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Analysis of microRNA and Gene 
Expression Profiles in Multiple 
Sclerosis: Integrating Interaction 
Data to Uncover Regulatory 
Mechanisms
Sherry Freiesleben1,2, Michael Hecker3, Uwe Klaus Zettl3, Georg Fuellen2,4 & Leila Taher2,5

MicroRNAs (miRNAs) have been reported to contribute to the pathophysiology of multiple sclerosis 
(MS), an inflammatory disorder of the central nervous system. Here, we propose a new consensus-
based strategy to analyse and integrate miRNA and gene expression data in MS as well as other 
publically available data to gain a deeper understanding of the role of miRNAs in MS and to overcome 
the challenges posed by studies with limited patient sample sizes. We processed and analysed 
microarray datasets, and compared the expression of genes and miRNAs in the blood of MS patients 
and controls. We then used our consensus and integration approach to construct two molecular 
networks dysregulated in MS: a miRNA- and a gene-based network. We identified 18 differentially 
expressed (DE) miRNAs and 128 DE genes that may contribute to the regulatory alterations behind MS. 
The miRNAs were linked to immunological and neurological pathways, and we exposed let-7b-5p and 
miR-345-5p as promising blood-derived disease biomarkers in MS. The results suggest that DE miRNAs 
are more informative than DE genes in uncovering pathways potentially involved in MS. Our findings 
provide novel insights into the regulatory mechanisms and networks underlying MS.

Multiple sclerosis (MS) is one of the most common neurological disorders in young adults and the aetiology of 
this chronic inflammatory disorder of the central nervous system (CNS) still remains largely unknown. Although 
many advances regarding MS treatments have been made, there is still no cure. MS is characterized by dysregu-
lated immune mechanisms and seems to develop in genetically susceptible subjects as a result of environmental 
exposures1. The disease manifests as acute focal inflammatory demyelination with incomplete remyelination and 
axonal loss, which gradually engender multifocal sclerotic plaques in the CNS white matter2. These plaques in 
turn give rise to various cognitive and functional impairments. Several epidemiological and gene expression 
studies have been conducted in order to elucidate the underlying processes of this disease, and microRNAs (miR-
NAs), a class of non-coding RNAs, have recently been reported to play a role in the development and progression 
of MS3.

Mature miRNAs are single-stranded endogenous RNAs approximately 22 nucleotides in length that have the 
ability to posttranscriptionally regulate target messenger RNAs (mRNAs). They bind to the 3′ untranslated region 
of their target mRNAs and translationally repress them or allow for their deadenylation and consequent degra-
dation. It has been shown that the expression of more than 60% of mammalian protein-coding genes is under 
the control of these small RNAs and that a single miRNA may regulate hundreds of mRNA targets4. miRNAs 
partake in diverse biological processes such as in modulating the immune system and neuroinflammation5. They 
are present in stable form in human blood and plasma, and their expression profiles can be easily investigated, 
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making them ideal MS biomarker candidates6. Indeed, a number of miRNA expression profile studies have com-
pared peripheral blood constituents of MS patients to that of healthy controls (HCs), reporting a large number of 
differentially expressed (DE) miRNAs, as will be detailed below.

Much effort has been devoted to integrating and analysing high-throughput expression and interaction 
data with the aim of understanding basic principles of human biology and disease. For instance, Gerstein et al. 
constructed a regulatory meta-network by hierarchically organizing the genomic binding information of 119 
transcription-related factors derived from the ENCODE project and merging this information with other infor-
mation, including miRNA regulation7. This constituted the first detailed analysis of how regulatory information is 
organized in human. More specifically, Satoh et al. constructed molecular networks from proteomic profiling data 
derived from MS brain lesions and analysed these networks using four different pathway analysis tools, thereby 
underlining the relevance of extracellular matrix-mediated focal adhesion and integrin signalling in the develop-
ment of chronic MS lesions8. Riveros et al. investigated whole-blood gene expression data of MS patients using a 
variety of computational methods including transcription factor binding motif (TFBM) overrepresentation anal-
ysis and functional profiling, and uncovered a network of transcription factors (TFs) that potentially dysregulate 
several genes in MS9. Similarly, Liu et al. created a molecular network based on differentially coexpressed TFs 
and genes in peripheral blood mononuclear cells (PBMC) of MS patients and performed pathway enrichment 
analyses to discover regulatory relationships between TFs and target genes10. In contrast to the three previously 
described studies, more recent studies took miRNAs into account when constructing MS-associated molecular 
networks. Nevertheless, non-overlapping panels of DE miRNAs resulted, possibly because these studies were lim-
ited in that they comprised small patient sample sizes, using different high-throughput technologies, or dealing 
with patients already receiving immunomodulatory treatment. Following microarray analysis of miRNAs and 
genes in PBMC of MS patients undergoing interferon-beta (IFN-β ) treatment, Hecker et al. assembled an inter-
action network of IFN-β -responsive miRNAs and genes using several miRNA target databases11. Likewise, Jernås 
et al. generated an interaction network between DE miRNAs and genes in T cells of IFN-β  treated MS patients 
using computationally predicted miRNA targets12. Another study by Angerstein et al. introduced an approach 
to construct molecular networks by integrating dysregulated miRNAs in MS, which were uncovered in various 
studies, and miRNA targets from target gene prediction databases13.

Most of the aforementioned studies were conducted in small patient cohorts without technical replicates and 
independent validation3,14. It is thus likely that some of the findings are false positives. Beside small patient cohort 
sizes, these studies were performed using different samples or tissues (e.g., peripheral blood or monocyte), differ-
ent technological microarray platforms, and different statistical methods to analyse the data. Consequently, little 
overlap in DE miRNAs can be observed between the various studies in MS3,14. Consensus methods are commonly 
used in medicine to define levels of agreement on conflicting data15. Hence, a consensus approach based on 
several expression profile studies is likely to reduce the finding of false positives and to improve the accuracy in 
identifying genes and miRNAs relevant in MS. In this study, we developed a new consensus-based method to ana-
lyse and integrate microarray expression data and other publically available data to gain a deeper understanding 
of the mechanistic impact of miRNAs in MS and to overcome the challenges posed by small studies. We created 
two regulatory networks, a miRNA- and a gene-based network, and identified 18 DE miRNAs and 128 DE genes 
that may contribute to the regulatory alterations behind this inflammatory disease. Of the 18 miRNAs, let-7b-5p 
and miR-345-5p are the most promising biomarkers. We also show that DE miRNAs are more powerful than DE 
genes in uncovering pathways potentially involved in MS.

Results
miRNA-Based Network. Differential MicroRNA Expression in MS. In order to obtain a list of miRNAs 
involved in MS, we preprocessed and analysed four miRNA microarray datasets (Table 1, Fig. 1). When com-
paring the miRNA expression levels in the blood of MS patients and HCs, we found a total of 269, 71, 398, and 
83 DE miRNAs (t-test p-value ≤  0.05) in the datasets GSE1784616, GSE2107917, GSE3156818, and GSE3964319, 

GEO dataset Data Platform Controls MS Tissue Reference

microRNAs

 GSE17846 Normalized GPL9040 21 20 Peripheral blood 16

 GSE21079 Normalized GPL8178 37 59 Peripheral blood 17

 GSE31568 Normalized GPL9040 70 23 Peripheral blood 18

 GSE39643 Normalized GPL15847 8 8 Blood-derived monocytes 19

Genes

 GSE17048 Normalized GPL26947 45 99 Peripheral blood 9

 GSE21942 Normalized GPL570 15 12 PBMC 14

 GSE41890 Raw GPL6244 24 22 Peripheral blood leukocytes 31

 GSE43591 Normalized GPL570 10 10 Peripheral blood 12

Table 1.  Microarray datasets used for the differential expression analysis. GEO dataset: Gene Expression 
Omnibus dataset (series) are represented by a series accession number beginning with the letters GSE; Platform: 
a platform provides the physical setup of an assay such as an array and is linked to a GEO platform accession 
number beginning with the letters GPL; Controls: control samples; MS: number of multiple sclerosis patient 
samples; PBMC: peripheral blood mononuclear cells.
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respectively, and uncovered 39 miRNAs that were significantly DE (p-value <  0.05) in at least 3 of the 4 data-
sets (Supplementary Fig. S1). A permutation test suggested that the 39 DE miRNAs are indeed relevant in MS 
(p-value <  0.002). We next took the direction in which the DE miRNAs were dysregulated into consideration. 
We thereby identified 18 DE miRNAs that were significantly DE and consistently expressed either at higher or 
at lower levels in MS in at least 3 of the 4 datasets (Table 2). A second permutation test conferred additional evi-
dence supporting the implication of these 18 DE miRNAs in MS (p-value <  0.002). Out of these 18 candidates 
for the miRNA-based network, let-7b-5p and miR-345-5p were the only DE miRNAs differentially expressed in 
the same direction in all four datasets. The average fold-changes of let-7b-5p and miR-345-5p were 1.81 and 1.26 
in MS patients compared to HCs, respectively. Hence, let-7b-5p and miR-345-5p are promising blood-derived 
biomarkers of MS.

MicroRNA Targets. We next determined validated and predicted protein-coding gene targets of the 18 DE miRNAs.  
Using miRTarBase20 and TarBase21, databases containing experimentally validated miRNA-target interactions, 
we uncovered 58 validated miRNA-target pairs (Supplementary Table S1). Additionally, we found 21 pre-
dicted miRNA-target pairs using a combination of the databases TargetScan22, miRDB23, and microT-CDS24 
(Supplementary Table S2). These three databases contain computationally predicted miRNA-target interac-
tions. There was no overlap between the validated and predicted miRNA-target pairs. Thus, we identified 79 
miRNA-target interactions in total. Out of the 18 DE miRNAs considered, only 13 had predicted or validated 
targets (Table 2). We therefore added these 13 miRNAs and their associated targets to the miRNA-based network 
and excluded the remaining five DE miRNAs since we were interested in exposing interactions and pathways 
involving MS-associated miRNAs.

Regulation by Transcription Factors. We determined transcription factors (TFs) that regulate the 13 DE miRNAs  
and/or their targets. Using TransmiR25, an experimentally supported TF-miRNA regulatory relationship data-
base, we identified 12 validated TF-miRNA interactions (Table 3). Three TFs were part of four feedback loops 
(FBLs) with miRNAs (Table 3). These TFs and miRNAs include ESR1, SRSF1, LIN28A, let-7b-5p, let-7g-5p, and 
miR-221-3p. The resulting miRNA-TF interactions were added as miRNA-target interactions, thereby increasing 
the number of miRNA-target interactions from 79 to 82 (LIN28A repression by let-7b-5p has been identified in 
both analyses). We also used FIMO26, a software tool for scanning DNA sequences with motifs, in combination 

Figure 1. Workflow and general characteristics of the networks in this study. (a) Bioinformatics workflow, 
illustrating the tools and databases employed to uncover the molecules and interactions in the multiple sclerosis 
(MS)-associated gene- and microRNA (miRNA)-based regulatory networks. (b) General configuration of the 
miRNA- (left) and gene-based (right) networks. The blue nodes represent transcription factors (TFs), the yellow 
node represents a miRNA, and the white nodes represent molecules that are neither TFs nor miRNAs. The 
green edges represent activating interactions, whereas the red one represents an inhibitory interaction.
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with HOCOMOCO27, a hand-curated collection of transcription factor binding site (TFBS) motifs, and deter-
mined 25 predicted TF-miRNA interaction pairs (Supplementary Table S3) and 190 predicted TF-protein-coding 
gene interactions, that is, TFs targeting miRNA targets (Supplementary Table S4).

Construction of the MS-Associated miRNA-Based Network. Using the above information, we assembled the 
miRNA-based network (Fig. 2). Our miRNA-based network comprises 130 nodes (13 miRNAs, 78 miRNA tar-
gets, and 43 TFs, while 4 TFs were also miRNA targets) and 309 directed edges (82 miRNA-target pairs, 37 
TF-miRNA pairs, and 190 TF-gene pairs). Overall, this network indicates that miRNAs are part of a complex 
regulation system in MS. For instance, miR-125a-5p represses 14 targets and is activated by 10 TFs. This miRNA 
may therefore be involved in various dysregulated pathways concerning MS.

microRNA Regulation DE consensus DE in extra miRNA studies in MS

let-7b-5p up 16–19 11,19

let-7g-5p up 16,18,19 17,46,47

miR-19b-3p up 16,18,19 19,49,50

miR-20b-5p down 16–18 16,17,47,51,52,71

miR-30a-5p up 16,18,19 16,51–53

miR-125a-5p up 16–18 12,42,72,73

miR-146a-5p up 16,18,19 19,51,74–77

miR-186-5p up 16,18,19 16

miR-221-3p up 16,18,19 19,47

miR-300 down 16,18,19 —

miR-328 up 16–18 16,51,53,73

miR-345-5p up 16–19 —

miR-363-3p down 16–18 46,50,73

miR-379-5p down 16,18,19 19

miR-450b-5p down 16,18,19 —

miR-580 down 16,18,19 —

miR-664a-3p up 16,18,19 —

miR-1206 down 16,18,19 19

Table 2.  Differentially expressed microRNAs in our study and in other multiple sclerosis studies. Listed 
under the header “microRNA” are the 18 microRNAs (miRNAs) that were differentially expressed (DE) in 
our study and that were DE in the same direction in at least three of the four miRNA expression datasets used 
for this study. A brief description of these miRNA expression datasets can be found in Table 1. “Up” regulated 
means that a miRNA is expressed at a higher level in multiple sclerosis (MS) patients compared to controls and 
vice versa for “down” regulation. In the third column, we provide references to the datasets in which we found 
the miRNAs to be differentially expressed in the same direction in at least three of the four miRNA expression 
datasets. In the last column, references to additional studies in which these miRNAs are also described as 
differentially expressed are indicated. miRNA names in bold indicate the 13 miRNAs that were included in the 
miRNA-based network.

TF miRNA Regulation FBL

E2F1 miR-19b-3p Activation

E2F1 miR-20b-5p Activation

EGR1 miR-30a-5p Activation

EGR1 miR-125a-5p Activation

ESR1 miR-19b-3p Activation

ESR1 miR-20b-5p Activation

ESR1 miR-221-3p Repression × 

LIN28A let-7b-5p Repression × 

LIN28A let-7g-5p Repression × 

LIN28B let-7g-5p Repression

SRSF1 miR-221-3p Activation × 

TLR2 miR-125a-5p Activation

Table 3.  Transcription factor and microRNA regulation pairs found using TransmiR. Transcription factors 
(TFs), their microRNA (miRNA) targets and the type of regulation that the TFs exercise are shown. It is also 
indicated, which TFs and miRNAs mutually regulate each other through feedback loops (FBL), see also Fig. 3b.
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Functional Enrichment Analysis and Subnetworks. We next performed a functional analysis on all the nodes 
of the miRNA-based network using DAVID28. By this means, we discovered 410 significantly enriched terms 
(FDR ≤  0.05), of which, 16 gene ontology (GO) terms were immunology-related or neurology-related (Table 4). 
We inspected the association of the miRNAs in the network with the 16 enriched GO terms in order to associ-
ate specific miRNAs to possibly dysregulated pathways in MS. Therefore, for each enriched immunology- and 
neurology-related GO term, we created a subnetwork using the genes associated with this term as well as the 
directly interacting, neighbouring, nodes (Fig. 3a, Table 4, Supplementary Figs S2–S14). For example, we found 
that four miRNAs are present in the subnetwork created from the genes belonging to the enriched GO term 
GO:0006955 (immune response), indicating that they might be involved in interactions linked to the immune 
response in MS.

We also categorized the 16 enriched immunology- and neurology-related GO terms into four groups: 1) 
Innate immune and inflammatory responses; 2) Immune response and immune system development; 3) Immune 
cells and immune tissue development; and 4) Neuron development and plasticity. miR-125a-5p is present in all 
subnetworks created from these GO terms, suggesting that this miRNA is crucially implicated in various dys-
regulated pathways in MS. On the other hand, let-7g-5p, miR-19b-3p, miR-30a-5p, and miR-221-3p are mainly 
involved in subnetworks created from enriched GO terms corresponding to the second and third category. This 
indicates that these miRNAs are involved in modulating cells regarding autoimmunity and inflammation in MS 
as well as in affecting the immune response and immune system development. Additionally, miR-221-3p is asso-
ciated with all the enriched neurology-related GO terms, providing confidence that this miRNA plays a role in 
influencing molecular processes relevant to MS. miR-450b-5p is also affiliated to neuron differentiation, neuron 
development, neuron projection development, and positive regulation of neurogenesis, but not to the regulation 
of long-term neuronal synaptic plasticity. This finding suggests that miR-450b-5p may be implicated in the early 
stages of CNS development instead of later stages. In the context of MS, this miRNA may be thus particularly 
important in the relapsing-remitting phase of the disease.

Finally, a pathway enrichment analysis of the miRNA-based network nodes using PANTHER29 revealed that 
the nodes in the network are part of enriched immunological pathways (Table 5) such as the toll receptor sig-
nalling pathway (FDR =  7.6 ×  10−5) and the interleukin signalling pathway (FDR =  1.1 ×  10−3). Taken together, 
these results strongly support the hypothesis that miRNAs are involved in key dysregulated immunological and 
neurological pathways in MS.

Network Analysis. We next carried out a FBL and feed forward loop (FFL) analysis since it has been shown that 
miRNAs participating in these types of loops act as regulatory switches giving rise to distinct cellular states30. 
Our FBL and FFL analysis revealed the presence of four FBLs (one negative and three positive FBLs) as depicted 

Figure 2. The miRNA-based network dysregulated in multiple sclerosis. This is a circular view of the 
microRNA (miRNA)-based network. Green edges are activating edges, red ones are inhibiting edges. Yellow 
nodes represent miRNAs, blue nodes represent transcription factors (TFs), and white ones represent molecules 
that are not miRNAs or TFs. The size of the nodes is proportional to the degree of the nodes, i.e., the number of 
incoming and outgoing edges. The three biggest TF nodes are SP4, SP3, and SP1 and the biggest miRNA nodes 
correspond to miR-125a-5p and miR-221-3p.
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in Fig 3b. let-7b-5p, let-7g-5p, and miR-221-3p are involved in either one of these four FBLs as well as in sub-
networks created from the enriched immunology- and neurology-related GO terms. We further unveiled a total 
of 107 FFLs (42 coherent and 65 incoherent) embedded within the miRNA-based network. Seven miRNAs,  
let-7b-5p, let-7g-5p, miR-19b-3p, miR-20b-5p, miR-30a-5p, miR-125a-5p, and miR-221-3p, were involved in 
these FFLs. Except for miR-20b-5p, all these miRNAs were also involved in the subnetworks created from the 
enriched immunology- and neurology-related GO terms (Table 4). As let-7b-5p, let-7g-5p, and miR-221-3p par-
ticipate in both FFLs and FBLs, these miRNAs have the potential to greatly influence the fate of cells in MS.

Protein-coding gene-Based Network. Differential protein-coding gene Expression in MS. In order to 
obtain a list of protein-coding genes relevant in MS, we preprocessed and analysed four microarray datasets 
(Table 1). For simplicity, we will refer to these protein-coding genes simply as genes from this point on. We 
found a total of 431, 6099, 786, and 3717 DE genes (t-test p-value ≤  0.05) in the datasets GSE170489, GSE2194214, 
GSE4189031, and GSE4359112, respectively, and 267 genes that were significantly DE in MS compared with con-
trols (p-value ≤  0.05) in at least 3 of the 4 datasets (Supplementary Fig. S15, p-value <  0.0002), suggesting that 
they are involved in MS. We next took the direction in which the genes were DE into consideration. We thereby 
identified 128 genes that were consistently expressed at significantly higher or lower levels in the blood of MS 
patients than of HCs in at least 3 of the 4 datasets (Supplementary Table S5, p-value <  0.0002). BEX1 and BEX2 
were upregulated and PALLD and ZNF264 were downregulated in MS in all four datasets.

Gene Regulatory Targets. Similar to the steps taken in constructing the miRNA-based network, we uncovered 
validated and predicted DE gene targets to be included in the gene-based network. For this purpose, we made use 
of TransmiR and revealed that AKT3 activates both miR-22-3p and miR-22-5p, two miRNAs that are not present 
in the miRNA-based network. We therefore added these interactions to the gene-based network. Furthermore, 
we searched DE genes that were also TFs in the HOCOMOCO databases in order to confidently ascertain their 
putative targets. DDIT3 was the only DE gene present in HOCOMOCO, and we identified 91 predicted targets 
of DDIT3. We included these 91 interactions in the gene-based network, and therefore identified a total of 93 
interactions between DE genes and validated and predicted targets.

Regulation by Transcription Factors. We uncovered predicted TF-target interactions using the 128 DE genes 
and the 93 DE gene targets. We thereby determined 315 predicted TF and DE gene interaction pairs, and 233 
potential interactions between TFs in HOCOMOCO and DE gene targets. Thirteen of the latter interactions were 
related to DDIT3, as described in the previous section. Thus, 220 additional interactions could be revealed. Using 

Term ID GO term name let-7b-5p let-7g-5p miR-19b-3p miR-30a-5p miR-125a-5p miR-146a-5p miR-221-3p miR-450b-5p miR-1206

1) Innate immune and inflammatory responses

 GO:0002218 Activation of innate immune response X X

 GO:0002758 Innate immune response-activating 
signal transduction X X

 GO:0002224 Toll-like receptor signaling pathway X X

 GO:0002237 Response to molecule of bacterial origin X X

 GO:0006954 Inflammatory response X X X X

2) Immune response and immune system development

 GO:0006955 Immune response X X X X

 GO:0002520 Immune system development X X X X X X

3) Immune cells and immune tissue development

 GO:0002521 Leukocyte differentiation X X X X X

 GO:0045321 Leukocyte activation X X X X X

 GO:0030099 Myeloid cell differentiation X X X X X X

 GO:0048534 Hemopoietic or lymphoid organ 
development X X X X X X

4) Neuron development and plasticity

 GO:0030182 Neuron differentiation X X X X

 GO:0050769 Positive regulation of neurogenesis X X X X

 GO:0048666 Neuron development X X X X

 GO:0031175 Neuron projection development X X X X

 GO:0048169 Regulation of long-term neuronal 
synaptic plasticity X X X X

Table 4.  Differentially expressed microRNAs present in the subnetworks. Each row corresponds to an 
enriched immunology- or neurology-related GO term found by performing a functional enrichment analysis 
using all nodes in the miRNA-based network dysregulated in MS. Four major GO term categories were 
distinguished. The respective information was used to create subnetworks (Fig. 3a, Supplementary Figs S2–S14).  
The presence of MS-associated miRNAs in the different subnetworks is marked by “X”.
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miR-22-3p and miR-22-5p, we further found 8 predicted TF-miRNA interaction pairs. In total, we gathered 543 
interactions for the gene-based network.

Construction of the MS-Associated Gene-Based Network. We next assembled the gene-based network using the 
93 interactions between DE genes and their targets, the 315 interactions between TFs and DE genes, and the 228 
interactions between TFs and DE gene targets. Therefore, the final gene-based network comprised a total of 636 
interactions and 244 nodes (Fig. 4). A subset of 92 of the original 128 DE genes is present in the gene-based net-
work. AKT3 and DDIT3 are the only DE genes that are activated by TFs and that act as TFs.

Functional Enrichment Analysis. A functional analysis using DAVID with the network nodes revealed six signif-
icantly enriched immunology-related terms (Table 6, FDR ≤  0.05). AKT3 is not present in these enriched terms 
therefore we could not link miR-22-3p or miR-22-5p to enriched terms. This finding suggests that the gene-based 
network is indicative of some immunological mechanisms but not for neurological abnormalities involved in MS.

Figure 3. Subnetwork and feedback loops from the microRNA (miRNA)-based network. (a) The genes 
contributing to the enriched gene ontology (GO) term GO:0006955 (immune response) are depicted as nodes 
in the dashed box. The miRNAs associated to these genes are depicted in yellow on the left and the remaining 
genes associated to the genes and miRNAs have been circularly arranged on the right. All edges between these 
nodes (activating edges in green and repressing ones in red) that were present in the full miRNA-based network 
(Fig. 2) are also present in this subnetwork. The nodes in blue represent transcription factors (TFs). The nodes 
that are white are nodes that are neither miRNAs nor TFs. The size of the nodes correlates to the degree of the 
nodes i.e., the number of incoming and outgoing edges, in the full network. The two biggest miRNA nodes 
correspond to miR-125a-5p and miR-221-3p and repress targets that contribute to the enriched GO term 
GO:0006955 (immune response). (b) The nodes and edges involved in the four feedback loops of the miRNA-
based network (Table 3) are depicted. miR-221-3p is also involved in these feedback loops.

Pathway p-value

Toll receptor signaling pathway 7.6 ×  10−5

Interleukin signaling pathway 0.001

EGF receptor signaling pathway 0.004

PI3 kinase pathway 0.006

p53 pathway feedback loops 2 0.006

CCKR signaling map 0.01

PDGF signaling pathway 0.02

Gonadotropin releasing hormone receptor pathway 0.03

Angiogenesis 0.03

Table 5.  Pathways related to the microRNA-based network. Shown are the enriched pathways found after 
performing a PANTHER29 analysis with all the nodes of the microRNA-based network. The p-values are 
corrected for multiple testing using the Benjamini-Hochberg70 (FDR) method.
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We next carried out a pathway enrichment analysis of the gene-based network nodes using PANTHER to 
detect affected pathways in MS. The only significantly enriched pathway was the p53 pathway by glucose depriva-
tion (FDR =  0.001). This finding suggests that the gene-based network does not reflect specific regulation events 
related to MS.

Network Analysis. We did not identify any FBLs, however we discovered the presence of 126 coherent FFLs. This 
demonstrates that the DE genes may be involved in regulatory loops influencing MS, however the gene-based 
network is less indicative of MS-associated processes compared to the miRNA-based network. We conclude 
that more insights regarding dysregulated pathways in MS can be gained by investigating dysregulated miRNAs 
instead of genes.

Discussion
The complex functions of miRNAs, especially in diseases, are still poorly understood. Due to the limited number 
of public miRNA microarray expression profiles in MS, it is still unclear, which miRNAs play a pivotal role in this 
chronic disease. In the present study, we made use of publicly available microarray data and databases with the 
purpose of identifying blood-derived miRNA and mRNA biomarkers as well as molecular interactions that clarify 
biochemical mechanisms behind MS. To this end, we created a miRNA- and a gene-based network. Our networks 
differ from previous studies in the literature in that they are based on a consensus of multiple microarray datasets. 
Based on our networks, we were able to identify pathways potentially involved in MS and generated a list of blood 
miRNA biomarkers.

Because of the inaccessibility of the nervous system, most MS expression studies involve either post-mortem 
samples or readily obtainable tissue, in particular blood. In the search for biomarkers, the assumption is that the 
inflammatory and neurodegenerative processes in the CNS are reflected, at least in part, in peripheral blood cells. 

Figure 4. The protein-coding gene-based network dysregulated in multiple sclerosis. This is a circular view 
of the protein-coding gene-based network. Green edges are activating edges and red ones, inhibiting edges, are 
not present in this network. Yellow nodes represent miRNAs, blue nodes represent transcription factors (TFs), 
and white ones represent molecules that are not miRNAs or TFs. The size of a node is proportional to the degree 
of the node i.e., the number of incoming and outgoing edges. Unlike the miRNA-based network (Fig. 2), the 
largest TF nodes correspond to MAZ and ZFX. The only miRNAs present in this network are miR-22-3p and 
miR-22-5p which are both not present in the miRNA-based network.

Term name Genes p-value

GO:0030099 myeloid cell differentiation CEBPG, EPAS1, IRF4, IRF8, NCOA6, SP1, SP3, TAL1 0.0005

GO:0048534 hemopoietic or lymphoid organ development CEBPG, EGR1, EPAS1, IRF4, IRF8, NCOA6, PBX1, SP1, SP3, TAL1, TLX1, TP53 0.001

GO:0002520 immune system development CEBPG, EGR1, EPAS1, IRF4, IRF8, NCOA6, PBX1 SP1, SP3, TAL1, TLX1, TP53 0.002

PIRSF005710 interferon regulatory factor 3-9 IRF3, IRF4, IRF8 0.006

GO:0042110 T cell activation CD2, EGR1, ELF4, IRF4, SP3, TP53 0.03

GO:0046649 lymphocyte activation CD2, CEBPG, EGR1, ELF4, IRF4, SP3, TP53 0.05

Table 6.  Immunology-related terms associated with the nodes of the gene-based network. Functional terms 
were tested for enrichment using DAVID28 with the 244 nodes of the gene-based network that is dysregulated 
in multiple sclerosis (Fig. 4). The p-values were corrected for multiple testing using the Benjamini-Hochberg70 
(FDR) method.
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Thus, genetic variants altering the expression of MS-relevant miRNAs that are not cell-type specific may lead to 
changes in multiple cells, including blood cells32. In addition, blood-brain barrier dysfunction in MS leads to the 
pronounced infiltration of immune cells in the brain, facilitating the transport of miRNAs to the site of inflamma-
tion. In particular, exosomes have been shown transfer miRNAs between cells, perhaps also from immune cells 
to glial cells33.

The three microarray platforms associated to the miRNA datasets used in this study (Table 1) each contain 
less than 900 mature miRNAs identifiers, although over 2000 mature human miRNAs are available through the 
miRBase database (release 19)34. This difference in number may hinder the identification of additional miRNAs 
involved in MS and associated dysregulated pathways. Despite this limitation, our consensus strategy identified 
18 miRNAs that account for differences between MS patients and HCs. Eleven of these 18 miRNAs were reported 
to be significantly DE in at least one of the original studies that generated the four microarray datasets that we 
used to construct the miRNA-based network (Table 2). The fact that not all 18 miRNAs were found to be signifi-
cantly DE in at least three of the four original studies can be explained by differences in normalization and analy-
sis methods. The MS relevance of the 18 miRNAs in the consensus is supported by a variety of other independent 
expression profiling studies (Table 2), suggesting that our approach enables us to overcome replication issues 
associated with variations in experimental protocols and microarray platforms, and small sample sizes.

We identified two potential MS miRNA biomarkers, let-7b and miR-345, that were significantly upregulated in 
MS according to all four datasets analysed. miR-345 has also been shown to be overexpressed in CD19+ B cells of 
systemic lupus erythematosus (SLE) patients35. In MS, it has been demonstrated that there is a significant increase 
in the number of CD19+ cells in the blood36. Therefore, it would be of interest to perform cell type-specific studies 
to validate miR-345 as a biomarker for the diagnosis and prognosis of MS. Two recent studies did not observe 
different let-7b levels between individuals with MS and HCs37,38. This miRNA has however been linked to neuro-
degeneration; elevated amounts of let-7b were found in the cerebrospinal fluid (CSF) of patients with Alzheimer’s 
disease39. The injection of let-7b into the CSF of mice resulted in neurodegeneration via TLR7 signalling39. In 
turn, it has been shown that TLR7 expression is decreased in PBMCs and monocytes of MS patients compared 
to HCs, while IFN-β  therapy restores TLR7 levels40. IFN-β  also upregulated let-7b in vitro in macrophages and 
forms a negative FBL with let-7b41. Furthermore, IFN-β  therapy induced the expression of let-7b in MS patients11. 
Hence the role of let-7b in the context of the treatment of MS with IFN-β  should be investigated in more detail.

In our miRNA-based network, miR-125a, miR-221, miR-300, and miR-450b have 14, 18, 8, and 8 targets, 
respectively. These four miRNAs regulate more targets than the other nine miRNAs in the network in combina-
tion. This may be because the sheer amount of information concerning these miRNAs is greater compared to that 
of the other miRNAs, or because these miRNAs may have a more important role in MS. We did not observe any 
overlap between these 48 miRNA targets and the 128 DE genes used to construct the gene-based network. This 
lack of overlap may reflect the facts that miRNAs regulate their targets posttranscriptionally without necessarily 
degrading their target mRNAs, and that most genes have multiple regulators, and their expression levels are func-
tions of multiple inputs. Furthermore, despite our careful selection, the microarray experiments that form the 
basis of our miRNA and gene networks were not all performed on the same cell populations. The up-regulation of 
a miRNA in, for instance, monocytes may not necessarily be strongly correlated with the expression profiles of its 
target genes in other PBMCs. Likewise, since the miRNA and gene expression datasets are not paired, but rather, 
truly independent samples, interindividual differences may potentially mask the largely fine-tuning regulatory 
effects of miRNAs. The availability of paired miRNA and mRNA expression datasets for large patient cohorts 
should provide additional insights. Ultimately, validating predicted regulatory mechanisms requires experiments 
with miRNA mimics/inhibitors.

We provided evidence that certain MS-associated miRNAs are involved in neurological processes and may 
influence components of the immune system. We exposed that miR-125a, which was increased in expression in 
MS patients compared to HCs, is associated to 16 enriched immunology- and neurological-related GO terms 
(Table 4). Recently, decreased levels of miR-125a were detected in blood samples of MS patients after natalizumab 
treatment initiation42. Moreover, a microarray analysis by Jernås et al. revealed an upregulation of miR-125a in 
peripheral blood T cells of both IFN-β -treated and untreated MS patients compared to HCs12. Comparable to 
our miRNA-based network, they highlighted that miR-125a targets KLF13 and TNFAIP312. In our network, we 
included these interactions as well as the induction of miR-125a by TLR2. In SLE, miR-125a was shown to nega-
tively regulate RANTES, an inflammatory chemokine, by targeting and inhibiting KLF1343. In addition, miR-125a 
was described to directly repress TNFAIP344, a negative regulator of NF-κ B signalling and inflammation, which is 
expressed at lower levels in monocytes of relapsing-remitting MS (RRMS) patients compared to HCs45. We thus 
suggest that miR-125a is employed to fine-tune inflammation, and drugs such as IFN-β  and natalizumab may 
influence inflammation by modifying miR-125a levels.

Besides miR-125a, we unveiled three other miRNAs highly connected to immune cells and immune tis-
sue development: let-7g, miR-19b, and miR-30a (Table 4). In accordance with our study, let-7g was previously 
found to be upregulated in MS patients46 and to be DE between secondary progressive MS (SPMS) patients and 
HCs47. let-7g levels in circulating blood leukocytes are, however, significantly lower after acute inflammation48. 
Therefore, changing let-7g levels may be employed to regulate inflammation. We also observed that miR-19b is 
upregulated in MS patients and it was likewise reported to be upregulated in regulatory T cells of RRMS patients 
compared to HCs49. On the other hand, in natalizumab-treated MS patients, miR-19b levels were lower compared 
to untreated RRMS patients50. Since we uncovered that miR-19b is involved in coherent and incoherent FFLs 
and because it is associated to leukocyte differentiation (Table 4, Supplementary Fig. S6), miR-19b may affect the 
differentiation of diverse immune cell types. We additionally found that miR-30 was upregulated in the blood 
of MS patients compared to HCs. This miRNA is upregulated in inactive MS lesions compared to normal brain 
tissue51, and it was already reported that it is significantly dysregulated in the blood in RRMS patients compared 
to HCs52. This is in line with another study, which revealed significantly altered levels of miR-30a in MS during 
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remission53. The overexpression of this miRNA in B cells was shown to cause an increase in B cell proliferation 
and the production of IgG antibodies54. It is therefore suggested that miR-30a plays an important role in B cell 
hyperactivity. Our results also support this role of miR-30a because it was associated to leukocyte differentiation 
(Table 4, Supplementary Fig. S6) and it was involved in FFLs.

Our analysis exposed higher levels of miR-221-3p in in the blood of MS patients compared to HCs and 
revealed that miR-221 was associated with GO terms concerning immune system development, immune 
response, neuron development, and neuron plasticity. We also showed that miR-221 was involved in many coher-
ent FFLs. In cell type-specific studies, MS patients were found to exhibit higher levels of this miRNA in regulatory 
T cells49 and lower levels were in B cells50 compared to HCs. Therefore, miR-221 expression may impact the devel-
opment of certain immune cells which can influence neurogenesis in MS.

Finally, another miRNA that potentially participates in neurogenesis and neurodifferentiation is miR-450b. We 
found it to be downregulated in MS and it was associated with enriched neurology-related GO terms. However 
it has not yet been connected to neurological disorders. PTPRZ1, a miR-450b target, is expressed in remyeliating 
oligodendrocytes in MS lesions55. SOX2, another miR-450b target, is expressed by immature Schwann cells and 
inhibits Schwann cell differentiation and myelination56. Based on these findings, the impact of miR-450b on mye-
lination in MS should be examined in future studies.

Compared to our miRNA-based network, our gene-based network did not shed light on many potential reg-
ulatory events behind MS. Despite finding four candidate genes (BEX1, BEX2, PALLD, and ZNF264) that were 
consistently either up- or downregulated in the blood of MS patients in all four datasets, these DE genes were not 
associated to enriched immunology- or neurology-related terms. Although their gene products have been shown 
to be involved in neurology57–59, these DE genes were not part of FFLs. Even though the gene-based network is 
slightly enriched in immune-related terms (Table 6), it does not reflect regulatory mechanisms concerning spe-
cific aspects of MS. This discrepancy in the results suggests that posttranscriptional events may play a greater role 
than previously anticipated in dysregulating regulatory mechanisms in this disease. A dysregulated miRNA may 
have a greater impact on the development of MS compared to a dysregulated protein-coding gene since a miRNA 
may regulate hundreds of mRNA targets60. Genetic variants such as single nucleotide polymorphisms can lead to 
the aberrant expression of miRNAs and increase the risk of developing certain diseases61,62.

In conclusion, we presented a consensus-based method to analyse and integrate gene and miRNA expression 
data as well as other publically available data. Our results revealed that DE miRNAs are more informative than DE 
genes when uncovering potential molecular pathways involved in MS. We argued that, among others, let-7b-5p 
and miR-345-5p might be the most promising blood-derived miRNA biomarkers in MS.

Methods
In this study, we emphasized on identifying candidate miRNA and gene biomarkers that are DE in multiple MS 
microarray datasets. For this purpose, we developed a consensus and database integration approach to construct 
a miRNA- and a gene-based disease-associated regulatory network. Figure 1 depicts the workflow used for this 
study as well as the general characteristics of the networks. We assembled these networks with the aim of uncov-
ering interactions between miRNAs and genes potentially implicated in the onset and progression of MS.

Microarray Data Preprocessing. We downloaded publically available microarray datasets, containing 
raw or normalized data, together with the corresponding platform specifications from the Gene Expression 
Omnibus (GEO) database (Table 1). We excluded studies in which patients were undergoing treatment or in 
which samples were not blood-derived. The dataset containing raw data, GSE41890, was robust multiarray aver-
age RMA-normalized using the Affy package63 in R (version 2.12.1). This dataset delivers gene expression levels in 
the blood of 22 MS patients measured at two different time points. For the analysis of this dataset, we only use one 
of the two samples per patient. In datasets containing technical replicates, we averaged the expression data of the 
replicate microarrays. All clinical subtypes of MS were included in this analysis because gene expression differ-
ences between the subtypes are comparatively minor64. In case of the miRNA microarray datasets, we converted 
the assay identifiers to current miRNA names provided by the miRBase database (release 19)34. Only the data of 
assay identifiers with one-to-one relationship to miRNA names were included in the analysis. In case of the gene 
expression microarray datasets, we converted probe identifiers to official gene symbols. Data of identifiers that 
could not be converted were excluded. For each sample, we averaged the expression data of identifiers that were 
assigned to identical gene symbols.

Differential Expression Analysis and Consensus Approach. For each dataset and each gene and 
miRNA, we performed t-tests comparing the data of HCs and MS patients. For each miRNA and each gene, 
we also calculated the fold-change, that is, the ratio of the average expression in MS patients versus the average 
expression in HCs. A miRNA or gene is upregulated if this ratio is greater than one, downregulated if smaller 
than one, and unchanged if equal to one. miRNAs that were DE with p-value ≤  0.05 in at least 3 of the 4 miRNA 
datasets and that were consistently significantly up- or downregulated in MS were selected for the further func-
tional and interaction analyses. For this study, we used the following two criteria to define consensus: 1) A 
transcript has to be differentially expressed in three out of the four experiments corresponding to the gene or 
miRNA datasets in Table 1 and 2) the change in expression in a transcript has to be in the same direction (up 
or downregulation) in the three or four experiments. Similarly, we selected genes for the gene-based network 
that were DE with p-value ≤  0.05 in at least 3 of the 4 gene expression datasets and that were DE in the same 
direction in these data.
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Permutation Test of Differential Expression Consensus. We performed permutation tests in order to 
demonstrate that our selected DE miRNAs and genes are relevant in MS and that they are not the result of ran-
dom selection. Firstly, for each miRNA dataset, we randomly selected a number of miRNAs equal to the number 
of actually DE miRNAs. We then determined the number of miRNAs that were common in at least 3 of the 4 
miRNA datasets. We repeated this process 5000 times and, in this way, we calculated a p-value for our actually 
selected DE miRNAs without taking up- or downregulation into consideration. For a second permutation test, 
we took into account the direction of DE miRNAs and genes. Similar to the first test, we randomly selected a 
number of miRNAs corresponding to the number of actually DE miRNAs for each dataset. We then determined 
the number of miRNAs that were common in at least 3 of the 4 miRNA datasets and consistently expressed either 
at higher or at lower levels in the MS patient group compared with HCs. We repeated this process 5000 times to 
calculate a p-value for the actually selected DE miRNAs that were common in at least 3 datasets and always dys-
regulated in MS in the same direction. We correspondingly carried out these two tests for the selected DE genes 
to calculate respective p-values.

MicroRNA Target Analysis. Five databases comprising miRNA targets were used. Of these, miRTarBase 
(release 3.5) and TarBase (release 6.0) contain validated miRNA targets20,21. Within TarBase, we only retained 
validated miRNA targets that have been confirmed via reporter gene assays. All other validation methods (e.g., 
microarray and sequencing) were discarded because these methods indicate a correlation of expression between 
miRNAs and their potential targets rather than causation, i.e., miRNAs binding to their targets thus causing a 
decreased expression of their targets. Likewise in miRTarBase, we discarded all verified targets for which the 
miRNA-target interaction was classified as weak. In contrast, TargetScan (release 6.2), miRDB (release 4.0), and 
microT-CDS (release 5.0) consist of predicted miRNA targets22–24. In TargetScan, targets with a context score 
smaller or equal to − 0.19 were retained. In microT-CDS, targets with a miTG score greater or equal to 0.993 
were kept. Predicted targets from miRDB with a score greater or equal to 84 were also kept. We chose these rather 
strict cut-offs in an attempt to reduce the number of false positives. Finally, DE miRNA-target gene pairs that 
were common to all 3 databases were extracted. In the miRNA-based network, we did not visualize DE miRNAs 
without a verified or predicted target.

Transcription Factor Target Analysis. Validated TF-miRNA interactions and their regulation (activation 
or repression) were exported from the TransmiR database (release 1.2)25. Predicted TF-miRNA and TF-gene 
interactions were on the other hand determined by first retrieving the promoter sequences of all previously iden-
tified miRNAs and genes. We defined the promoter region as a 2 kbp sequence starting 1.5 kbp upstream of the 
transcription start site (TSS) and ending 0.5 kbp downstream of the TSS. We obtained miRNA TSS using miR-
Start (release July 21, 2010) and gene TSS using RefGene65,66. We afterwards ran FIMO, a motif search tool of the 
MEME suite, together with HOCOMOCO, a database containing hand-curated transcription factor binding site 
(TFBS) models, on the corresponding repeat-masked sequences to identify TFs that potentially bind to the pro-
moter regions26,27. TF-miRNA and TF-gene interaction predictions with p-value ≤  0.05 were retained. We kept 
the top 1% of these predicted interactions and deleted all duplicate interactions.

Regulatory Network Construction. In the miRNA-based network, we included DE miRNAs, their tar-
gets, TFs regulating these miRNAs and their targets as well as the type of interaction between these molecules. We 
assumed that all miRNAs repress their targets, unless otherwise indicated in TransmiR. miRNA target activation 
is possible but remains a rare event67. We also assumed that TFs activate their targets, unless otherwise indicated 
in TransmiR. The gene-based network was created in a similar fashion. The networks were constructed and visu-
alized using Cytoscape68 (version 3.2.0). We employed NetDS, a plugin for Cytoscape, to uncover FFLs and FBLs 
that contribute to the complexity of the regulatory networks in MS69. The Cytoscape session files are available 
from the corresponding authors upon request.

Functional Enrichment Analysis. In order to assess which functionally related genes (e.g., as defined by 
GO terms) are predominantly represented in either the miRNA- or gene-based network, we performed a func-
tional annotation analysis using DAVID (release 6.7)28. We adjusted the p-value of the enriched terms for multiple 
testing using the Benjamini and Hochberg (BH) method70. We also carried out a pathway overrepresentation test 
in PANTHER29 (version 10.0) and adjusted the p-value of the enriched pathways using the BH procedure.

Subnetwork Creation. We created subnetworks based on the enriched GO terms found using DAVID and 
the nodes in the miRNA-based network. From our complete miRNA-based network, we selected the genes asso-
ciated to an enriched GO term as well as all their neighbouring nodes in order to associate miRNAs to specific 
GO terms. We also selected all edges between the genes and their first neighbouring nodes when creating the 
subnetworks.
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