Mesoionic Dithiolates (MIDts) Derived from 1,3-ImidazoleBased Anionic Dicarbenes (ADCs)

Falk Ebeler, ${ }^{[\text {[a] }}$ Yury V. Vishnevskiy, ${ }^{[a]}$ Beate Neumann, ${ }^{[a]}$ Hans-Georg Stammler, ${ }^{[a]}$ and Rajendra S. Ghadwal* ${ }^{[a]}$

Dedicated to Professor Cameron Jones on the occasion of his 60th birthday

Abstract

Mesoionic dithiolates [(MIDt $\left.{ }^{\mathrm{Ar})} \mathrm{Li}(\mathrm{LiBr})_{2}(\mathrm{THF})_{3}\right]\left(\mathrm{MIDt}^{\mathrm{Ar}}\right.$ $=\{\mathrm{SC}(\text { NDipp })\}_{2} \mathrm{CAr} ;$ Dipp $=2,6-i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathrm{Ar}=\mathrm{Ph} 3 \mathrm{a}, 3-\mathrm{MeC}_{6} \mathrm{H}_{4}$ (3-Tol) $\mathbf{3 b}, 4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$ (DMP) $\mathbf{3 c}$) and $\left[\left(\mathrm{MIDt}^{\mathrm{Ph}}\right) \mathrm{Li}(\mathrm{THF})_{2}\right]$ (4) are readily accessible (in $\geq 90 \%$ yields) as crystalline solids on treatments of anionic dicarbenes $\mathrm{Li}\left(\mathrm{ADC}^{\mathrm{Ar}}\right)(2 \mathrm{a}-\mathrm{c})\left(\mathrm{ADC}^{\mathrm{Ar}}=\right.$ $\left.\left\{\mathrm{C}(\mathrm{NDipp})_{2}\right\}_{2} \mathrm{CAr}\right)$ with elemental sulfur. $3 \mathrm{a}-\mathrm{c}$ and 4 are monoanionic ditopic ligands with both the sulfur atoms formally negatively charged, while the 1,3-imidazole unit bears a formal positive charge. Treatment of 4 with $(\mathrm{L}) \mathrm{GeCl}_{2}$

Dithiolenes (DTs) (Figure 1a) are an important class of ligands that have eased spectacular advances in fundamental transition metal (TM) chemistry. ${ }^{[1]}$ DT-TM complexes had been known since the pioneering works by Schrauzer, ${ }^{[2]}$ Gray, ${ }^{[3]}$ Davidson and Holm ${ }^{[4]}$ in the early 1960s. DTs are usually regarded as the first non-innocent chelating ligands as they can exist in three different oxidation state (DT ${ }^{2-}$, DT ${ }^{*-}$, and DT) (Figure 1a). ${ }^{[5]}$ The term "dithiolene" was originally introduced by McCleverty to avoid the necessity of specifying distinct oxidation states. ${ }^{[6]}$ The interest in DT-TM complexes continues to grow because of their applications in optoelectronics, ${ }^{[7]}$ energy harvesting, ${ }^{[8]}$ catalysis, and beyond. ${ }^{[9]}$ Moreover, DTs are also known as key structural motifs in many metal-containing natural enzymes. ${ }^{[10]}$

N-Heterocyclic carbenes (NHCs), the classical C2-carbenes like $\operatorname{IPr}(I)$ (Figure 1b), are very versatile carbon-donor neutral ligands in synthesis, catalysis, and materials science. ${ }^{[11]}$ NHCs are also appealing building blocks for the development of new sets of ligands. ${ }^{[12]}$ In 2010, Robinson et al. isolated the anionic
[a] F. Ebeler, Dr. Y. V. Vishnevskiy, B. Neumann, Dr. H.-G. Stammler, Priv.Doz. Dr. R. S. Ghadwal
Molecular Inorganic Chemistry and Catalysis
Inorganic and Structural Chemistry
Center for Molecular Materials, Faculty of Chemistry
Universität Bielefeld
Universitätsstrasse 25, 33615, Bielefeld (Germany)
E-mail: rghadwal@uni-bielefeld.de
Homepage: www.ghadwalgroup.de
Supporting information for this article is available on the WWW under https://doi.org/10.1002/chem.202200739
© © 2022 The Authors. Chemistry - A European Journal published by Wiley$V C H \mathrm{GmbH}$. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Abstract

($\mathrm{L}=1,4$-dioxane) affords the germylene ($\mathrm{MIDt}^{\mathrm{Ph}}$) GeCl (5) featuring a three-coordinated Ge atom. 5 reacts with $(\mathrm{L}) \mathrm{GeCl}_{2}$ to give the $\mathrm{Ge}-\mathrm{Ge}$ catenation product ($\left.\mathrm{MIDt}^{\mathrm{Ph}}\right) \mathrm{GeGeCl}_{3}$ (6). KC_{8} reduction of 5 yields the homoleptic germylene $\left(\mathrm{MIDt}^{\mathrm{Ph}}\right)_{2} \mathrm{Ge}$ (7). Compounds $3 \mathrm{a}-\mathrm{c}$ and $4-7$ have been characterized by spectroscopic studies and single-crystal Xray diffraction. The electronic structures of 4-7 have been analyzed by DFT calculations.

(a)

(b)

I (IPr)

II

III
(Dipp $=2,6-\mathrm{iPr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ and $[\mathrm{Li}]=$ solvated Li$)$

Figure 1. (a) Various oxidation states of dithiolene (DT) ligands. (b) Selected examples of singlet carbenes (I, IV, V), dicarbenes (II, VI), and dithiolene derivatives (III and VII).

Scheme 1. Synthesis of $\mathbf{3 a - c}$ and 4.
dicarbene (ADC) II by the C4-deprotonation of I. ${ }^{[13]}$ Later, they prepared a lithium dithiolene radical III by reacting II with $\mathrm{S}_{8} .{ }^{[14]}$ The widespread applications of NHCs is largely attributed to their auspicious stereoelectronic features, in particular the σ-donor strength. ${ }^{[15]}$ Mesoionic carbenes (iMICs), the so-called abnormal NHCs, are C4-(or C5) carbenes and are superior σ donors than C2-carbenes. ${ }^{[16]}$ Unlike NHCs, stable iMICs are
however rather scarce. The first free iMIC IV was reported by Bertrand et al. in 2009. ${ }^{[17]}$ Very recently, we reported on C5protonated iMICs $\mathbf{V}_{,}{ }^{[18]}$ which can be further deprotonated to give C4,C5-dicarbenes VI. We have also shown the suitability of these vicinal dicarbenes VI in accessing a variety of main-group heterocycles, ${ }^{[19]}$ including diradicals. ${ }^{[20]}$ Herein, we report on the high-yielding synthetic access to a new class of dithiolene ligands, namely the mesoionic dithiolate (MIDts) VII, derived from VI.

The desired precursors $\operatorname{Li}\left(A D C^{A r}\right)\left(A D C^{A r}=\{C N(D i p p)\}_{2} C A r\right)$; Dipp $=2,6-i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \quad \mathrm{Ar}=\mathrm{Ph} \quad \mathbf{2 a}, \quad 3-\mathrm{MeC}_{6} \mathrm{H}_{4} \quad$ (3-Tol) $\quad \mathbf{2 b}$ b, 4$\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$ (DMP) 2 c) were prepared in situ (Scheme 1$)^{[19,20]}$ by the direct double deprotonation of the C2-arylated 1,3imidazolium bromides $\left(I \mathrm{Pr}^{\mathrm{Ar}}\right) \mathrm{Br}\left(\mathrm{IPr}^{\mathrm{Ar}}=\{\mathrm{HCN}(\text { Dipp })\}_{2} \mathrm{CAr} ; \mathrm{Ph} 1 \mathrm{a}\right.$ $\mathrm{Br}, 3-\mathrm{Tol} 1 \mathrm{~b}-\mathrm{Br}, \mathrm{DMP} 1 \mathrm{c}-\mathrm{Br})^{[21]}$ with $n \mathrm{BuLi}$. Treatment of a freshly prepared THF solution of $2 \mathrm{a}-\mathrm{c}$ with $\mathrm{LiBr}^{[22]}$ and S_{8} afforded compounds $3 \mathrm{a}-\mathrm{c}$. Solid-state molecular structures of 3 a (Figure 2a), 3b (Figure S25 in Supporting Information), and 3c (Figure S26) reveal the presence of a cluster like $\mathrm{S}_{2} \mathrm{Li}_{3} \mathrm{Br}_{2}$ unit. ${ }^{[23]}$ Each four-fold coordinated lithium bears a THF molecule, while both the bromides serve as bridging ligands. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3 a-c exhibit expected signals for the ADC ${ }^{\text {Ar }}$ and THF moieties. The corresponding derivative 4 free from LiBr was prepared using $1 \mathrm{a}-\mathrm{Cl}$ instead of $1 \mathrm{a}-\mathrm{Br}$ to generate 2 a . This may be due higher lattice energy of LiCl than $\mathrm{LiBr} .3 \mathrm{a}-\mathrm{c}$ and 4 are orange or yellow solids, accessible in $\geq 90 \%$ yields, and indefinitely stable under an inert gas (N_{2} or Ar) atmosphere.

(b)

4

Figure 2. (a) Molecular structures of 3 a and 4. (b) HOMO and LUMO of 4.

(a)

(b)

7

Scheme 2. (a) Reaction of III with (L) GeCl_{2} to VIII. (b) Synthesis of 5, 6, and 7.

In 4, the four-coordinated lithium atom bears two THF molecules and binds to the sulfur atoms of the MIDt ${ }^{\text {ph }}$ to form a five-membered $\mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{Li}$ ring. The lithium atom in 4 is protruded out of the $\mathrm{C}_{2} \mathrm{~S}_{2}$-plane and has a fold angle of 13.0(1) ${ }^{\circ}$ between the LiS_{2} and $\mathrm{S}_{2} \mathrm{C}_{2}$ planes, which is slightly smaller than Robinson's radical anion III (14.2 ${ }^{\circ}$..$^{144]}$ Notably, 4 has an additional electron than III. The C2-C3 bond length of 4 (1.383(2) Å) is intermediate of that of $1 \mathrm{a}-\mathrm{Br}(1.353(2) \AA$) and III (1.417(3) $\AA)$. The C $-S$ bond lengths of 4 (1.717(1), $1.729(2) \AA$) are middle of those of $\left.\mathrm{Me}_{2} \mathrm{~S}(1.79863(13) \AA)^{2}\right)^{[9]}$ and $(\operatorname{IPr})=S(1.670(1) \AA \AA) .{ }^{[24]}$ and compare well with those of thiophene $\left(1.7126(5) \AA \AA^{[10]}\right.$ and metal-dithiolates. ${ }^{[2]}$ These features suggest the presence of a delocalized π-electron system over the $\mathrm{C}_{2} \mathrm{~S}_{2}$ Li ring.

The optimized structure of 4 at the PBEO-D3BJ/def2-TZVPP level of theory (see the Supporting Information) is in good agreement with its solid-state molecular structure (Figure 2a). The Wiberg bond indices (WBIs) of the C2-C3 (1.32 au) and C2-S1/C3-S2 bonds (1.24 au) indicate that they have partial double character. Calculations reveal that the HOMO of 4 is a π type orbital mainly located at the $\mathrm{C}_{2} \mathrm{~S}_{2}$ unit and has $\mathrm{C}-\mathrm{C}$ and trans-annular $\mathrm{S} \cdots \mathrm{S} \pi$-bonding character. The LUMO is primarily based on the phenyl group of $A D C^{\text {Ph }}$ (Figure 2b). The UV-visspectrum of 4 exhibits one main absorption ($\lambda_{\text {max }}$) at 497 nm ,

Figure 3. Solid-state molecular structures of 5, 6, and 7. Aryl groups are shown as wireframe models and H atoms are omitted for clarity. Thermal ellipsoids are shown with 50% probability. Selected bond lengths (\AA) and angles (${ }^{\circ}$) for 5 (only one of the disordered $\mathrm{S}_{2} \mathrm{GeCl}$ unit is shown): $\mathrm{Ge} 1-\mathrm{Cl} 1$ 2.295(1), Ge1-S1 2.387(5), Ge1-S2 2.377(5), C2-C2' 1.363(4), C2-S1 1.769(7); S1-Ge1-S2 90.8(1), S1-Ge1-Cl1 95.8(2), C2-S1-Ge1 93.5(2); for 6: Ge2-Cl 2.202(1)-2.188(1), Ge1-Ge2 2.592(1), Ge1-S1 2.360(1), Ge1-S2 2.363(1), C2-C3 1.366(1), C2-S1 1.7230(1), C3-S2 1.730(1); S1-Ge1-S2 93.3(1), C2-S1-Ge1 96.5(1), S1-Ge1-Ge2 88.5(1), Cl-Ge2-Cl 101.5(1)-102.1(1); for 7: Ge-S 2.401(1)-2.702(1), C2-C3 1.375(3), C35-C36 1.379(3), C2-S1 1.724(2), C3-S2 1.710(2); S1-Ge1-S2 87.0(1), S1-Ge1-S4 99.4(1), S2-Ge1-S3 162.4(1).
which based on TD-DFT analysis may be assigned to the HOMO \rightarrow LUMO transition (Table S10).

Robinson et al. isolated a square-planar germanium compound VIII by reacting III with (L) GeCl_{2} ($\mathrm{L}=1,4$-dioxane) (Scheme 2a). Structural parameters suggest that VIII is a $\mathrm{Ge}(+4)$ compound. Thus, the ligand is 1 e -reduced while germanium is 2e-oxidized in VIII with respect to III and (L) GeCl_{2}. This finding prompted us to explore the reactivity of 4 with (L) GeCl_{2}, given the fact that 4 already has one excess electron than III. Interestingly, treatment of 4 with $(\mathrm{L}) \mathrm{GeCl}_{2}$ in THF led to the clean formation of a heteroleptic germylene 5 as an orange solid (Scheme 2b). Further reaction of 5 with (L) GeCl_{2} gave a mixed-valent $\mathrm{Ge}(+1) / \mathrm{Ge}(+3)$ compound 6 . The formation of $\mathrm{Ge}-\mathrm{Ge}$ catenation product 6 indicates formal insertion of GeCl_{2} into the $\mathrm{Ge}-\mathrm{Cl}$ bond of 5 .

We anticipated the formation of bis-germylene 7^{*} on KC_{8} reduction of 5 . This reaction however led to the formation of a homoleptic germylene 7 instead of 7^{*}, indicating reductive elimination of Ge^{0} from 7^{*}. This may be attributed to the electron-rich nature of MIDt entity. Notably, 7 may also be prepared directly by reacting 4 with (L) GeCl_{2} in a $2: 1$ ratio (Scheme 2b). Compounds 5, 6 (orange), and 7 (red) are crystalline solids and indefinitely stable under an inert gas atmosphere. The observed ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals for the ADC ${ }^{\text {ph }}$ unit of 5-7 are fully consistent with their solid-state molecular structures (Figure 3).

Like $\mathrm{C}_{2} \mathrm{~S}_{2}$ Li ring in 4 , the $\mathrm{C}_{2} \mathrm{~S}_{2}$ Ge ring of 5 and 6 is puckered and the germanium atom is protruded out of the plane. The
(a)

(b)

$\begin{array}{rc}\text { Compound } & 4 \\ \Delta E_{H-L}(\mathrm{eV}) & 3.09\end{array}$

 $\Delta E_{H-L}(\mathrm{eV}) 3.09$

Figure 5. UV-vis spectra of $4-7\left(10^{-5} \mathrm{M}\right.$ in THF).
of a stereochemically active lone pair of electrons at the equatorial position.

Further insights into the electronic structures of 5-7 were obtained by computational calculations (see the Supporting Information). The optimized geometries of 5-7 are fully consistent with their X -ray diffraction structures (Figure 3). The HOMO of 5 and 6 is a π-type orbital mainly located at the $\mathrm{C}_{2} \mathrm{~S}_{2}$ framework, while the LUMO is based primarily on the ADC unit (Figure 4a). The HOMO-1 of 5 and 6 is a σ-type lone-pair orbital at the germanium atoms with a considerable contribution from the Ge-S bonds. The HOMO of 7 is based on the $\mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{Ge}$ framework and has σ-type lone-pair orbital contribution at the germanium atom. The HOMO-1 of 7 is a π-type orbital largely located at the $\mathrm{C}_{2} \mathrm{~S}_{2}$ framework. Very recently, Gessner et al. reported a diylide-stabilized germylene $\mathrm{Y}_{2} \mathrm{Ge}\left(\mathrm{Y}=\mathrm{Ph}_{3} \mathrm{PCSO}_{2} \mathrm{Tol}\right)$ that has the highest lying HOMO (-5.04 eV), also calculated at the PBEO-D3BJ/def2-TZVPP level of theory, among hitherto known germylenes. ${ }^{[28 a]}$ A comparison of HOMO and LUMO energies of 5-7 with literature known germylenes reveals that the energy of the HOMO of $7(-4.37 \mathrm{eV})$ is remarkably high and exceeds that of $\mathrm{Y}_{2} \mathrm{Ge}(-5.04 \mathrm{eV})$. Moreover, the LUMO of 7 $(-1.55 \mathrm{eV})$ is lower in energy than that of $\mathrm{Y}_{2} \mathrm{Ge}(-1.12 \mathrm{eV})$, resulting a very small HOMO-LUMO energy gap of 2.82 eV for 7 .

The UV-vis- spectra of 5 and 6 each exhibits an absorption band ($\lambda_{\text {max }}$) at 384 and 385 nm (Figure 5), respectively, which based on TD-DFT analyses may be assigned to HOMO \rightarrow LUMO transitions (Table S11 and S12). The UV-vis spectrum of 7 shows absorption bands at 394 and 528 nm , which according to TDDFT studies correspond to the HOMO- $1 \rightarrow$ LUMO and HOMO \rightarrow LUMO + 1 transitions, respectively (Table S13).

In conclusions, MIDts 3 a-c and 4 have been isolated as crystalline solids and characterized by spectroscopic and X-ray diffraction methods. The use of 4 as a ligand has been shown with germylenes 5,6 , and 7 . Electronic structures of 4-7 have been analyzed by DFT calculations. The germylene 7 with a remarkably high-lying HOMO (-4.37 eV) and low-lying LUMO $(-1.55 \mathrm{eV})$ has a promising prospective as ligands. Moreover,
interesting reactivity of 7 based on its small HOMO-LUMO energy gap (2.82 eV) can be envisioned. Further reactivity studies of 4-7 with small molecules as well as ligands for maingroup and transition metal compounds are currently underway.

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for generous support (GH 129/42 and VI 713/3-1). The authors thank Professor Norbert W. Mitzel for encouragement. The HPC facilities at the Universität zu Köln are acknowledged for computing time and programs. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: carbenes • dithiolene • germanium • lithium • mesoionic
[1] a) S. Sproules, in Progress in Inorganic Chemistry Volume 58, 2014, p. 1144; b) R. Eisenberg, H. B. Gray, Inorg. Chem. 2011, 50, 9741-9751; c) S. Sproules, K. Wieghardt, Coord. Chem. Rev. 2011, 255, 837-860; d) F. J. Hine, A. J. Taylor, C. D. Garner, Coord. Chem. Rev. 2010, 254, 1570-1579; e) S. Rabaça, M. Almeida, Coord. Chem. Rev. 2010, 254, 1493-1508; f) B. Garreau-de Bonneval, K. I. Moineau-Chane Ching, F. Alary, T.-T. Bui, L. Valade, Coord. Chem. Rev. 2010, 254, 1457-1467; g) R. Kato, Chem. Rev. 2004, 104, 5319-5346; h) A. Kobayashi, E. Fujiwara, H. Kobayashi, Chem. Rev. 2004, 104, 5243-5264; i) E. I. Stiefel, in Progress in Inorganic Chemistry, Vol. 52, John Wiley \& Sons, Inc., 2003; j) J. A. McCleverty, in Progress in Inorganic Chemistry, 1968, p. 49-221.
[2] G. N. Schrauzer, V. Mayweg, J. Am. Chem. Soc. 1962, 84, 3221-3221.
[3] R. Eisenberg, J. A. Ibers, R. J. H. Clark, H. B. Gray, J. Am. Chem. Soc. 1964, 86, 113-115.
[4] A. L. Balch, I. G. Dance, R. H. Holm, J. Am. Chem. Soc. 1968, 90, 11391145.
[5] a) W. Kaim, Inorg. Chem. 2011, 50, 9752-9765; b) K. Ray, T. Petrenko, K. Wieghardt, F. Neese, Dalton Trans. 2007, 1552-1566.
[6] J. A. McCleverty, N. M. Atherton, J. Locke, E. J. Wharton, C. J. Winscom, J. Am. Chem. Soc. 1967, 89, 6082-6092.
[7] a) A. Mizuno, H. Benjamin, Y. Shimizu, Y. Shuku, M. M. Matsushita, N. Robertson, K. Awaga, Adv. Funct. Mater. 2019, 29, 1904181; b) A. Avramopoulos, N. Otero, H. Reis, P. Karamanis, M. G. Papadopoulos, J. Mater. Chem. C 2018, 6, 91-110; c) S. Dalgleish, J. G. Labram, Z. Li, J. Wang, C. R. McNeill, T. D. Anthopoulos, N. C. Greenham, N. Robertson, J. Mater. Chem. 2011, 21, 15422-15430.
[8] C. S. Letko, J. A. Panetier, M. Head-Gordon, T. D. Tilley, J. Am. Chem. Soc. 2014, 136, 9364-9376.
[9] a) J. Pitchaimani, S.-F. Ni, L. Dang, Coord. Chem. Rev. 2020, 420, 213398; b) M. Drosou, F. Kamatsos, C. A. Mitsopoulou, Inorg. Chem. Front. 2020, 7, 37-71; c) W. R. McNamara, Z. Han, C.-J. Yin, W. W. Brennessel, P. L. Holland, R. Eisenberg, Proc. Nat. Acad. Sci. 2012, 109, 15594-15599.
[10] a) S. J. Nieter Burgmayer, in Dithiolene Chemistry: Synthesis, Properties, and Applications, Vol. 52 (Eds.: K. D. Karlin, E. I. Stiefel), 2003, p. 491-537; b) J. C. Boyington, V. N. Gladyshev, S. V. Khangulov, T. C. Stadtman, P. D. Sun, Science 1997, 275, 1305-1308.
[11] a) C. A. Smith, M. R. Narouz, P. A. Lummis, I. Singh, A. Nazemi, C.-H. Li, C. M. Crudden, Chem. Rev. 2019, 119, 4986-5056; b) A. A. Danopoulos, T. Simler, P. Braunstein, Chem. Rev. 2019, 119, 3730-3961; c) V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, Chem. Rev. 2018, 118, 9678-9842; d) A. Vivancos, C. Segarra, M. Albrecht, Chem. Rev. 2018, 118, 9493-9586; e) R. S. Ghadwal, R. Azhakar, H. W. Roesky, Acc. Chem. Res. 2013, 46, 444-456; f) L. Mercs, M. Albrecht, Chem. Soc. Rev. 2010, 39, 1903-1912; g) S. Diez-Gonzalez, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612-3676; h) W. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1290-1309.
[12] a) R. S. Ghadwal, Acc. Chem. Res. 2022, 55, 457-470; b) A. Doddi, M. Peters, M. Tamm, Chem. Rev. 2019, 119, 6994-7112; c) T. Ochiai, D. Franz, S. Inoue, Chem. Soc. Rev. 2016, 45, 6327-6344; d) R. S. Ghadwal, Dalton Trans. 2016, 45, 16081-16095.
[13] Y. Wang, Y. Xie, M. Y. Abraham, P. Wei, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2010, 132, 14370-14372.
[14] a) Y. Wang, C. A. Tope, Y. Xie, P. Wei, J. L. Urbauer, H. F. Schaefer III, G. H. Robinson, Angew. Chem. Int. Ed. 2020, 59, 8864-8867; b) Y. Wang, Y. Xie, P. Wei, S. A. Blair, D. Cui, M. K. Johnson, H. F. Schaefer III, G. H. Robinson, J. Am. Chem. Soc. 2020, 142, 17301-17305; c) Y. Wang, H. P. Hickox, Y. Xie, P. Wei, S. A. Blair, M. K. Johnson, H. F. Schaefer III, G. H. Robinson, J. Am. Chem. Soc. 2017, 139, 6859-6862.
[15] a) A. Gomez-Suarez, D. J. Nelson, S. P. Nolan, Chem. Commun. 2017, 53, 2650-2660; b) D. J. Nelson, S. P. Nolan, Chem. Soc. Rev. 2013, 42, 67236753.
[16] a) S. C. Sau, P. K. Hota, S. K. Mandal, M. Soleilhavoup, G. Bertrand, Chem. Soc. Rev. 2020, 49, 1233-1252; b) R. H. Crabtree, Coord. Chem. Rev. 2013, 257, 755-766; c) A. Krueger, M. Albrecht, Aust. J. Chem. 2011, 64, 11131117; d) O. Schuster, L. Yang, H. G. Raubenheimer, M. Albrecht, Chem. Rev. 2009, 109, 3445-3478; e) A. Merschel, T. Glodde, B. Neumann, H.-G. Stammler, R. S. Ghadwal, Angew. Chem. Int. Ed. 2021, 60, 2969-2973; Angew. Chem. 2021, 133, 3006-3010; f) A. Merschel, D. Rottschäfer, B. Neumann, H.-G. Stammler, R. S. Ghadwal, Organometallics 2020, 39, 1719-1729.
[17] E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, Science 2009, 326, 556-559.
[18] a) D. Rottschäfer, T. Glodde, B. Neumann, H. G. Stammler, R. S. Ghadwal, Chem. Commun. 2020, 56, 2027-2030; b) D. Rottschäfer, F. Ebeler, T. Strothmann, B. Neumann, H.-G. Stammler, A. Mix, R. S. Ghadwal, Chem. Eur. J. 2018, 24, 3716-3720.
[19] a) D. Rottschäfer, B. Neumann, H.-G. Stammler, T. Sergeieva, D. M. Andrada, R. S. Ghadwal, Chem. Eur. J. 2021, 27, 3055-3064; b) D. Rottschäfer, T. Glodde, B. Neumann, H. G. Stammler, D. M. Andrada, R. S. Ghadwal, Angew. Chem. Int. Ed. 2021, 60, 15849-15853; c) M. K. Sharma, T. Glodde, B. Neumann, H.-G. Stammler, R. S. Ghadwal, Chem. Eur. J. 2020, 26, 11113-11118; d) D. Rottschäfer, S. Blomeyer, B. Neumann, H.G. Stammler, R. S. Ghadwal, Chem. Sci. 2019, 10, 11078-11085.
[20] a) M. K. Sharma, F. Ebeler, T. Glodde, B. Neumann, H.-G. Stammler, R. S. Ghadwal, J. Am. Chem. Soc. 2021, 143, 121-125; b) M. K. Sharma, D. Rottschäfer, T. Glodde, B. Neumann, H. G. Stammler, R. S. Ghadwal, Angew. Chem. Int. Ed. 2021, 60, 6414-6418.
[21] N. K. T. Ho, B. Neumann, H.-G. Stammler, V. H. Menezes da Silva, D. G. Watanabe, A. A. C. Braga, R. S. Ghadwal, Dalton Trans. 2017, 46, 1202712031.
[22] Compounds 3 a-c crystallize as LiBr adducts; thus one equivalent of LiBr was added to improve the yields.
[23] Deposition Numbers 2125903 (for 3a), 2125904 (for 3b), 2125905 (for 3c), 2125906 (for 4), 2125907 (for 5), 2125908 (for 6), 2125909 (for 7) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
[24] D. Rottschäfer, D. E. Fuhs, B. Neumann, H.-G. Stammler, R. S. Ghadwal, Z. Anorg. Allg. Chem. 2020, 646, 574-579.
[25] L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 955-964.
[26] B. Beagley, J. J. Monaghan, Trans. Faraday Soc. 1970, 66, 2745-2748.
[27] S. M. I. Al-Rafia, M. R. Momeni, R. McDonald, M. J. Ferguson, A. Brown, E. Rivard, Angew. Chem. Int. Ed. 2013, 52, 6390-6395.
[28] a) C. Mohapatra, L. T. Scharf, T. Scherpf, B. Mallick, K.-S. Feichtner, C. Schwarz, V. H. Gessner, Angew. Chem. Int. Ed. 2019, 58, 7459-7463; b) S.H. Zhang, H.-W. Xi, K. H. Lim, C.-W. So, Organometallics 2011, 30, 36863689.

Manuscript received: March 8, 2022
Accepted manuscript online: April 1, 2022
Version of record online: April 13, 2022

