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Abstract

Background: To assess the utility of histogram and texture analysis of magnetic resonance (MR) fat-suppressed
T2-weighted imaging (Fs-T2WI) for the prediction of histological diagnosis of head and neck squamous cell
carcinoma (SCC) and malignant lymphoma (ML).

Methods: The cases of 57 patients with SCC (45 well/moderately and 12 poorly differentiated SCC) and 10
patients with ML were retrospectively analyzed. Quantitative parameters with histogram features (relative mean signal,
coefficient of variation, kurtosis and skewness) and gray-level co-occurrence matrix (GLCM) features (contrast, correlation,
energy and homogeneity) were calculated using Fs-T2WI data with a manual tumor region of interest (ROI).

Results: The following significantly different values were obtained for the total SCC versus ML groups: relative mean
signal (3.65 ± 0.86 vs. 2.61 ± 0.49), contrast (72.9 ± 16.2 vs. 49.3 ± 8.7) and homogeneity (2.22 ± 0.25 × 10− 1 vs.
2.53 ± 0.12 × 10− 1). In the comparison of the SCC histological grades, the relative mean signal and contrast were
significantly lower in the poorly differentiated SCC (2.89 ± 0.63, 56.2 ± 12.9) compared to the well/moderately SCC
(3.85 ± 0.81, 77.5 ± 13.9). The homogeneity in poorly differentiated SCC (2.56 ± 0.15 × 10− 1) was higher than that of the
well/moderately SCC (2.1 ± 0.18 × 10− 1).

Conclusions: Parameters obtained by histogram and texture analysis of Fs-T2WI may be useful for noninvasive
prediction of histological type and grade in head and neck malignancy.

Keywords: Histogram analysis, Texture analysis, Head and neck squamous cell carcinoma, Histological grade, Malignant
lymphoma, Differentiation

Background
In head and neck malignancies, histopathological informa-
tion is important for the determination of the exact diagno-
sis and for predicting the prognosis. Two types of diagnosis
are frequent in head and neck malignancies: squamous cell
carcinoma (SCC) and malignant lymphoma (ML) [1, 2].
The histopathological findings are the gold standard

for the diagnoses and differentiation of SCC and ML.
Additionally, in the pretreatment evaluation of SCC, the
histological grade as well as the TNM stage classification

has been described as an important prognostic factor
related to the local control and the prediction of distant
metastasis [3, 4]. However, in head and neck lesions, a sur-
gical biopsy sometimes may miss the histological diagnosis,
because tissue containing the tumor cells is not always
obtained; peripheral inflammatory tissue is sometimes
observed in the biopsy tissue [5]. In addition, a small tissue
fraction by biopsy is not necessarily sufficient for the evalu-
ation of the entire tumor’s characteristics in the diagnosis
of SCC due to the issue of intra-tumor heterogeneity [6, 7].
Other supporting tools are thus needed for the precise
histological diagnosis of head and neck malignancy.
Quantitative imaging methods such as histogram and

texture analysis are now being investigated for the diag-
nosis, the prediction of treatment outcome, and the
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association with tumor genomic information in head
and neck malignancies [8–11]. Such approach may be a
noninvasive supporting tool for the histological diagnosis
of head and neck malignancies.
We conducted the present study to assess the utility of

histogram and texture analysis for the detailed histological
diagnosis of head and neck malignancies. In this approach,
we used the imaging data of magnetic resonance (MR)
fat-suppressed T2 weighted images (Fs-T2WI), which is
frequently used for noninvasive head and neck tumor
imaging.

Methods
Patients
The protocol of this retrospective study was approved by
our institutional review board (ID; 018–0038), and written
informed consent was waived. We evaluated the cases of
67 patients with head and neck malignancy who were re-
ferred to our hospital and underwent MR scanning during
the period from June 2009 to March 2018. All patients ful-
filled the following inclusion criteria: (1) the patient was
first diagnosed (not a recurrent case) histopathologically as
having head and neck SCC or ML; (2) MR imaging (MRI)
including axial Fs-T2WI was performed before any treat-
ment, in accord with the specific MR equipment and pa-
rameters described below; and (3) the SCC patients’
histological grade (well, moderately or poorly differentiated
SCC) was pathologically diagnosed. Patients with a primary
site in the oropharynx, hypopharynx or oral cavity were
chosen. Patients with a severe metal or motion artifact that
seriously affected the image quality of the primary lesion
were excluded. A primary lesion site in the larynx generally
suffered from respiratory motion, and thus patients with
this primary site were excluded. Nasal and paranasal sinus
SCC patients were also excluded because the biological
characteristics of these lesions are somewhat different from
SCCs of the abovementioned primary sites [12]. In
addition, some of the oropharyngeal SCC patients (n = 21)
in the total study population received a diagnosis of human
papillomavirus status from their histological samples by
biopsy with the use of immunohistochemistry for p16.

MR imaging protocol
All scanning was performed using a 3.0 Tesla MR-unit
(Achieva TX; Philips Healthcare, Best, Netherlands) with
a 16-channel neurovascular coil. MRI including the axial
Fs-T2WI was performed to evaluate the primary tumor
lesions. The sequence design and imaging parameters of
the axial Fs-T2WI were as follows: a turbo spin-echo
(TSE) sequence with fat suppression by spectral adia-
batic inversion recovery (SPAIR) pulse, TR 4500msec,
TE 70 msec, TSE factor 9, FOV 240 × 240mm, 400 × 512
acquisition matrix with 512 × 512 reconstruction by the
zero-filling technique, slice thickness, 5 mm; inter-slice

gap, 30%, total number of slices, 19. A part of the study
population (nine well differentiated SCC, seven moder-
ately differentiated SCC, five poorly differentiated SCC
and 5 ML patients: total 26 patients) were also subjected
to diffusion weighted imaging (DWI). The DWI acquisi-
tion used single-shot spin-echo echo-planar imaging
with two b-values (0 and 1000 s/mm2) and the following
parameters: TR, 4500msec; TE, 64 msec; field of view
(FOV), 230 × 230 mm; 64 × 64 matrix; slice thickness, 5
mm × 20 slices; voxel size 3.59 × 3.59 × 5.00 mm.

Data analysis
Tumor ROI delineation
The primary tumor was outlined by a board-certified neu-
roradiologist with 19 years of experience. It was performed
on the axial Fs-T2WI with a polygonal region of interest
(ROI). Any area which was suggested to be necrosis or a
cystic lesion with very high signal intensity in Fs-T2WI
was excluded from the ROI. If the tumor extended into
two or more slices, the slice in which the largest area of
tumor was depicted was selected. For the reference signal
intensity estimation, a round ROI (1 cm dia.) was also
placed on the posterior neck muscle for the reference
signal as background, while avoiding the signal intensity
of noise or artifact. Case example of ROI delineation was
presented in Fig. 1. For ROI delineation on DWI, almost
the same ROI was delineated on DWI b0 image with ref-
erence to the Fs-T2WI ROI so that the same region was
delineated. Then this ROI was copied on a b1000 image.

Parameter calculation
Both histogram and texture analysis were performed by cal-
culating the data within the ROI. The histogram features
included the four commonly used parameters: the relative
mean signal, the coefficient of variance (CV), kurtosis, and
skewness. The texture analysis was performed using the
gray-level co-occurrence matrix (GLCM), the most com-
mon and sensitive texture descriptor to calculate lesion het-
erogeneity in greater detail from the texture data [13]. The
histogram parameter of relative mean signal value in each
tumor was calculated as the mean value of the signal inten-
sity in the tumor ROI, and by dividing the mean signal
intensity of the outlined posterior neck muscle ROI. The
histogram parameters of CV, kurtosis and skewness were
calculated using the following equations [14]:

CV ¼ σ=μ

skewness ¼ 1=n �
X

χ−μ3
� �h i

=σ3

kurtosis ¼ 1=n �
X

χ−μ4
� �h i

=σ4−3

where n is the number of pixels within the tumor ROI,
x is the signal intensity value in each pixel, μ is the mean
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of x, and σ is the standard deviation of x. The CV
describes the normalized measure of dispersion of signal
intensity values. Histogram skewness describes the skew
in the shape of the distribution curve of the signal inten-
sity. The kurtosis describes the peak and/or flatness of
the curve peak; a more acute peak has higher kurtosis,
and a more broadened and/or flattened peak has lower
kurtosis [14].
The GLCM parameters were calculated using the fol-

lowing equations [15]:

Contrast ¼
X

i; j

p− jj j2p i; jð Þ

Correlation ¼
X

i; j

i−μið Þ j−μjð Þp i; jð Þ
σ iσ j

Energy ¼
X

i; j

p i; jð Þ2

Homogeneity ¼
X

i; j

p i; jð Þ
1þ i− jj j

where p(i,j) represents the (i,j) value of the GLCM.
The GLCM features are spatially detailed information of

signal intensity in the tumor ROI, compared to the
histogram parameters (mean, CV, kurtosis and skew-
ness). The GLCM is composed of the square plane with
rows and columns from zero to the maximum value of
the gray scale in tumor ROI. The GLCM element in row
i and column j represents the number of times a given
gray tone of value i is horizontally adjacent to gray tone
j in the original quantized image. The GLCMs were cal-
culated by using only directly adjacent pixels for simpli-
city. The details of GLCM feature were previously
described [15], and example data are shown in Fig. 2.
Finally, all parameters of relative mean signal, CV,
kurtosis, skewness, contrast, correlation, energy and
homogeneity were calculated in each tumor. In addition,
for DWI analysis, the conventional apparent diffusion
coefficient (ADC) was also calculated using 2 b-values
(0 and 1000) signal data with following equation: (Signal
intensity of b = 1000) / (Signal intensity of b = 0) =
exp.(− 1000*ADC). The mean ADC value in the ROI was
calculated in each SCC lesion. The calculation process
was performed by using the self-developed program by
MATLAB ver. 2012a (MathWorks, Natick, MA).

Statistical analysis
For all obtained parameters, the correlation coefficients
between all pairs of parameters were calculated using
Pearson’s correlation coefficient. Correlation coefficients
were classified as follows: r < 0.2, poor; r = 0.2–0.4, fair; r=
0.41–0.6, moderate; r = 0.61–0.8, good; r > 0.81, excellent.
We used the non-paired t-test to compare each parame-

ter’s value between the total SCC patient group and the
ML patient group, and between the two SCC histological
grade subgroups (well/moderately differentiated SCC vs
poorly differentiated SCC). In addition, a non-paired t-test
was also performed to compare histogram and texture
parameters between human papillomavirus (HPV) positive
and negative oropharyngeal SCC cases. Before the non-
paired t-test and the multiple comparison test, all obtained
parameters were confirmed to be normally distributed by
the Shapiro-Wilk test. P-values < 0.05 were considered
significant. SPSS software (IBM, Armonk, NY) was used
for all statistical analyses.

Results
The detailed information and characteristics of the total
series of 67 patients are summarized in Table 1. All
parameters of the histogram and GLCM features were
successfully calculated in all patients. Detail of all of the
histogram and GLCM texture parameters among the
three groups of well/moderately (n = 45) and poorly
differentiated (n = 12) SCCs and MLs (n = 10) are sum-
marized in Table 2. The correlation coefficients between
each pair of obtained parameters are presented in
Table 3. Notably, the contrast and the homogeneity of

Fig. 1 Tumor ROI delineation. The ROI was placed to delineate each
primary site with a polygonal ROI on Fs-T2WI images. A round ROI
(1 cm dia.) was also placed on the posterior neck muscle for the
reference signal as background
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Fig. 2 Example of GLCM data from tumor ROI. From the signal profile in the tumor ROI (a), the GLCM (b) was created, and then all GLCM
parameter calculations were performed using all of the pixel data in the GLCM

Table 1 Patient characteristics (n = 67)

Squamous cell carcinoma Malignant
lymphoma
(n = 10)

Well differentiated
SCC (n = 24)

Moderately differentiated
SCC (n = 21)

Poorly differentiated
SCC (n = 12)

Total (n = 57)

Age

Range 49–81 48–80 48–80 48–81 37–83

Average 65.7 63.1 63.2 64.2 60.6

Gender

Male 20 20 7 47 8

Female 4 1 5 10 2

Primary tumor site

Oral cavity 9 8 6 23 1

Oropharynx 10 10 6 26 9

Hypopharynx 5 3 0 8 0

T-stage

T1 0 0 0 0 –

T2 8 8 3 19 –

T3 9 6 5 20 –

T4 7 7 4 18 –

N-stage

N0 7 8 4 19 –

N1 6 2 3 11 –

N2 11 10 5 26 –

N3 0 1 0 1 –

HPV status

Positive 4 5 2 11 –

Negative 4 3 3 10 –

Unknown 16 13 7 36 –
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the parameters with GLCM features indicated a strong
inverse correlation (r = − 0.93). All obtained parameters
were confirmed to be normally distributed by the
Shapiro-Wilk test.
In our comparison of the total SCC group and the ML

patient group, the relative mean signal of the SCC
patients (3.65 ± 0.86) was significantly higher than that
of the ML patients (2.61 ± 0.49) (p < 0.01). The contrast
in the SCC patients (72.9 ± 16.2) was also significantly
higher than that of the ML patients (49.3 ± 8.7) (p <
0.01). The homogeneity in the SCC group (2.22 ± 0.25 ×
10− 1) was significantly lower than that of the ML group
(2.53 ± 0.12 × 10− 1) (p < 0.01). The CV tended to be
lower in the ML group compared to the SCC group, but
the difference was not significant (p = 0.061).
Between the well/moderately and the poorly differenti-

ated SCC patients, the relative mean signal intensity was
significantly lower in the poorly differentiated SCCs (2.89 ±
0.63) compared to the well/moderately SCCs (3.85 ± 0.81)
(p < 0.01). The contrast values in the poorly differentiated
SCCs (56.2 ± 12.9) were lower than those of the well/mod-
erately SCCs (77.5 ± 13.9) (p < 0.01). The homogeneity in
the poorly differentiated SCCs (2.56 ± 0.15 × 10− 1) was
higher than the well/moderately SCCs (2.1 ± 0.18 × 10− 1)
(p < 0.001). Each parameter’s box-and-whisker plot graph in
the comparison between the SCC and ML patients is
shown in Fig. 3 and the results of our comparison of the
three histological grade groups of SCC patients are shown
in Fig. 4.
In DWI analysis, the ADC values in the ML patient

group (0.71 ± 0.1 × 10− 3 mm2/s) were significantly
lower than those in the total SCC patient group (0.83
± 0.12 × 10− 3 mm2/s) (p < 0.05). ADC values in poorly
differentiated SCCs (0.77 ± 0.06 × 10− 3 mm2/s) tended
to be lower than well/moderately differentiated SCCs
(0.85 ± 0.12 × 10− 3 mm2/s) with nearly statistical sig-
nificance (p = 0.07).

In the comparison of the histogram and texture parame-
ters between HPV-positive and HPV-negative patients,
the lower contrast (66.6 ± 14.5) and higher homogeneity
(2.34 ± 0.23 × 10− 1) in HPV-positive cases compared to
-negative cases (contrast: 76.8 ± 7.8, homogeneity: 2.17 ±
0.13) were revealed as nearly significant (p = 0.07, 0.09 re-
spectively). Details of parameter values in the comparison
of HPV status are summarized in Table 4 and Fig. 5.

Discussion
Using histogram and texture analysis by GLCM features,
our study revealed significant differences in the relative
mean signal, contrast and homogeneity in Fs-T2WI sig-
nal intensity between the SCC and ML patients, and also
between the poorly differentiated SCC and well/moder-
ately differentiated SCC patient groups. The relative
mean signal result suggests that MLs tend to show lower
Fs-T2WI signal intensity than SCCs, and similarly,
poorly differentiated SCCs tend to show lower signal in-
tensity than well/moderately differentiated SCCs. In
addition, the contrast and homogeneity results revealed
that the MLs showed lower contrast and more
homogenous signal intensity in Fs-T2WI compared to
the SCCs. Among our SCC cases, the poorly differenti-
ated SCCs also showed lower contrast and more
homogenous signal intensity values compared to the
well/moderately differentiated SCCs. The MR texture
analysis for head and neck lesions has been used in a
very limited number of studies. Our present investiga-
tion provides the first report indicating the utility of the
texture analysis for the differentiation of ML and the
histological grades of SCC.
In our analysis of GLCM features, the contrast and

homogeneity were revealed as significant parameters in
the differentiation of MLs and SCCs, and also for the de-
tection of poorly differentiated SCCs in a total SCC
population. MLs and poorly differentiated SCCs have

Table 2 Detail of parameters among histological types in all patients

Squamous cell carcinoma Malignant
lymphoma
(n = 10)

Well-/Moderately differentiated SCC (n = 45) Poorly differentiated SCC (n = 12) Total (n = 57)

Histogram analysis

Relative mean signal 3.85 ± 0.81 2.89 ± 0.63 3.65 ± 0.86 2.61 ± 0.49

Coefficient of variation (× 10− 2) 13.9 ± 3.2 11.3 ± 1.9 13.3 ± 3.1 11.2 ± 1.7

Kurtosis 0.52 ± 0.3 0.35 ± 0.34 0.48 ± 0.31 0.38 ± 0.18

Skewness 0.08 ± 0.41 0.05 ± 0.24 0.07 ± 0.37 −0.05 ± 0.17

GLCM Texture Feature

Contrast 77.5 ± 13.9 56.2 ± 12.9 72.9 ± 16.2 49.3 ± 8.7

Correlation (×10−2) 7.63 ± 0.61 7.22 ± 0.44 7.55 ± 0.59 7.27 ± 0.41

Energy (× 10−3) 1.91 ± 0.55 2.04 ± 0.39 1.94 ± 0.52 1.72 ± 0.4

Homogeneity (× 10−1) 2.1 ± 0.18 2.56 ± 0.15 2.22 ± 0.25 2.53 ± 0.12
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generally been observed to be homogeneous in the visual
assessment of their imaging findings, and lymphomas in
particular were described in several previous reports to
have homogeneous signal intensity due to the intratu-
moral characteristics of high cellular density, a small
amount of stromal tissue and less micro-necrosis [2, 16,
17]. Such findings can be quantitatively observed by
GLCM features clearly. The CV also tended to be lower
in our present group of MLs; this parameter also reflects
the tumor homogeneity in Fs-T2WI. However, a signifi-
cant difference was not observed. This result might

mean that the detectability of homogeneous signal inten-
sity was superior in the GLCM features compared to the
histogram features. In contrast, imaging findings of a
tumor homogeneous signal in Fs-T2WI can be also eval-
uated by experienced radiologists by visual assessment.
However, the detection of this finding is sometimes diffi-
cult for radiologists who are not familiar with the inter-
pretation of head and neck tumor imaging. Moreover,
even for experienced radiologists, there are several cases
in which the image interpretation differs between radiol-
ogists because of the differences in individual-based

Table 3 The correlation coefficient of each pair among all parameters

Relative mean signal Coefficient of variation Kurtosis Skewness Contrast Correlation Energy Homo-geneity

Relative mean signal – 0.15 0.28 0.08 0.66 0.27 0.46 −0.66

Coefficient of variation – – 0.37 0.17 0.25 0.7 −0.21 −0.26

Kurtosis – – – 0.27 0.39 0.22 0.06 −0.39

Skewness – – – – −0.14 0.2 −0.38 0.12

Contrast – – – – – 0.26 0.32 −0.93

Correlation – – – – – – −0.22 −0.19

Energy – – – – – – – −0.3

Homogeneity – – – – – – – –

Fig. 3 Histogram and GLCM texture parameters between the SCC and ML patients. Box-and-whisker plot for all histogram parameters (a–d) and
GLCM texture parameters (e–h) in the total groups of SCC patients and ML patients were shown. Significant differences between the ML and
SCC groups were observed in relative mean signal (a: *p < 0.01), contrast (e: *p < 0.01) and homogeneity (h: *p < 0.01). In addition, CV tended to
be lower in the ML group (p = 0.061)
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visual assessments. Compared to such individual im-
aging findings, the result of texture analysis can provide
quantitative parameters that reflect the imaging findings
in the tumor ROI. By using these quantitative parame-
ters, objective assessments of the imaging findings can
be achieved. We speculated that the in-plane signal
complexity of tumor homogeneity can be successfully
detected by the texture analysis by the GLCM features

with a detailed calculation process compared to
histogram parameters such as the CV. Although the two
parameters of contrast and homogeneity showed signifi-
cant differences, they were strongly inversely correlated
with each other, with a correlation coefficient > 0.9. From
this point of view, it appears that contrast and homogen-
eity might reflect almost the same characteristics, and
could thus be used interchangeably.

Fig. 4 Histogram and GLCM texture parameters between the well/moderately and the poorly differentiated SCC patients. Box-and-whisker plots
of all histogram parameters (a–d) and GLCM parameters (e–h) between the well/moderately and the poorly differentiated SCC patients were
shown. Significant differences between the poorly differentiated SCC group versus the moderately and well differentiated SCC groups were
observed in relative mean signal (a: *p < 0.01), contrast (e: *p < 0.01,) and homogeneity (h: *p < 0.001)

Table 4 Detail of parameters in HPV positive and negative patients

HPV Positive (n = 11) HPV Negative (n = 10)

Histogram analysis

Relative mean signal 3.65 ± 0.72 3.4 ± 0.72

Coefficient of variation (×10−2) 13.4 ± 2.2 15.2 ± 4.4

Kurtosis 0.42 ± 0.35 0.46 ± 0.28

Skewness 0.05 ± 0.43 −0.08 ± 0.4

GLCM Texture Feature

Contrast 66.6 ± 14.5 76.8 ± 7.8

Correlation (×10−2) 7.79 ± 0.67 7.61 ± 0.56

Energy (×10−3) 1.89 ± 0.4 1.93 ± 0.55

Homogeneity (×10−1) 2.3 ± 0.22 2.17 ± 0.23
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We also observed that the relative mean signal intensity
could be used for the differential diagnosis of ML and
SCC, and for identifying poorly differentiated SCCs
among a series of SCC patients. We speculated that this
difference in the lower signal intensity by Fs-T2WI was
also caused by the abovementioned issues (i.e., high cellu-
lar density, small amount of stromal tissue, and less
micro-necrosis). Previous studies using DWI reported a
lower ADC in ML and poorly differentiated SCC [18, 19].
The results of the present study also suggested the signifi-
cantly lower ADC value in ML and the nearly significant
lower ADC in poorly differentiated SCC, comparable with
the abovementioned previous reports. These results may
suggest the higher cellular density of ML or poorly differ-
entiated SCC. The lower mean signal intensity might also
reflect such intratumoral characteristics.
In the future, by combining the abovementioned param-

eters, the prediction of histological diagnosis can be
achieved with a greater level of diagnostic accuracy as an
additional supporting tool. The prediction of the histo-
logical information will be useful for the decision-making
regarding the treatment strategy (e.g., surgical treatment,
type of chemotherapy and radiotherapy). However, our
present findings indicated that the parameters of relative
mean signal, contrast and homogeneity were not largely
different between poorly differentiated SCCs and MLs,

because the signal profile in Fs-T2WI of these two types of
cancer were similar to a degree. Further analyses should
be performed using combinations of other MR-derived
characteristics such as perfusion and diffusion parameters.
Dynamic contrast-enhanced perfusion imaging can pro-
vide the perfusion-related parameters such as plasma vol-
ume fraction, extracellular extravascular volume fraction
and vessel permeability; these may be useful as an add-
itional tool. In addition, information gained from contrast
enhancement enables more accurate tumor contouring by
distinguishing the tumor tissue, necrosis, and cyst forma-
tion compared to the information obtained with T2WI
only. The diffusion parameter of ADC which is considered
to reflect the tumor microstructural environment is widely
used for the evaluation of head and neck malignancy, es-
pecially in SCC [20], and the result of present study indi-
cated its utility. Moreover, the recent techniques using a
non-Gaussian-based diffusion model such as intravoxel in-
coherent motion or diffusion kurtosis imaging will provide
greater detail regarding the tissue microstructure [21], and
thus the parameters obtained by such diffusion models
may also provide useful information. Adding these imaging
parameters will contribute to the diagnostic accuracy with
the combination of T2WI texture analysis data. The
textural features of these diffusion and perfusion imaging
modalities may be also useful. In addition, combinations of

Fig. 5 Histogram and GLCM texture parameters between HPV-positive and HPV-negative patients. Box-and-whisker plots of all histogram
parameters (a–d) and GLCM parameters (e–h) between HPV-positive and HPV-negative patients were shown. The contrast tended to be lower in
HPV-positive cases compared to -negative cases (p = 0.07). In addition, the homogeneity tended to be higher in HPV-positive cases than
-negative cases (p = 0.09)
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other modalities such as computed tomography or
18F-fluorodeoxyglucose positron-emission tomography
with T2WI texture analysis data may also contribute to the
diagnostic accuracy. The usefulness as an added value of
these imaging techniques and modalities should be
assessed in future studies.
This study has several limitations. First, the number of

patients was small. With the analysis of a large number of
patients, several tendencies can be observed in greater
detail by dividing the patient population into groups by
parameters such as the TNM stage. Such subgroup ana-
lyses may differentiate the tumor subtype more clearly
with less overlap. In addition, a tendency of intratumoral
less heterogeneity in HPV-positive cases was indicated by
the textural parameters of contrast and homogeneity.
Such a small number of patients may not be sufficient to
detect significance in parameters. This tendency should be
clarified by the analysis of a larger number of patients, be-
cause the HPV status is very important information that is
related to tumor characteristics and the patient’s prognosis
[22]. Second, we did not determine the reproducibility
and inter-scanner reliability of parameters obtained by the
histogram or GLCM feature analysis. The differences de-
pending on the imaging parameters and image viewer
were also not investigated. In particular, textural parame-
ters can vary based on the type of MR equipment as well
as imaging parameters, the post-process algorithm such as
the imaging filter, and the imaging viewer. Parameter vari-
ations based on the abovementioned numerous influences
should be further analyzed.

Conclusion
Parameters of histogram and GLCM feature obtained by
the texture analysis from Fs-T2WI may be useful for the
determination of histological type and grade of head and
neck malignancies. This information can be used as an
additional supporting tool for the definitive diagnosis.
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