work on donor splice sites [9], E. cuniculi represented

the only intron-poor species lacking very clear strong boundaries.

Excluding these two questionable introns, E. cuniculi has a donor

site information content of 6.2 bits, comparable to the other

intron-poor lineages.

Conclusion
These results attest to plasticity of spliceosomal intron structures

through the history of eukaryotes. The availability of large

numbers of eukaryotic genomes now allows comparative analysis

of an increasing diversity of genomic structures. Present and

previous works have provided an increasingly detailed picture of

the patterns and determinants of intron-exon structures, one of the

hallmarks of eukaryotic genome organization. Definitive identifi-

cation of the causes of highly regular 39 intron structures awaits the

identification of additional lineages exhibiting this pattern.

Methods

Genome Sequences and Data Sources
GenBank fully-sequence genome annotations were downloaded

from NCBI webpage (http://www.ncbi.nlm.nih.gov) or Ensembl

database (http://www.ensembl.org) for 7 metazoa: human (Homo

sapiens (NCBI 36 Ensembl 38.36)), zebra fish (Danio rerio (Zv5

Ensembl 38.35e)), Strongylocentrotus purpuratus (AAGJ00000000.2),

Drosophila melanogaster (release 4.1), mosquito (Anopheles gambiae

(AgamP3 Vectorbase 38.3a)), Caenorhabditis elegans (WS150 Worm-

base 38.150a), Ciona intestinalis (CINT1.95); 16 fungi: Aspergillus

fumigatus Af293 (AAHF00000000.1), Aspergillus nidulans FGSC A4

(AACD00000000.1), Neurospora crassa OR74 A

(AABX00000000.1), Gibberella zeae PH-1 (AACM00000000.1),

Yarrowia lipolytica CLIB122 (CR382127-31.1), Saccharomyces cerevisiae

YJM789 (AAFW00000000.1), Candida glabrata CBS138 (provided

by J. E. Stajich), Candida albicans SC5314 (provided by J. E.

Stajich), Kluyveromyces lactis NCYC 2644 (AADM00000000.1),

Eremothecium gossypii ATCC 10895 (AE016814-20.1), Debaryomyces

hansenii CBS767 (CR382133-9.1), Schizosaccharomyces pombe 972h

(AL672256-8.1), Ustilago maydis 521 (AACP00000000.1), Cryptococ-

cus neoformans B3501-A (NC_006670, NC_006679-87, NC006691-

4), Encephalitozoon cuniculi GB-M1 (AL391737.1, AL590442-50.1),

Rhizopus oryzae RA 99-880 (AACW00000000.2); 2 amoebae:

Dictyostelium discoideum AX4 (AAFI00000000.1), Entamoeba histolytica

HM-1:IMSS (AAFB00000000.1); 2 plants: Arabidopsis thaliana

(NC_003070.5, NC_003071.3, NC_003074.4, NC_003075.3,

NC_003076.4), Oryza sativa (Build 2.1); 3 green algae: Chlamydo-

monas reinhardtii (JGI Chlamy 3.0), Ostreococcus lucimarinus CCE9901

(GenBank version 1, CP000581- CP000601), Ostreococcus tauri

OTH95 (GenBank version 1, CR954201- CR954220); 6 apli-

complexans: Plasmodium falciparum HB3 (AANS00000000.1), Plas-

modium yoelii yoelii (AABL00000000.1), Plasmodium chabaudi
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(CAAJ00000000.1), Theileria parva Muguga (AAGK00000000.1),

Cryptosporidium parvum Iowa (AAEE00000000.1) and Toxoplasma

gondii RH (AAQM00000000.1); and 2 heterokonts: Phytophthora

ramorum strain Pr102 (AAQX00000000.1) and Phytophthora sojae

strain P6497 (AAQY00000000.1).

All reported intron sequences were obtained from published

supplementary material for: Guillardia theta NM [41], Cyanidioschyzon

merolae 10D [42], Trichomonas vaginalis [5,16] and Bigellowiella natans

NM [8] and Giardia lamblia ATCC 50803 strain WB C6 [43] (plus 2

introns we have identified), the mesozoan Dicyema acuticephalum

[44], and the rhizarian Plasmodiophora brassicae [45].

Available gene sequences for unpublished or incomplete

genomes were downloaded one by one as CDS annotations from

NCBI web page (http://www.ncbi.nlm.nih.gov/): Brassica oleracea

(1096 introns in 314 genes). Introns for Paramecium tetraurelia were

extracted from nucleotide links of NCBI taxonomy (1082 introns

in 401 genes). Introns for Candida guilliermondii (13 introns), Candida

lusitaniae (10 introns) and Candida tropicalis (34 introns) were

provided by J. E. Stajich.

Study of Branch Point Consensus Strength
Studying the clear branch point consensus from a wide variety

of intron-poor species, we first define an extended branch point

consensus, WCTRAYN, consistent with the minimal consensus

NYYNAN described for a wide variety of eukaryotic groups

[19,23,24,46].

For each 50 species, we next studied the percentage of introns

showing the most common hexamer matching this extended

consensus, allowing two-fold degeneracy at zero, one, two and

three sites of the putative branch point hexamer. The four

measures are complementary.

We did not aim to identify and study branch points in all

introns. Instead, the percentage of use of the most common motifs

gives a straight-forward measure of the strength of the signal for a

given species. The use of a similar approach to measure the

strength of the 59 splice site (whose definition is trivial) shows a

clear correspondence between the measure of strength as the

percentage of introns with the most common sequence motif (i.e.

GTAAGT, GTATGT, etc.) and as information content, used

broadly in the literature, with a coefficient of correlation between

both variables for the species included in this study is r = 0.96.

Study of 59 and 39 Splice Site Consensus and BP-AG
Distance

We aligned the final 20 nt of each intron for each species using

WebLogo (http://weblogo.berkeley.edu/logo.cgi). To better char-

acterize the evolution of BP-AG constraint in Y. lipolytica, we

further studied BP-AG distance in the 9 hemiascomycetes species.

In all hemiascomycetes species, the vast majority of introns

contained a single TACTAAC sequence, used as the branch point.

The BP-AG distance was defined as the number of base pairs (Nn)

for 59TACTAAC|Nn|AG-exon39.

For 59 splice sites we used a similar methodology as described in

[9]. The first 6 bases of each intron were extracted, and

information content in bits for positions +3 to +6 was calculated

using PICTOGRAM software online (http://genes.mit.edu/

pictogram.html).

Study of Ostreococcus Introns
We downloaded available EST sequences for O. lucimarinus from

NCBI on April 4th, and performed standalone BLASTN searches

for each predicted intron-containing O. lucimarinus gene against the

ESTs. Preliminary confirmed introns were identified as those in

which an EST hit with .60 bits and with .90% sequence identity

spanned the intron position (reaching at least 3 nt on each side of

the intron position). Each of these introns was then analyzed by

eye to exclude non-canonical intron positions as well as those for

which sequence similarity between the regions spanning the 59 and

39 predicted splice boundaries were consistent with a template-

switching artifact during the reverse transcription step of the EST

library preparation [16,17].

Orthologous Intron Analysis
For each species considered, databases of intron/exon structures

of predicted gene transcripts were prepared from the genome

annotations. Homologs were identified by one-way BLASTP

searches of intron-containing genes from intron-poor species

against predicted proteomes from intron-rich species. Putatively

orthologous introns were identified as those present at identical

alignment positions (position and phase) in both species. Related

species were defined as: C. parvum for T. gondii; Y. lipolytica (chosen

as the representative hemiascomycete due to its greater intron

density (3 times higher than S. cerevisiae), in order to increase

sample size) for S. pombe and A. fumigatus; and the C. merolae and the

G. theta nuclemorph for A. thaliana. Due to the lack of related

intron-poor species, H. sapiens introns were divided into only two

groups.

Search for polyT Motif Distributions
We used the minimal definition for polyT motif, defined as six

consecutive nucleotides containing at least 3 T’s and no A’s

[19,21,22]. The study of introns for each species was performed

using custom Perl scripts. The last 2 and the first 10 base pairs of

each intron were excluded.
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