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Abstract: Dissolved organic matter (DOM) greatly influences the transformation of nutrients and
pollutants in the environment. To investigate the effects of pyrolysis temperatures on the composition
and evolution of pyroligneous acid (PA)-derived DOM, DOM solutions extracted from a series of
PA derived from eucalyptus at five pyrolysis temperature ranges (240–420 ◦C) were analysed with
Fourier transform infrared spectroscopy, gas chromatography–mass spectroscopy, and fluorescence
spectroscopy. Results showed that the dissolved organic carbon content sharply increased (p < 0.05)
with an increase in pyrolysis temperature. Analysis of the dissolved organic matter composition
showed that humic-acid-like substances (71.34–100%) dominated and other fluorescent components
(i.e., fulvic-acid-like, soluble microbial by-products, and proteinlike substances) disappeared at high
temperatures (>370 ◦C). The results of two-dimensional correlation spectroscopic analysis suggested
that with increasing pyrolysis temperatures, the humic-acid-like substances became more sensitive
than other fluorescent components. This study provides valuable information on the characteristic
evolution of PA-derived DOM.

Keywords: pyroligneous acid; dissolved organic matter; two-dimensional correlation spectroscopy;
pyrolysis temperature

1. Introduction

Pyrolysis is increasingly becoming the most attractive technology for converting
biomass waste into bio-oil or biochar [1]. Pyroligneous acid (PA), a by-product of biomass
biochar, contains organic substances such as phenolics, aldehydes, ketones, esters, and
acids [2,3]. PA has been widely applied as a bacteriostatic agent, plant growth promoter,
antioxidant agent, and feed additive because of its complex composition [4,5].

PA and biochar, which are carbon-rich substances with abundant functional groups,
have been produced through the pyrolysis of biomass including agricultural and forestry
residues in the absence of oxygen [6,7]. Previous studies indicated that biochar-derived
dissolved organic matter (DOM) shows significantly different environmental behaviours
and recalcitrance because of its abundant reactive functional groups, including phenolic,
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hydroxyl, and carboxyl groups [8,9]. The properties of biochar-derived DOM, such as
aromaticity, humification degree, and functional group types, have been shown to highly
depend on the pyrolysis temperature during biochar preparation [10]. Another study
revealed that the binding site between the heavy metal and biochar-derived DOM fluo-
rescent substances differs, and that biochar-derived DOM greatly influences the chemical
adsorption of hydrophobic organic pollutants [11]. DOM greatly influences the transfor-
mation of nutrients and pollutants in the environment. Previous studies have shown that
humic substances exhibit the most negative effect on arsenate adsorption compared to
polysaccharide and protein [12]. Wu et al. [13] found that the humic substance components
were responsible for Cu(II) binding, and the protein was the only fraction involved in Cd(II)
binding. Besides, proteobacteria were closely associated with DOM components during
the DOM-degrading process [14,15].

Various spectroscopic techniques, including excitation–emission matrix (EEM),
ultraviolet–visible, synchronous fluorescence, and nuclear magnetic resonance spectroscopy,
have been conducted to identify the structure and components of DOM [16]. Two-
dimensional correlation spectroscopy (2D-COS) can provide insights into changes in the
DOM molecular structure because of its ability to prevent overlapping peaks by extend-
ing the spectra into the second dimension [17]. The major probes used in 2D-COS are
Fourier transform infrared (FTIR), synchronous fluorescence, ultraviolet–vis absorption,
and fluorescence, each of which give specific molecular information on the sequential
orders of structural variations in response to external perturbations, such as pyrolysis
temperature, pH, and composting time [18]. However, few studies have focused on the
evolutionary components of PA-derived DOM under different pyrolysis temperatures
using EEM fluorescence measurements and 2D spectral analysis.

In this study, eucalyptus was collected as feedstock and pyrolysed at different temper-
atures of 240–420 ◦C for PA production. The composition and structure of DOM in PA were
analysed by EEM spectroscopy, gas chromatography–mass spectroscopy (GC-MS), and
FTIR spectroscopy. Moreover, fluorescence regional integration (FRI) and 2D-COS were
performed. The specific aims of this study were as follows: (1) to determine the strength
and sequence of the functional group changes in PA-derived DOM at different tempera-
tures; (2) to evaluate the components during the evolution of DOM at different pyrolysis
temperatures; (3) to investigate the effects of pyrolysis temperature on PA compositions.

2. Results and Discussion
2.1. Difference in DOM of PA at Different Temperature Ranges Characterised via
Excitation–Emission Matrix-Fluorescence Regional Integration
2.1.1. Fluorescent Components

The fluorescence EEM spectra of PA-derived DOM at different temperature ranges
are shown in Figure 1. According to Chen et al. [19] and Song et al. [20], EEM spectra
can be divided into five Ex/Em regions, such that the fluorescence peaks assigned in
regions I (Ex/Em: 200–250/280–330 nm) and II (Ex/Em: 200–250/330–380 nm) are related
to proteinlike matters, such as tryptophan and tyrosine. Fluorescence peaks related with
soluble microbial by-products and fulvic-acid-like and humic-acid-like substances are
in regions IV (Ex/Em: 250–450/280–380 nm), III (Ex/Em: 200–250/380–550 nm), and V
(Ex/Em: 250–450/380–550 nm), respectively.
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Figure 1. Fluorescence excitation–emission matrix spectra (A–F) and distribution of FRI of PA-derived
DOM samples at different temperature ranges (T1, 240–270 ◦C; T2, 270–340 ◦C; T3, 340–370 ◦C; T4,
370–400 ◦C; T5, 400–420 ◦C).

As the pyrolysis temperature was increased, the absorbance of the fluorescence peak
first increased and then decreased. In the PA-derived DOM fluorescence spectra, domi-
nant strong peaks of humic-acid-like substances and soluble microbial by-products were
detected in regions IV and V, respectively, and the peak intensities of regions I, II, and III
were relatively weak (Figure 1A–E). To quantitatively assess the changes in the distribution
characteristics of the five Ex/Em regions presented in the EEM fluorescence spectra via FRI
analysis (Figure 1F), the PV, n values of humic-acid-like substances and soluble microbial
by-products were evaluated. High percentages of humic-acid-like substances occurred in
region V (PV,n: 71.33–100%). Specifically, the PV,n value of humic-acid-like substances was
the highest in temperature ranges T4 and T5, followed by the soluble microbial by-products
in region IV, with PIV,n values ranging from 15.70% to 27.55%. High pyrolysis temperatures
can promote the formation of humiclike substances with aromatic structures [21]. The rela-
tive proportion of humiclike components increased with increasing temperature, and the
presence of humiclike substances may be related to the degradation of lignin and biomass
materials [22]. PA is a by-product of gas condensation during pyrolysis in biochar produc-
tion, involving complicated chemical components [23,24]. Moreover, PA contains phenolic
substances with aromatic structures [25]. The PIII,n values of fulvic-acid-like substances de-
creased from 5% to 0.03% when the pyrolysis temperature ranges were increased from T1 to
T3. As the pyrolysis temperatures increased, the PIII,n values of fulvic-acid-like substances
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decreased to 0%. These results indicate that fulvic-acid-like substances in PA-derived
DOM were present at a low temperature range and the peaks of fulvic-acid-like substances
disappeared at a high temperature range, which is consistent with the results of Uchimiya
et al. [26], who demonstrated that fulvic-acid-like substances nearly disappear at high
pyrolysis temperatures. As the pyrolysis temperature increases, fulvic-acid-like substances
easily decompose. In summary, the pyrolysis temperature significantly changed the distri-
bution of the different components of DOM derived from PA; fulvic-acid-like substances
were generated at low pyrolysis temperatures (240–370 ◦C) and their contents gradually
decreased with increasing temperature, whereas at high temperatures (370–420 ◦C), DOM
was predominately composed of humic-acid-like substances.

2.1.2. Variations in DOM Quality Indices

We observed differences in PA-derived DOM quality indices (Fn (335), HIX, FI, and
BIX) at different pyrolysis temperature ranges (Table 1). The mean HIX values of the PA-
derived DOM ranged between 0.06 and 8.2. HIX values distinguished the DOM of different
humification degrees and sources [27–30]. Speratti et al. [31] indicated that high HIX ratios
explain the occurrence of highly humified organic substances based on the presence of
complex aromatic molecules, confirming our finding that the humification degree of DOM
was greater at lower (240–340 ◦C) than at higher (340–420 ◦C) temperatures. The HIX value
of PA-derived DOM first increased and then sharply decreased with increasing pyrolysis
temperature. FI values of ~1.4 correspond to DOM mainly derived from terrestrial sources,
such as plants and soil organic matter, whereas a value of ~1.9 corresponds to DOM from
microbial sources in soil [32,33]. The mean FI values ranged from 1.66 to 2.44, indicating
increased microbial activity in PA-derived DOM. However, the effect of microbial activity
on the formation of PA-derived DOM was weak during biomass pyrolysis. The mean Fn
(335) values ranged from 279.45 to 4219.92, and the mean BIX values (except T1 and T2)
were all <1, indicating that the autochthonous characteristics of the PA-derived DOM were
not obvious, which showed that variations in the HIX, FI, and BIX indices are influenced
by the temperatures during biomass pyrolysis.

Table 1. Indices (Fn (335), HIX, FI, and BIX) and dissolved organic content of dissolved organic matter derived from
pyroligneous acid at different temperature ranges.

Temperature DOC (mg/L) Fn (335) FI BIX HIX

T1 699.30 ± 0.91 b 4219.92 ± 131.08 b 1.91 ± 0.01 b 1.13 ± 0.00 b 1.66 ± 0.02 b
T2 855.46 ± 4.28 a 6549.58 ± 252.42 a 2.24 ± 0.04 a 1.38 ± 0.03 a 8.20 ± 4.81 a
T3 1030.33 ± 4.04 c 1931.14 ± 95.88 c 1.66 ± 0.02 c 0.81 ± 0.03 c 0.06 ± 0.03 c
T4 1245.33 ± 17.00 d 1203.14 ± 785.21 d 1.96 ± 0.04 b 0.64 ± 0.55 c 0.16 ± 0.18b c
T5 1532.66 ± 11.59 e 279.45 ± 34.52 e 1.90 ± 0.04 b 0.08 ± 0.13 d 0.40 ± 0.02b c

Values with different letters significantly differed in rank (p < 0.05).

2.1.3. Variations in DOC Released from PA at Different Temperature Ranges

The content of DOM solution can be expressed by DOC content [34]. The DOC
contents released from PA produced at different pyrolysis temperature ranges, as shown in
Table 1, varied significantly from 699.3 ± 0.91 to 1532.66 ± 11.59 mg L−1. The DOC content
of the temperature range T5 (1532.66 ± 11.59 mg L−1) was the highest. These observations
are consistent with those of a previous study showing that the content of DOC increases
with increasing pyrolysis temperatures, which may be because with an increasing pyrolysis
temperature, the volatile matter content in PA gradually increases, leading to elevations in
the corresponding DOC content. Phenolics, which were the primary high-molecular-weight
components, were the primary components in PA, possibly because lignin broke at high
pyrolysis temperatures, resulting in greater production of phenolics [35,36]. The abundant
formation of phenolics at high pyrolysis temperatures may explain the reason DOC content
increased as the pyrolysis temperature increased; the DOC content was the highest at high
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pyrolysis temperatures in this study. Additionally, the feedstock may have also influenced
DOC content during biomass pyrolysis. Uchimiya et al. [26] found that the sequence of
changes in the DOC content in different feedstock was shell > pecan shell > broiler litter >
cottonseed hull under the pyrolyzed temperature (500 ◦C). Jamieson et al. [22] reported
that the difference in DOC content of yellow birch biochar (353 BS) pyrolysed at 353 ◦C
was significantly higher than that of sugar maple biochar (380 MS) pyrolysed at 353 ◦C
(p < 0.05).

2.2. Two-Dimensional Correlation Spectroscopic Analysis
2.2.1. Two-Dimensional Correlation Analysis of FTIR

Changes in the chemical molecular structure of PA during pyrolysis were characterised
by FTIR spectroscopy. The absorption peak at 3600–3300 cm−1 is associated with a phenolic
hydroxyl group, and its intensity decreased significantly with increasing temperature. The
absorption peak at 2970–2860 cm−1 corresponds to the -CH2 alkane symmetrical stretching.
The absorption peak at 1750–1600 cm−1 corresponds to a C=O stretching vibration with
carboxyl groups, aldehydes, and ketones, and an intense C-O stretch was observed at
around 1200–1000 cm−1.

There were overlapping peaks and poor identification of molecular structures in key
spectral regions in the traditional FTIR spectra. To study the molecular structure of PA
components in detail, the FTIR spectra were divided into three ranges: 900–700, 1800–900,
and 3600–2800 cm−1. The 2D-COS synchronous (a, c, and e) and asynchronous (b, d, and f)
spectra are shown in Figure 2. In the 3600–2800 cm−1 range, autopeaks in the synchronous
spectra (Φ (ν1, ν2)) at 3442 and 2983 cm−1, corresponding to free O-H and alkane -CH2
signals, respectively, showed that these groups were most sensitive to temperature change
(Figure 2a). In addition, there was a cross-peak Ψ (3055, 3392) in the asynchronous Ψ (ν1,
ν2) spectrum (Figure 2b). According to Noda’s rules, the positive cross-peak at Φ (2988,
3461) indicated that the C-H and H-O bonds of aliphatic chains exhibit the same trends,
which were mainly attributed to the dehydration of pyran rings and ring fragments and
indicates that the bond breaking of hydroxyl and methylene reactions of the side chains of
the benzene rings are synchronous [37]. Similar results revealed that the cross-peak at Φ
(3425, 2925) between -CH2 (2925 cm−1) and O-H (3425 cm−1) corresponds to synchronous
reactions that occur during the pyrolysis of hemicellulose and compounds containing
-CH2OH groups [38].

For the band at 1800–900 cm−1 in the synchronous map, the main autopeaks observed
at 984, 1185, 1295, 1601, and 1684 cm−1 (Figure 2c) were positive, indicating a continuous
change in PA functional groups with changes in the pyrolysis temperature. These six
cross-peaks were also found in the diagonal on the asynchronous map (Figure 2d). The
sign of each cross-peak on the synchronous and asynchronous maps of PA are shown in
Table 2, and the sequence of evolution of the functional groups was 1601 > 1185 > 1295
> 1684 > 984 cm−1, corresponding to C=O stretching of ketone→ stretching vibrations
of aliphatic C-O → C-OH stretching of the carboxylic acid group → C=C stretching of
aromatic ring → C-H stretching of aromatic structures. The peaks at 1601 and 1185
cm−1, corresponding to the C=O stretching of quinone, or ketone, and C-O stretching of
polysaccharides, respectively [39], changed at an earlier time point. This suggests that
proteinlike substances were significantly decomposed and ketones were generated [40].
The peaks at 1295 and 1684 cm−1 were attributed to C-OH stretching of the carboxylic
acid group and C=C stretching of the aromatic rings, respectively [41]. C-H stretching
of the aromatic structures indicates high aromaticity, owing to which they are not easily
decomposed [42]. A similar study revealed structural changes in the DOM as the pyrolysis
temperature increased; the order of peak changes was polysaccharide C-O > lipid group
C=O > carboxyl group C=O > aromatic ring C-H > aromatic ring C=C [43].
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Figure 2. 2D-COS analysis at wavelengths of 3600–2800, 1800–900, and 900–700 cm−1 for the PA
synchronous (a,c,e) and asynchronous (b,d,f) spectra. Red and blue areas represent positive and
negative correlation values, respectively, whereas the white area represents zero correlation values.

Table 2. 2D-FTIR-COS results on the assignment and sign of each cross-peak in synchronous and
asynchronous maps of PA samples at different temperatures (1800–900 cm−1).

Position (cm−1) 984 1185 1295 1601 1684

984 + +(−) +(−) +(−) +(−)
1185 + +(+) +(−) +(+)
1295 + +(+) +(+)
1601 + +(+)
1684 +

In the 900–700 cm−1 band, autopeaks in the synchronous spectra Φ (832, 832), Φ (775,
775), and Φ (880, 880) corresponded to the out-of-plane bending vibration of benzene C-H,
indicating that the trends were the same as those observed with increasing temperature dur-
ing pyrolysis. In the synchronous spectrum Φ (ν1, ν2), the cross-peaks Φ (880, 832), Φ (880,
750), Φ (832, 775), and Φ (832, 750) were all positive, whereas Ψ (880, 832) was negative in
the asynchronous spectrum Ψ (ν1, ν2). According to Noda’s rules, 1,4-substituted benzene
(832 cm−1) was formed before 1,2,3(4),5-substituted benzene (880 cm−1) (Figure 2e,f).
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2.2.2. Two-Dimensional Correlation Fluorescence Spectroscopy

2D-COS analysis helps to enhance the deconvolution of overlapping peaks and pro-
vides information on the heterogeneous distribution of PA-derived DOM with the pyrolysis
temperature as an external perturbation [44]. The synchronous fluorescence spectra of
PA in the 200–600 nm region (Figure 3A) exhibited three predominant autopeaks at 450,
420, 380, and 360 nm with a small peak at 320 nm identified from the cross-peaks. All of
these cross-peaks were positive, indicating that the spectral changes proceeded in the same
direction as the temperature variation. The asynchronous map provided information on
the sequential relationship between two spectra. As shown in Figure 3A and Table 3, the
cross-peaks located in the corner of the asynchronous Ψ (ν1, ν2) spectrum showed negative
signs except for Ψ (360, 380), demonstrating that according to Noda’s rule, PA-derived
DOM fractions changed in the following order with changes in temperature: 450 > 360 nm
and 380 > 320 nm. This corresponded to the following sequence: humiclike fraction→
fulviclike fraction→ proteinlike fraction. The proteinlike peak was in the 250–330 nm band,
which was attributed to the presence of proteinaceous and aromatic substances. The humic-
acid-like peak was in the 380–500 nm and fulvic-acid-like in the 330–380 nm region [45].
Proteinlike substances were representative of the biodegradable and humiclike substances
and can be referred to as non-biodegradable components [46]. Similar studies found that
the order of changes in the three components’ different feedstocks with increasing pyrolysis
temperatures was proteinlike=humic acid→ fulvic acid for chicken biochar, and fulvic
acid→ humic acid→ proteinlike for dairy manure biochar [44]. Baken et al. [47] indicated
that with changes in the pyrolysis temperature, humiclike substances responded faster
than proteinlike substances because of the higher aromaticity of the former. The fulviclike
fraction was more susceptible than the other fractions (e.g., proteinlike and humiclike
fractions). The amount of proteinlike substances decreased as that of the humic-acid-like
substances increased with increasing pyrolysis temperatures in this study, and humic-acid-
like substances were the main fluorescence components in PA. Wu et al. [48] indicated that
the decomposition of proteinlike substances is important for humification. Carboxyl acids
are the main precursors of humiclike substances. The asynchronous map showed that the
humiclike fraction was produced earlier than the other fluorescence components.

Figure 3. Synchronous (A) and asynchronous (B) 2D correlation maps generated from the synchronous fluorescence spectra
of PA-derived DOM.
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Table 3. 2D-COS fluorescence analysis results of the sign of each cross-peak in the synchronous (Φ)
and asynchronous (Ψ) maps of PA-derived DOM samples at different temperatures.

Position (cm−1) 320 360 380 450

320 + +(−) +(−) +(−)
360 + +(+) +(−)
380 + +(−)
450 +

2.3. PA Components at Different Temperature Ranges

A total of 41 chemical compounds was identified and classified, representing 71.19–
89.36% of the PA composition and included acids, phenolics, ketones, aldehydes, esters,
and others (Figure 4a,b). The relative content of acids decreased from 45.23% to 7.48% as
the pyrolysis temperature increased from T1 to T5. The relative content of phenolics ranged
from 51.04–62.35% and that of ketones, aldehydes, esters, and others from 10.7–21.01%
of the total PA composition. Specifically, the major chemical components of PA were
acetic acid (2.75–10.23%), 3-methoxy-1,2-benzenediol (11.51–14.59%), 2,6-dimethoxyphenol
(15.02–20.51%), catechol (8.71–15%), and 3,5-dimethoxy-4-hydroxytoluene (2.55–9.96%)
when the pyrolysis temperature ranges were increased from T1 to T5, respectively. The 2,6-
dimethoxyphenol content was the highest; this component is generated from the vigorous
decomposition of lignin with various hydroxyl- and methoxy-substituted structures during
pyrolysis, acetic acid is generated from the breakdown of acetyl groups attached to xylan
units from hemicellulose dehydration [49]. Taken together, these results show that the
pyrolysis temperature greatly influenced PA components.

Figure 4. Effects of the pyrolysis temperature on the organic components of pyroligneous acid (PA). (a) Chemical compounds.
(b) Organic component types.
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2.4. Relationship between Chemical Components and Spectral Parameters

Correlation heat maps were used to describe the relationship between DOC, fluo-
rescence indices (HIX, BIX, FI, Fn (335)), fluorescence components (I–V), FTIR spectral
parameters (1504/1601, 1504/1684, 1504/1295, 1504/1185), and the chemical components
of PA at different temperatures (Figure 5). HIX was significantly positively correlated with
aldehydes (p < 0.01), esters (p < 0.01), and phenolics (p < 0.05) and negatively correlated
with alcohols (p < 0.05). The fluorescent components I, II, and III exhibited a significant
negative correlation with acids (p < 0.05). The fulvic-acid-like fraction and humic-acid-like
fraction were related to esters, carboxylic, and phenolic groups [50]. Phenolics in the
fulvic-acid-like fraction can interact with amino acids to produce humus substances, fur-
ther explaining the DOM humification degrees [29]. The degradation products of protein
substances are the dominant precursors for humification [48].

Figure 5. Relationship between DOC, fluorescence spectral indices (HIX, BIX, FI, and Fn (335)), fluo-
rescence components (I–V), FTIR spectral parameters (1504/1601, 1504/1684, 1504/1295, 1504/1185),
and chemical components. * Correlation was significant at the 0.05 level; ** Correlation was significant
at the 0.01 level.

3. Materials and Methods
3.1. Pyroligneous Acid Production

Raw PA was prepared from eucalyptus using a traditional black charcoal kiln and
collected by running water through a shuttle connected to the chimneys to condense the
smoke. PA was collected over a temperature range of 240–420 ◦C, including five more
specific temperature ranges: T1, 240–270 ◦C; T2, 270–340 ◦C; T3, 340–370 ◦C; T4, 370–400 ◦C;
T5, 400–420 ◦C. All PA samples were stored in sealed glass bottles for further analysis.



Molecules 2021, 26, 3416 10 of 14

3.2. Excitation–Emission Matrix Fluorescence Measurements and Fluorescence Regional
Integration Analysis

Before determining the dissolved organic carbon (DOC) content, all PA samples were
diluted to ~10 mg mL−1 to minimise inner filtering, and then analysed using a total organic
carbon analyser [51]. The fluorescence EEM spectra of all diluted samples were determined
using a HIACHI F-4600 fluorescence spectrometer across excitation (Ex) wavelengths of
200–450 nm (every 5 nm) and emission (Em) wavelengths of 200–600 nm (every 5 nm) at
room temperature. The EEM spectra were recorded at a scan rate of 2400 nm min−1 and the
slit widths of both the Em and Ex wavelengths were set to 5 nm. For the blank scans, Milli-Q
water was used at intervals of every 10 runs. The 3D fluorescence spectral data of the sample
were subtracted from those of the blank ultrapure water before analysis, thus eliminating
the influence of Rayleigh and Raman scattering. EEM spectral data were analysed using
the FRI method, which delineated EEM into five Ex-Em regions. Fluorescence intensity was
integrated beneath each of the five EEM regions, and the percent fluorescence response
(Pi,n) was calculated for reference.

ϕI =
∫

ex

∫
em

I(λexλem)dλexdλem, (1)

Φi,n = MFi ×Φi, (2)

Pi,n = Φi,n/ΦT,n × 100%, (3)

where ΦI is the integral volume of fluorescence region i (au·), λex is the Ex wavelength (nm),
λem is the Em wavelength (nm), and I(λexλem) is the fluorescence intensity at each Ex/Em
wavelength pair; Φi,n is the integral standard volume of the fluorescent area i (au), MFi is
the multiplication factor, and ΦT,n is the integral standard volume of the total fluorescent
area (au); and Pi,n is the ratio (%) of the integrated standard volume of a certain fluorescence
area (i) to the total integrated standard volume, respectively. Spectral parameters, including
the fluorescence index (FI), autochthonous index (BIX), Fn (355), and humification index
(HIX), were calculated (Table 4) [52,53].

Table 4. Description of fluorescence spectrum parameters.

Index Definition

Fn (355) Fluorescence signal intensity at Ex=355 nm, Em=450 nm
HIX

(Humification index)
Region integral ratio between Em=435–480 nm and Em=300–345 nm

at Ex=245 nm.
FI

(Fluorescence index) Ex=370 nm, ratio of between Em=470 nm and Em=520 nm.

BIX
(Autochthonous index) Ratio of fluorescence intensity at Em=380–430 nm at Ex=310 nm

3.3. Fourier-Transform Infrared Spectroscopy

FTIR spectra of the PA samples were recorded on a FTIR-650 spectrometer (Gangdong,
Tianjing, China) at wavelengths of 4000–400 cm−1, with the samples coated in KRS-5
crystals. The resolution was 4 cm−1 and each sample was scanned 32 times to obtain an
average spectrum. The ratio between the peak intensity of the chemical functional groups
(I1504/1601, I1501/1684, I1501/1295, and I1501/1185) was calculated from the FTIR spectra.

3.4. Gas Chromatography–Mass Spectroscopy

Organic components of PA were analysed by GC-MS with an HP-5MS (30 m× 0.25 mm
× 0.25 µm). Helium was used as a carrier gas at a constant flow rate of 1 mL min−1. The
GC-MS conditions were as follows: initial temperature of 60 ◦C, increased to 180 ◦C at a
rate of 15 ◦C min−1 and held for 1 min, and then increased to 270 ◦C at a rate of 10 ◦C min−1

and held for 5 min, split injection at a split rate of 10:1 with a delayed time of 2.5 min,
ion source temperature of 230 ◦C, and mass scanning range of 20–550 amu s−1. Chemical
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compounds were identified by comparison of the spectra with those from the National
Institute of Standards and Technology database.

3.5. Two-Dimensional Correlation Analysis

For further analysis, 2D-COS analysis was employed using excitation–emission flu-
orescence and FTIR spectra, with the pyrolysis temperature as the external perturbation
from the PA sample. Thereafter, a 2D correlation spectrum matrix was obtained using
MATLAB.22 and Origin 8.5 software to mathematically transform the data into processed
infrared spectra [50]. Better selectivity is achieved when changes in the spectral informa-
tion are identified based on specific external disturbances, composed of synchronous and
asynchronous spectra. Functional groups and fluorescence component were identified ac-
cording to the positive/negative and presence/absence of cross-peaks in the asynchronous
and synchronous spectra (Table 5) [54,55].

Table 5. Noda’s rule and method for determining crossing peaks in 2D-COS.

Ψ (ν1, ν2) Φ (ν1, ν2) Interpretation

+ Intensity of ν1 and ν2 are changing in the same direction
− Intensity of ν1 and ν2 are changing in the opposite direction

+ + Change at ν1 is occurring predominantly before that at ν2
− + Change at ν1 is occurring predominantly after that at ν2
− − Change at ν1 is occurring predominantly before that at ν2
+ − Change at ν1 is occurring predominantly after that at ν2

4. Conclusions

This study revealed the different characteristics of PA-derived DOM at different
pyrolysis temperatures through chemometric EEM–FRI analysis and 2D-COS. Humic-acid-
like material was the key PA-derived DOM component, and the DOC content increased
with increasing pyrolysis temperatures. Moreover, a higher humification degree of DOM
was observed at lower temperatures than at higher temperatures. With increasing pyrolysis
temperatures, humic-acid-like material in the DOM and chemical functional groups for
C=O stretching showed the earliest changes. This study provides a valid alternative
for assessing the quantity and quality of PA-derived DOM and potential environmental
applications.
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