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Abstract

Background: Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso
compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation.
Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the
subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in
mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the
behavioral performance in tasks sensitive to manipulations of adult neurogenesis.

Methodology/Principal Findings: 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment.
Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions,
confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohis-
tochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic
areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor
discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two
functions primarily related to the SVZ and the DG regions, respectively.

Conclusions/Significance: The results demonstrate that postnatal exposure to ENU produces severe disruption of adult
neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of
environmental NOC-exposure for the development of neural and behavioral deficits.
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Introduction

The neurotoxic potential and carcinogenic effects of N-nitroso

compounds (NOCs) are well established [1]. Primary exposure to

NOCs is associated with certain diets, tobacco smoke and other

environmental sources [2,3,4]. In addition to its widespread

application in mutagenesis screens in animal models of various

human diseases [5,6,7], systemic application of NOCs during

development (e.g. transplacental administration) has been used in

experimental neuro-oncology to induce brain tumors [8,9]. N-

ethyl-N-nitrosourea (ENU) is a chemical of the family of NOC

widely regarded as a biological hazard. ENU causes persistent

alkylation of DNA bases in the nervous system with subsequent

induction of base mis-pairing, resulting in DNA mutations leading

to the over-expression of oncogenes and activation of carcinogen-

esis-related signaling pathways [10,11,12]. Prenatal exposure to

ENU generates brain tumors with neuropathological features that

resemble those of malignant gliomas, and produces apoptotic cell

death and changes in cell cycle dynamics of neural progenitors in

the subventricular zone (SVZ), suggesting that ENU is neurotoxic

to the stem cell population [13,14]. Interestingly, postnatal

exposure does not seem to induce tumors [15,16], although the

toxicity of ENU towards adult neural progenitor cells is

maintained when ENU-exposure occurs postnatally. We have

recently shown that postnatal exposure to ENU produces

disruption in the SVZ and diminishes the proliferative rate of

neural stem cells, in vitro and in vivo [17]. However, it is unclear

how widespread are the effects of postnatal exposure to ENU on

adult neurogenesis, and the functional implications of such effects.

Neurogenesis occurs in two areas of the adult mammalian brain:

the olfactory bulb (OB) and the dentate gyrus (DG) of the

hippocampus [18,19]. New cells in the OB are generated from

neural progenitor cells of the subventricular zone (SVZ) [20].

Throughout adult life, cells born in the SVZ migrate a long

distance via the rostral migratory stream (RMS) into the OB,

where they differentiate into granular and periglomerular
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interneurons [21]. The SVZ contains at least four different cell

types defined by their morphology, ultrastructure and molecular

markers: type A/migrating cells, type B/astrocytes, type C/

proliferative precursors, and type E/ependymal cells. Type B cells

are considered the adult neural stem cells [22]. Type B cells are

also present in the DG, where they generate type D/immature

neurons, which later mature into new hippocampal granule

neurons. Neurons in the DG are born locally in the subgranular

zone (SGZ) and migrate a short distance to integrate in the

granular cell layer (GCL) [23].

Accumulated evidence supports a role for adult-generated

neurons in behavioral and cognitive functions [24]. It has been

suggested that the incorporation of adult-born neurons into the

OB is required for plasticity and olfactory discrimination

[25,26,27]. On the other hand, the hippocampus, together with

anatomically related structures of the temporal lobe, is essential for

various cognitive processes, including declarative memory, spatial

memory and contextual learning [28,29,30]. Alterations of adult

neurogenesis have been associated with cognitive and behavioral

deficits, as shown in rodents treated with some drugs [31], which

induce cellular and molecular changes in neurogenic sites, or in

rodents exposed to fractionated ionizing radiation, which produce

selective damage to proliferating progenitors and neuronal

precursors [32,33,34].

We previously determined the disrupting effects of ENU on the

SVZ. The main goal of the present study was to analyze the long-

term structural and morphological changes induced by ENU in

the SVZ and DG. We also tested the functional consequences at

the behavioral level. The data show that postnatal exposure to

ENU alters both the structural and functional integrity of adult

neurogenic sites.

Materials and Methods

Animals
We used forty-eight 2-month-old CD1 male mice (Charles River

Laboratory, Barcelona, Spain). All the animals were housed under a

12 h light/dark cycle with food and water available ad libitum. All

animal procedures were reviewed and approved by the Ethical

Committee for Use of Laboratory Animals of the University of

Valencia, and followed the European Communities Council (86/

609/EEC) guidelines. Animals were anesthetized by an intraper-

itoneal injection of 2:1 ketamine/xylazine (5 ml/g of weight) and

perfused with 0.9% saline, followed by 2% paraformaldehyde and

2.5% glutaraldehyde (for electron microscopy), or 4% paraformal-

dehyde (for immunohistochemistry). Heads were removed and

postfixed in the same fixative overnight, and brains were dissected.

Mice were exposed to ENU (Sigma Aldrich, St. Louis, MO,

USA) by intraperitoneal injections of 100 mg/kg body weight

(b.wt.) in a volume of 10 ml/g weight, as described previously [35].

All animals received 5 cumulative doses of ENU (N = 24), one dose

every three days, as shown in Figure 1A. Animals were sacrificed

45 days after the last injection. Control animals (N = 24) were

injected with the buffer used to dissolve ENU.

Transmission Electron Microscopy
After post-fixation, brains were washed in 0.1 M phosphate

buffer (PB) (pH 7,4), cut into 200 mm sections with a VT 1000 M

vibratome (Leica, Wetzlar, Germany) and treated with 2%

osmium tetraoxide in 0.1 M PB for 2 h. Then, sections were

rinsed, dehydrated through increasing ethanol solutions and

stained in 2% uranyl acetate at 70% ethanol. Following

dehydration, slices were embedded in araldite (Durcupan, Fluka

BioChemika, Ronkokoma, NY, USA).

To study the cellular organization of the neurogenic sites

(NENU = 4, NCTR = 4), we cut serial 1.5 mm semithin sections with

a diamond knife and stained them with 1% toluidine blue.

Sections were visualized under E200 light microscope (NIKON,

Tokyo, Japan). In order to study the changes in RMS size, we

determined the area occupied by RMS in coronal semithin

sections, at 3 different levels per animal. The analysis was

performed with Image Tool software (Evans Technology, Georgia,

USA). To identify and quantify cell types, 60–70 nm ultrathin

sections were cut with a diamond knife, stained with lead citrate,

and examined under a Spirit transmission electron microscope

(FEI Tecnai, Hillsboro, OR, USA). To quantify the number of

cells within the SVZ, we considered the area comprised in the first

20 mm adjacent to the ventricle lumen (0–1 mm anterior to

bregma). In the DG, we analyzed the cells located in the SGZ

(1.5–2.5 mm posterior to bregma). The counts were performed on

3 different levels per animal in all cases, and the average was

expressed in cells/mm.

Administration of 5- bromo-2-deoxyuridine
To assess cell proliferation we used the exogenous marker 5-

bromo-2-deoxyuridine (BrdU, Sigma Aldrich), which is incorpo-

rated into the newly synthesized DNA of replicating cells during

the S phase. Animals received a single intraperitoneal injection of

Figure 1. Organization and structure of adult neurogenic
niches in ENU-exposed animals. (A) Protocol of ENU administration.
We administered 5 injections of ENU separated by 3 days intervals, and
mice were sacrificed 45 days after the last dose. (B–C) Semithin sections
of the SVZ of ENU animals showed regions with large clumps of dark
and light cells (B) alternated with depopulated regions (C) that were
reduced to a monolayer of ependymal cells, with neurons located closer
to the ventricle lumen (arrows). (D–E) Semithin sections of the RMS of
control (D) and ENU animals (E) showed a decrease in the area occupied
by migratory chains in treated animals. (F–G) Semithin sections of the
DG. (F) Control animals presented frequent neurogenic units in SGZ
(arrows). (G) The supragranular region of treated animals showed
irregularities, by comparison of control mice. In addition, the
experimental group presented scarce neurogenic units in SGZ. Lv:
lateral ventricle, S: sacrifice. Scale bar: A 10 mm, C 20 mm, E,G 20 mm.
doi:10.1371/journal.pone.0029891.g001

ENU Affects Adult Neurogenesis

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e29891



BrdU (50 mg/Kg b.wt.) and were sacrificed after 1 h (NENU = 5,

NCTR = 5). To assess cell migration, animals received 4 intraper-

itoneal injections of BrdU, at 2-hour intervals, and were sacrificed

30 days later (NENU = 5, NCTR = 5).

Immunohistochemistry
After post-fixation, brains were washed in 0.1 M PB and cut

into 25 mm cryostat sections (Leica, CM 1900) in 6 series for free-

floating immunohistochemistry. For each immunoassay, one

complete series was used per animal (NENU = 5, NCTR = 5).

Sections were incubated in blocking solution for 1 h at room

temperature, followed by overnight incubation at 4uC with

primary antibodies (BrdU: 1:150, cat. no. MO744, Dako,

Glostrup, Denmark, USA for single immunostaining; BrdU

1:200, cat. no. AB6326, Abcam, Cambridge, MA, USA for

double immunostaining; Dcx: 1:200, cat. no. SC-8066, Santa

Cruz Biotecnology, Santa Cruz, CA, USA; NeuN: 1:250, cat.

no. MAB377, Millipore, Billerica, MA, USA). Then, sections were

washed and incubated with the appropriate secondary antibodies

conjugated with either biotin or fluorophores. After the secondary

biotinylated antibody, sections were incubated with ABC Elite

complex (Vector, Burlingame, CA, USA), treated with diamino-

benzidine (DAB, 0.05%; Sigma Aldrich) and later visualized under

an Eclipse E200 light microscope. Fluorescence images were taken

with a Leica SP2 ABOS confocal microscope.

Immunohistochemical quantification
The number of positively labeled cells was manually determined

by averaging the values from both hemispheres of 3–6 coronal

sections per animal (NENU = 5, NCTR = 5). All cell quantifications

were blindly scored under a light microscope.

Quantification of BrdU-incorporated cells was expressed as the

number of cells per 1 mm along the SVZ or DG for each section.

In the case of the OB, results were expressed as the number of cells

per 1 mm2 for each section. BrdU-NeuN expression was analyzed

determining the total number of double positive cells per section

and the percentage of BrdU-NeuN positive cells (100*BrdU-

NeuN+ cells/total BrdU+ cells).

Measurement of doublecortin (Dcx) expression was performed accord-

ing to previously published protocols for OB and DG. Dcx

expression in OB was quantified by measuring integrated optical

density and area fraction with ImageJ software (National Institute

of Mental Health, Bethesda, MA, USA.) [32]. Because of the

heterogeneous nature of the OB, we quantified the staining value

in 4 different areas (see Dcx analysis below). Integrated optical

density and area fraction were expressed as absolute values

because the region of interest was kept constant. In the DG we

measured Dcx expression by studying Dcx-negative gaps along the

SGZ. A gap was defined as a distance between two Dcx+ cells

greater than 3 mm along the SGZ [36,37]. We quantified the

number of gaps (absolute number of gaps and number of gaps/

mm), the average length of the gaps, and percentage of surface

occupied by gaps.

Habituation-dishabituation test
A habituation-dishabituation test was used to study the odor

discrimination ability of mice 45 days after ENU-exposure

(NENU = 10, NCTR = 10). The test was performed in a Perspex

box (21 cm625 cm625 cm). The presentations of the odorants

were performed with a cotton swab that was impregnated with the

relevant odorant and was introduced through a small hole located

8 cm above the floor on one of the side walls. After a 5-min

adaptation period, where the swab was presented without odorant

during 1-min presentations, 6 consecutive presentations of the

Odorant A (habituation phase) were followed by 6 consecutive

presentations of the Odorant B (dishabituation phase) of 1 min

each [38,39]. Olive and sunflower oil were used as A and B

odorants, respectively. The order of presentation of both odorants

was counterbalanced. Tests were recorded by videocamera and

analyzed with a nose-tracking software (Viewpoint 2.5, Cham-

pagne au Mont D’Or, France), which rendered automatic

measures of exploratory activity, measured as time that the

mouse’s nose is within the boundaries of the swab presentation

area (a semicircle of 5 cm in diameter).

Barnes maze
The Barnes Maze was used to assess spatial reference memory

45 days after ENU-exposure (NENU = 10, NCTR = 10). The

performance in Barnes Maze is known to be highly sensitive to

disruption of hippocampal function in rodents and it has been

shown to be altered by manipulations of neurogenic function

[24,40]. Moreover, the task is not contaminated by stress, as much

as other similar tasks, and no strong aversive stimuli or deprivation

is used as reinforcement. The maze design and protocol was based

on a previously published protocol [41].

The day before the training phase, a trial was performed in

which mice were gently guided to the escape box and left there for

2 min (adaptation period). Animals were trained during 3 days

(training phase), performing 4 trials per day with an inter-trial

interval of 15 min. The trial ended once the mouse entered into

the escape box or after 3 min elapsed. If the mouse did not enter

the escape box within 3 min, then the experimenter guided it

gently to the hole. The location of the target was kept constant for

a given mouse throughout training, but the position was

randomized across mice. White noise generated by computer

software (Audacity 1.2.6, http://audacity.sourceforge.net/) was

used to increase the motivation to escape from the circular

platform. The white noise was switched off when the mouse

entered into the escape box and mice were left inside the box for

1 min. The maze was cleansed with 30% ethanol and rotated after

every trial to prevent bias based on olfactory or proximal intra-

maze cues.

Given that mice may sometimes lack motivation and explore the

maze after finding the target hole without entering into it, we used

the solution proposed in [42] by calculating latency and number of

errors made until the target hole was first encountered (primary

latency and primary errors respectively). During each trial, both

primary and total errors and latency were measured manually by

two blind observers. 24 h after the last training day, a reference

memory probe test was conducted (testing phase).The escape box

was removed and animals were allowed to explore the maze for

90 s. The number of pokes (errors) in each of the holes was

measured. Both training trials and test were recorded and

analyzed by video tracking software (Viewpoint 2.5, Champagne

au Mont D’Or, France).

Statistical Analysis
Data were analyzed with SPSS 16.0 software (SPSS Inc.,

Chicago, IL, USA) expressed as means 6 SEM. Quantification of

BrdU+ cells and behavioral tests, were analyzed with a Student–

Newman–Keuls (S-N-K) post-hoc test, after an F-test (analysis of

variance). Quantification of cell types by transmission electron

microscopy were analyzed with a one-tailed Student’s t-test based

on the predicted reduction in cell numbers, as observed in our

previous studies [17]. Remaining assays were evaluated with a

two-tailed Student’s t-test after assessing the normal distribution of

the data with a Shapiro–Wilk test. The results were considered

significant at p,0.05.
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Results

Postnatal exposure to ENU disrupts the organization and
structure of neurogenic sites

To study cell organization after ENU-exposure, 5 doses of ENU

were injected in adult mice that were allowed 45 days recovery

(Figure 1A). In all treated specimens, the SVZ was composed of

clusters of light and dark cells (Figure 1B) alternating with

depopulated regions, which were reduced to an ependymal layer

with neurons being frequently observed in the vicinity of the

ventricle (Figure 1C). After ENU-exposure the area of the RMS

showed a dramatic reduction of 69% compared to untreated mice

(control: 596461218 mm2; ENU: 18756347 mm2, p = 0.0343), but

light and dark cells were observed in both groups (Figure 1D–E).

Light microscope images showed that ENU alters the DG, not

only in the SGZ, where the number of neurogenic units was

reduced, but more clearly in the outer region of the GCL, the

supragranular zone, which presented discontinuities compared to

control animals (Figure 1F–G).

Then, we performed an ultrastructural analysis of the SVZ,

RMS and DG to identify changes in the organization and cellular

composition of these regions. Upon cell quantification, we

observed a significant reduction in cell density of the SVZ in

treated animals (control: 219615 cells/mm; ENU: 17768 cells/

mm, p = 0.0227). The decrease in cell density was mostly due to a

reduction in the number of type C and type A cells (Type C cells:

control: 4466 cells/mm; ENU: 2367 cells/mm, p = 0.02; Type A

cells: control: 6765 cells/mm; ENU: 4266 cells/mm, p = 0.005).

The number of ependymal and astrocytic cells remained

unchanged (Table 1 and Figure 2A). Most of the neuroblasts

located in the dorsal horn were substituted by long and thick

expansions of astrocytes in mice exposed to ENU. These

expansions were rich in intermediate filaments, resembling the

GAP layer described in the SVZ of primates and humans

(Figure 3A–B). Although each specific cell type preserved its

typical features in terms of the ultrastructure [18], ependymal cells

adopted a flattened morphology in regions with cell clusters after

ENU-treatment. In addition, ependymal cells frequently contacted

directly with type A cells (Figure 3C), and were located next to

synaptic contacts (Figure 3D). Deep interdigitations with large

portions of basal membranes were intermingled between other

ependymal cells (Figure 3E). The analysis depicts that myelinated

and unmyelinated axons were located between the ependymal

Table 1. Cell quantification in the SVZ after ENU-exposure.

Type cells cells/mm

CONTROL ENU

B 6069 5569

B1 1,360,7 160,2

C 4466 2367*

A 6765 4266**

E 4163 4263

Neuron 2,960,1 4,561,1

Microglia 1,760,6 2,560,7

Pyknotic cell 0,460,3 0,260,1

Not identified 1,460,3 2,760,7

*p,0.05,
**p,0.01.
doi:10.1371/journal.pone.0029891.t001

Figure 2. Ultrastructural quantification of cell population in
SVZ after ENU-exposure. The bar graph represents the number of
cells/mm for the different cell types in the SVZ. The total cell number
was reduced significantly by ENU treatment. A reduction was also
detected in the number of type C and A cells. However, type B and E
cell compartments remained constant. There were not changes in the
number of astrocytes contacting with ventricle lumen (Bv) and neurons
(N). *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0029891.g002

Figure 3. Ultrastructural characterization of the SVZ from ENU-
treated animals. The SVZ of treated animals was altered after ENU-
exposure. (A) The type A cells located in the dorsal horn of the SVZ in
ENU animals were drastically reduced, and substituted by astrocytic
expansions. (B) High magnification of the SVZ dorsal horn with
expansions rich in intermediate filaments (asterisks) in ENU animals.
(C) Ependymal cell and neuroblasts frequently presented direct contact
(arrow heads) in SVZ of treated animals. (D) Synaptic contacts located
next to ependymal cell in animals exposed to ENU. (E) Large portions of
basal membranes were observed between ependymal cells (arrows). (F)
Myelinated and unmyelynated axons (arrows) were located between
type A cells that composed chains, in ENU animals. Lv: lateral ventricle.
Scale bar: A,F 10 mm, B 500 nm, C–E 2 mm.
doi:10.1371/journal.pone.0029891.g003
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layer and the newly formed migratory chains, a fact that was rarely

observed in the control group (Figure 3F). Atypical mitotic bodies

were observed in ENU-treated animals, characterized by the

presence of large and irregular clusters of dense chromatin. These

mitotic cells were B and C cells according to their electrodensity

and cell organelles (data not shown). The RMS of ENU-treated

mice was reduced in size but showed typical migratory chains

consisting of clusters of type A cells surrounded by type B cells.

These data revealed no differences in terms of cell morphology by

comparison to control subjects (Figure 4).

In order to analyze the cell types in DG we followed

previously published criteria [23]. These cells, which constitute

the neurogenic niches in the SGZ, did not show relevant

ultrastructural changes when compared to the control group.

However, we observed a reduction of neurogenic units in SGZ of

ENU-treated animals, quantified as total cell number per length

unit in this region (control: 39.3963.06 cells/mm, ENU:

17.9161.88 cells/mm, p = 0.003). In this case the decrease of

cell density was due to a reduction in the number of type D cells

(control: 18.0163.42 cells/mm, ENU: 5.7160.38 cells/mm,

p = 0.034) (Figure 5A–C).

Proliferation rate is drastically reduced in SVZ and DG of
ENU-treated mice

To evaluate the effect of ENU-exposure on proliferation, a

single dose of BrdU was given 1 h before sacrifice. Immunohis-

tochemistry was performed to detect BrdU incorporation.

Quantitative analysis in SVZ and DG of ENU-treated animals

showed a decrease of 33% and 55%, respectively, in the number of

BrdU+ cells (SVZ; control: 68.1061.7 cells/mm, ENU:

45.7265.1 cells/mm p = 0.0089; DG; control: 4.6460.43 cells/

mm, ENU 2.08610.38 cells/mm, p = 0.0021) (Figure 6A–B). In

the SVZ of ENU-treated mice, BrdU+ cells formed clusters of 2 to

6 cells homogenously distributed throughout the different SVZ

levels (Figure 7A–B). BrdU+ cells in DG after ENU-exposure were

observed isolated or forming small clusters of 2 or 3 cells in the

SGZ (Figure 7C–D).

Recruitment of new neurons in neurogenic sites is
altered by ENU-exposure

Once we determined that proliferation rate was changed by

ENU, we evaluated if ENU-exposure altered the recruitment of

neuroblasts in OB and GCL of the DG. Animals were injected

with 4 doses of BrdU and sacrified 30 days after treatment.

Quantitative analysis in OB showed a significant decrease of

BrdU+ cells in mice exposed to ENU (OB: control: 0.460.05

cells/mm2, ENU: 0.260.02 cells/mm2, p = 0.0223) (Figure 6C).

Quantitative analysis in DG also showed a decrease of BrdU+ cells

in GCL of DG (GCL: control: 0.9960.1 cells/mm, ENU:

0.660.09 cells/mm, p = 0.0123) (Figure 6D). This result shows

that the number of new cells recruited in neurogenic areas was

reduced after ENU-exposure.

We also determined a reduction of immature neurons, identified

as Dcx+ cells, in OB and DG, supporting our results. To analyze

Dcx expression in OB we quantified two parameters: area fraction

and integrated density. As OB is a heterogeneous region, we

Figure 4. Ultrastructural characterization of the RMS in ENU
animals. Detail of a typical neuroblasts chain in the RMS of ENU
treated animal, surrounded by astrocytic cells. Scale bar: 5 mm.
doi:10.1371/journal.pone.0029891.g004

Figure 5. Ultrastructural characterization of the DG. (A–B)
Ultrastructural images of the SGZ from DG. (A) The control SGZ showed
niches formed by precursor cells (arrow heads). (B) The ENU SGZ did not
present the typical niches. (C) Cell quantification of the cell population
in SGZ under electron microscopy, measured as cells/mm, resulted in a
significantly decrease of total cells, due to a reduction in the number of
type D cells. Scale bar: 10 mm *p,0.01.
doi:10.1371/journal.pone.0029891.g005
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evaluated these parameters in four different zones of the OB

(Figure 8A). Zones 1 and 4 correspond to part of the central region

of the OB, where the RMS ends, and a portion of the granular

layer. Zones 2 and 3 correspond to part of the granular and

glomerular layers. We observed that the expression of Dcx was

reduced in all regions in ENU animals, being more evident in zone

1 (Figure 6E–F and Table 2). To analyze Dcx expression in DG,

we analyzed the gaps devoid of Dcx+ cells along the SGZ. These

gaps were scarce and shorter in control animals but frequent and

wider in mice exposed to ENU (Figure 8B–C). The average length

of gaps was 3 times higher in ENU animals. Furthermore, 58% of

the SGZ was devoid of Dcx+ cells following ENU treatment, while

the percentage was only 16% in control subjects (see Table 3). This

result indicates that ENU-treatment induced a loss of immature

neurons in the targeted neurogenic sites.

To investigate whether the immature neurons (Dcx+ cells) of

ENU-exposed animals were capable of terminal differentiation

after recruitment in neurogenic areas, we performed double

staining with BrdU and NeuN, a marker for mature neurons.

ENU-treated mice had fewer BrdU+/NeuN+ cells in the

glomerular and granular layers of the OB when compared to

untreated mice (control: 166612 cells, ENU: 10768 cells,

p = 0.012). This result was expected given that the number of

BrdU+ cells in the OB was also reduced. However, the percentage

of BrdU+/NeuN+ cells with respect to the total BrdU+ cells did

not show any statistical difference (control: 48.862.9%, ENU:

40.662.5%, p = 0.117) (Figure 9A–G). We observed the same

effect in the DG. This region also showed a significant reduction in

the number of BrdU+/NeuN+ cells (control: 9.561.8 cells, ENU:

460.7 cells, p = 0.02), but the percentage of cells in which both

markers co-localized was not statistically significant (control:

49.965.7%, ENU: 42.566.6%, p = 0.418) (Figure 9H–N). This

result indicates that ENU treatment did not affect terminal

differentiation.

ENU-exposure impairs odor discrimination ability in mice
A habituation-dishabituation test was conducted to test the

ability of the animals to, first, respond to olfactory cues in general

(no Odor vs. Odor A) and, second, to discriminate between two

similar odorants (Odor A vs. Odor B). During the adaptation

period (5 min exposure to No Odor) both groups spent the same

time investigating the target area. The ANOVA showed no effect

of either the presentations [F(4,68) = 1.594; p = 0.186] or the

treatment [F(1,68) = 0.565; p = 0.463]. These data indicated that

basal exploratory behavior was comparable in both groups before

the odorants were introduced. When the first odorant (Odor A)

Figure 6. Data analysis of proliferation, migration and early differentiation assays. (A–B) Cells in S-phase 1 hour after BrdU injection. Bar
graph depicting the BrdU+ cells/mm shows a significant decrease in the proliferative rate of the SVZ (A) and DG (B) in ENU animals. (C–D) SVZ or SGZ-
derived cells 30 days after BrdU injection protocol. Bar graph depicting significant decrease in the numbers of BrdU+ cells in the OB (C) and GCL of
the DG (D) in ENU-exposed animals. (E–F) Early differentiation of neurons in OB. Bar graph depicting the area fraction (E) and integrated density (F) of
doublecortin (Dcx) positive cells in 4 different regions of OB, showing a reduction in all of them after ENU-treatment. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0029891.g006
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was presented in the habituation phase, both groups of mice were

able to detect the new odorant, showing an increased exploration

of the target area during the first presentation [F(5,85) = 5.770;

p = 0.0001]. The last presentation with No Odor was markedly

different when compared to the first presentation of Odor A

(p,0.01, by S–N–K post-hoc test). Thus, both groups of mice were

able to detect an olfactory cue (different from no cue). Both groups

responded similarly to subsequent presentations of Odor A

[F(5,85) = 0.282, p = 0.922]. The time of exploration decreased

subsequently during the 6 Odor A presentations (habituation

phase), suggesting some degree of habituation of the animals.

However, this effect did not reach statistical significance. These

data imply that mice treated with ENU did not suffer from

impaired exploration at baseline or a general deficit in olfaction.

However, we detected differences between groups during the

dishabituation phase. Mice exposed to ENU did not show an

increase in exploration time, while control mice did, when the

second stimulus (Odor B) was presented. The comparison between

the 6th presentation of Odor A and the 1st presentation of Odor B

for each group, revealed a significant effect of the within factor

[F(1,17) = 46.503; p = 0.005] and of the interaction with the

treatment [F(1,17) = 4.803; p = 0.043]. Furthermore, post-hoc

comparisons showed that control mice significantly increased the

time of exploration (1.6160.95 s; Vs 5.3260.97 s, p,0.01 by S–

N–K post-hoc test) in contrast to ENU-treated mice (1.8160.71 s;

Vs 2.5360.71). Thus, ENU-treated mice showed an impairment

discriminating between different odors (Figure 10).

ENU-exposure affected spatial memory
To study the functional effects of ENU treatment on spatial

reference memory, animals were tested in the Barnes Maze. By

comparing the observations made in the first and last training

session, we noted that both groups were able to learn the task. All

the animals showed a gradual decrease in number of errors (total

and primary) and latency (total and primary) to reach the target.

The ANOVA indicated significant differences of the within

factor in session primary latency [F(2,36) = 10.682; p,0.001], total

latency: [F(2,36) = 6.818; p = 0.003], primary errors: [F(2,36) =

15.271; p,0.001] and total errors [F(2,36) = 5.160; p =

0.011]. Nevertheless, the main effect of treatment was not

significant in any of them. Since no significant effects of the

treatment were found for these variables, the effects observed on

the training sessions are indicative of comparable learning in both

groups (training phase).

However, the probe test performance analysis (number of nose

pokes per hole) showed a striking impairment in ENU-treated

animals. The analysis showed a significant effect of the treatment

[F(1,342) = 9.310; p = 0.007] and an interaction effect between

treatment and hole [F(19,342) = 15.271; p,0.001]. ENU-treated

mice showed a reduced number of nose pokes into the target hole

in comparison with the control group (control: 4.568.975; ENU:

1.264.67, p,0.01 by S–N–K post-hoc test). Given that ENU-

treated animals showed a general decrease in overall nose pokes

relative to control values, we performed an additional analysis

comparing the proportion of nose pokes into the target hole

relative to the overall number of nose pokes. The analysis revealed

a significant decrease in the proportion of nose pokes in the target

hole in the ENU-treated group [F(1,17) = 6.361; p = 0.022] (control:

15.0362.55 versus ENU: 6.2162.36), indicating impaired mem-

ory in the ENU-treated animals to locate the target (Figure 11).

This impairment could not be attributed to reduced exploratory

behavior induced by ENU treatment.

Discussion

This study determined that ENU-exposure disrupts the

organization of the adult neurogenic sites after a recovery period,

with a decrease in cell proliferation and reduction in the

recruitment of new cells in OB and DG. Functional impairments

were also detected in odorant discrimination and spatial memory

test.

ENU treatment led to an altered cell organization in SVZ and

DG neurogenic compartments, and significantly reduced cell

density in both regions. There was a selective decrease in the

number of fast proliferating precursors (type A and C cells in the

SVZ, and type D cells in the DG), while the number of quiescent

stem cells (type B cells) remained unchanged. This cell loss resulted

in a SVZ with large depopulated regions, similarly to those

observed in irradiated [32] and old animals (unpublished results).

In DG, the supragranular region displayed irregularities, probably

due to a loss of neurogenic units in SGZ, as occurred in GSK3b
mutant animals [43]. After ENU-exposure, the ependymal layer

showed direct contact with type A cells, and mature neurons were

Figure 7. Decrease in proliferation after ENU-exposure as
decrease in BrdU immunostaining. Micrograph of the BrdU+ cells
immunolabeled with DAB showed a decrease in the proliferation in the
SVZ (B) and DG (D) of treated animals, compared with control group (A
and C, respectively). Delimited areas in C and D images are enlarged as
C9 and D9, respectively, showing a detail of BrdU+ cells in DG. Scale bar:
A 50 mm, C 100 mm.
doi:10.1371/journal.pone.0029891.g007
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observed in close vicinity of the ventricle. Each specific cell type

preserved its typical features, with the exception of the ependymal

cells which adopted a flattened morphology in regions with cell

clusters. In addition, cell proliferation measured as BrdU

incorporation at short survival times, showed a 33% and 55%

decrease in the number of BrdU+ cells in SVZ and DG,

respectively.

The morphological analysis also revealed a reduction in the size

of the RMS, suggesting a decrease in the number of new cells that

arrive to the OB. Accordingly, we observed a 50% and 40%

decrease in the number of BrdU+ cells in OB and GCL,

respectively, when we administered BrdU at long survival times.

These phenomena could be explained by two processes: 1) a deficit

in migration, or 2) a decrease in progenitors giving rise to

neuroblasts. We consider that the second possibility is more

feasible, because we demonstrate a significant decrease in the

number of neuroblasts that could account for recruitment in the

target tissues. Supporting this hypothesis, at least a low percentage

of cells are able to migrate correctly towards the OB and the SGZ.

However, we cannot rule out the possibility of ENU affecting

specifically cell migration. It has been previously demonstrated

that ENU induced brain tumors (tissue-specificity) [44,45], and

this effect is influenced by the age of the animal at the time of

exposure [16]. However, the relationship between ENU-muta-

genesis and the impairment of cell functions, such as cell

migration, has not been deeply investigated. Further research

would be required to clarify this issue.

Prenatally administered ENU induces the formation of

undifferentiated cellular masses, identified as tumors by their

histological features [46,47]. However, postnatal ENU-exposure in

our model did not affect terminal differentiation of progenitors,

and newly-formed neurons expressed markers of mature neurons,

corresponding to NeuN+/BrdU+ cells observed in the target

regions. Regarding this finding, our study has a restriction because

we did not analyze if new cells are able to incorporate in pre-

existing functional circuits. Thus, we do not know if new neurons

conclude the maturation process.

In a recent publication, our research group demonstrated that

exposure to ENU during adulthood produced an acute decrease in

SVZ progenitor cells resulting from increased cell death and

reduced proliferative capacity even shortly after ENU-exposure.

Four months after treatment, the SVZ was not able to recover the

effects generated by the toxin [17]. After a 45-day period of

recovery, the changes in SVZ subpopulations could be explained

by a likely exhaustion of fast proliferative cells caused by the

mutagenic insult and a subsequent halt in proliferation. Although

Figure 8. Dcx-expression in OB and DG of ENU-animals. Micrographs of Dcx+ cells immunolabeled with DAB. (A) High magnification of an OB
sections from control mouse, where the 4 different regions under study are detailed. Zones 1 and 4 correspond to part of the OB central region, and
of the granular layer. Zones 2 and 3 correspond to part of granular and glomerular layers. (B) In control animals Dcx-expression was relatively
constant across the SGZ, showing scarce and short gaps (arrowheads). (C) The SGZ in treated animals presented wide and frequent gaps (arrows),
compared with the control group. GCL: granular cell layer, GL: glomerular layer, RMS: rostral migratory stream. Scale bar: A 200 mm, B 100 mm.
doi:10.1371/journal.pone.0029891.g008

Table 2. Evaluation of Dcx expression in the OB of control
and ENU animals.

Parameter Group Zone 1 Zone 2 Zone 3 Zone 4

FracA Control 23,563,6 3,762,2 3,062,2 8,763,5

ENU 4,461,4** 0,960,8 0,660,4 3,160,9*

DensIntegr Control 3018063018 698461519 510161343 1436461181

ENU 1358861792** 39756780* 33926802

1161461074

*p,0.05,
**p,0.01.
doi:10.1371/journal.pone.0029891.t002

Table 3. Evaluation of GAPS to Dcx expression in the DG of
control and ENU animals.

Group # GAPS #GAPS/mm mm GAPS Rate (%)

CONTROL 560,54 360,32 290651 1663

ENU 960,51* 560,28* 987670* 5864*

*p,0.01.
doi:10.1371/journal.pone.0029891.t003
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in this study we did not analyze whether there was an increase in

cell death, based on our previous data, we hypothesize that cell

death is likely to be involved in the process.

There were clear changes in the structural integrity of

neurogenic sites following ENU-exposure, but also significant

functional deficits. The capacity of discriminating between

different odorants and spatial reference memory were impaired

in animals exposed to ENU. At the present time, the function of

adult neurogenesis remains controversial. Lines of evidence

suggest that adult-born neurons in the hippocampus contribute

to spatial memory tasks [48]. Some studies reported that newborn

hippocampal neurons are required for long-term memory in a

variety of spatial tasks using different approaches to reduce

neurogenesis, including focused irradiation of the hippocampus

[49], genetic manipulations [24,50,51] and lentiviral treatment to

inhibit WNT signaling [52]. On the other hand, other studies have

shown more specific deficits in the flexible use of spatial learning

strategies following temozolomide treatment in rats [53]. Some

negative results have also been reported determining a mild or no

effect in reference spatial memory tasks in Barnes Maze [54],

Morris Water Maze [55,56], and T-Maze tasks [57]. Our data,

indicating impairment of Barnes maze performance in ENU-

treated mice, are consistent with previous results obtained with

irradiated mice using the same task [24,40]. Furthermore, some

studies with aged rodents seem to be consistent with the deficits

described in the ENU-treated mice. In these reports a correlation

between the extent of spatial memory deficits and reduction in

hippocampal neurogenesis has been shown [58,59]. Nevertheless,

our data do not conclude whether ENU exposure induces a

general sensorimotor impairment. During the training phase of the

Barnes maze, mice exposed to ENU learned the task at the same

pace as control mice, exhibiting similar latencies to reach the

target hole. Interestingly, they showed impairment during the

probe test, which was conducted 24 h after the last training

session. The only difference between training and testing phase

was the possibility of escape, because the safe escape box is

removed from the target hole in the probe test. Therefore, it is

likely that the exploratory deficit shown by ENU-treated mice

during the probe test is task-dependent. Thus, it may be the

consequence of stress associated with removal of negative

reinforcement (inescapable stress). Indeed, stress avoidance is the

primary motivation to find the safe box in the Barnes maze.

Although the Barnes paradigm does not compare directly with

paradigms of inescapable stress, the similarity between the primary

motivations involved, suggests that this could be a feasible

explanation of our results. Moreover, several authors have

Figure 9. Terminal differentiation in the OB and DG after ENU treatment. (A–E) Images of OB showed NeuN+/BrdU+ cells in granular layer of
ENU animals (arrows). (F) Bar graph depicting the number of BrdU-NeuN+ cells in the OB, showing a reduction in ENU animals. (G) The percentage of
BrdU-NeuN+ cells in OB did not present differences between groups. (H–L) Images of DG showed NeuN+/BrdU+ cells in ENU animals (arrows). (M) Bar
graph depicting the number of BrdU-NeuN+ cells in the DG, showing a reduction in ENU animals. (N) The percentage of BrdU-NeuN+ cells in DG did
not present differences between groups. NeuN+ cells (red), BrdU+ cells (white) and DAPI (blue). Scale bar: A and H 100 mm, B and I 30 mm.
doi:10.1371/journal.pone.0029891.g009
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reported that inescapable stress reduces hippocampal neurogenesis

[60,61,62,63] and, conversely, that decreased neurogenesis

enhances stress reactivity [64,65,66].

The results obtained in the olfactory tasks performed in the

current study indicate that mice exposed to ENU do not have a

primary olfactory deficit, but rather a deficit in discriminating two

different odors. Most evidence accumulated so far do not support a

role for newborn olfactory neurons in this type of olfactory task

[24,32,67,68]. However, olfactory discrimination has also been

shown to be impaired in aged mice with highly reduced

neurogenesis [69]. More importantly, our data are consistent with

studies in cell adhesion molecule deficient mice, which depict

deficit in the migration of olfactory bulb neuron precursors and

alterations in odor discrimination, but not in threshold detection of

odors [70]. We cannot discard the hypothesis of functional

impairments arisen from direct toxic effects of ENU in the nasal

neuroepithelium. Nevertheless, the fact that ENU-treated mice

were able to respond to Odor A presentations, suggests that this

deficit was specific of ENU exposure.

NOCs are formed by the interaction of nitrites and secondary

amines [71]. The breakdown of NOCs produces alkylating

metabolites, which are causative for the toxic effects on neural

cells [14,72]. Humans are exposed to NOCs in the environment,

mainly from preserved food and tobacco [3,4]. A recent report has

suggested that the environment might be a potential risk factor for

Alzheimer’s disease, especially related to smoking [73]. In the

present work adult mice were exposed to NOCs by intraperitoneal

injections of ENU. Based on previous work [3], we approximately

estimated the NOC amount that a moderate smoking person (10

cigarettes per day) can accumulate during the lifetime. This level

of NOC is comparable to a half single dose of ENU administered

in our model. However, we have to be cautious when comparing

the doses of ENU used in this study with the levels of NOCs found

in the environment for different reasons. First, the intraperitoneal

administration is not comparable to the environmental exposure

(inhalation, transcutaneous, digestion) and this influences the final

dose and NOCs bioavailability. Second, to be able to investigate

the effect of ENU in our animals, we used an acute exposure to

NOCs, far from a chronic lifelong exposure. In this sense our

model tended to produce higher toxic effect and affected fewer

Figure 10. ENU treatment impairs olfactory discrimination.
During the habituation-dishabituation test a cotton swab was
repeatedly presented to the mice above a target area and changed
every minute. Exploration of the target area was examined. After 5
presentations without odorant, the swab was impregnated with an
odorant (Odor A), and presented 6 times. Then, another swab was
impregnated with a different odorant, (Odor B), which was also
presented 6 times. The dotted lines represent the 1 min bins of
exploration time of the target area. Notice that both groups similarly
detected Odor A (last No Odor presentation Vs first Odor A
presentation; * p,0.01 for ENU-treated group; # p,0.01 for control
group), but when Odor B was presented only control animals
discriminated the odor difference, responding to the new stimulus
(last Odor A presentation Vs first Odor B presentation; # p,0.01).
doi:10.1371/journal.pone.0029891.g010

Figure 11. Spatial memory performance in the Barnes Maze is affected by ENU-exposure. ENU-treated animals performed a reduced
number of nose pokes in the target hole compared to control animals, thus demonstrating impairment in spatial reference memory. Histograms
represent the number of nose pokes in each hole of the Barnes Maze during the test. T: target hole, O: opposite hole to target. The insert graph
shows the proportion (expressed as percentage) of nose pokes into the target hole relative to overall nose pokets (*p,0.05, **p,0.01).
doi:10.1371/journal.pone.0029891.g011
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cells, because the effect on dividing cells occurred at a given time,

and not chronically. Finally, the real NOC-exposure depends on

multiple factors of each individual (type of diet, smoking, use of

certain cosmetics, exposure to rubber products, etc) [2,3,4,74].

Thus, it is complicated to compare our study with the real NOC-

exposure. In any case, our results indicate that effects by NOC-

exposure should not be ignored.

There are some lines of evidence based on epidemiological data

that involve the carcinogenic effects of NOC-exposure on human,

but these studies are not conclusive [75,76]. In addition, the

presence of NOCs in the environment is usually minimal, and the

human exposure is considered low. However, we consider that the

consequences of NOC-exposure are not innocuous. Eventhough

NOCs did not induce brain tumours, our data suggest that NOCs

could be a risk factor to human health by neurogenesis alteration.

This effect on neurogenesis could lead to neurocognitive

complications. The relationship between neurogenesis and

cognitive functions has been observed in patients under radiation

therapy for brain tumors. After treatment, patients frequently

experience a progressive cognitive decline [77,78], which has been

related to the effect of irradiation on neural stem/progenitor cells.

More recently, it has been demonstrated that not all newly

generated neurons in the human SVZ are destined for the OB, but

also to the prefrontal cortex [79]. That way, other neurological

injuries related to cortical alterations could also result after NOC-

exposure.

In conclusion, ENU-exposure had significant effects on SVZ

and DG of adult rodents, even after a recovery period. The

neurogenic niches were profoundly altered, as a result of decreased

proliferating cell populations plus a reduction in both recruitment

and early differentiation of new cells. These changes are strongly

related to an impairment of the olfactory function and spatial

memory. While the extent of the impact of exposure to NOCs on

human brain integrity and function remains to be determined, the

potential risk justifies further investigation.
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