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The evolution of SARS-CoV-2 pneumonia to acute respiratory distress syndrome is linked
to a virus-induced “cytokine storm”, associated with systemic inflammation,
coagulopathies, endothelial damage, thrombo-inflammation, immune system
deregulation and disruption of angiotensin converting enzyme signaling pathways. To
date, the most promising therapeutic approaches in COVID-19 pandemic are linked to the
development of vaccines. However, the fight against COVID-19 pandemic in the short and
mid-term cannot only rely on vaccines strategies, in particular given the growing proportion
of more contagious and more lethal variants among exposed population (the English,
South African and Brazilian variants). As long as collective immunity is still not acquired,
some patients will have severe forms of the disease. Therapeutic perspectives also rely on
the implementation of strategies for the prevention of secondary complications resulting
from vascular endothelial damage and from immune system deregulation, which
contributes to acute respiratory distress and potentially to long term irreversible tissue
damage. While the anti-inflammatory effects of low dose irradiation have been exploited for
a long time in the clinics, few recent physiopathological and experimental data suggested
the possibility to modulate the inflammatory storm related to COVID-19 pulmonary
infection by exposing patients to ionizing radiation at very low doses. Despite level of
evidence is only preliminary, these preclinical findings open therapeutic perspectives and
are discussed in this article.
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THE CONTEXT

First cases of the new coronavirus (COVID-19) were detected in Wuhan in December 2019 (Zhu
et al., 2020). On January 30, 2020, the World Health Organization (WHO) officially declared the
COVID-19 epidemic as a public health emergency of international concern. A year has passed and
despite unprecedented health measures, the number of deaths linked to this virus is now
approximately 2,412,000 worldwide, including more than 305.700, in Europe and 117,160 and in
United Kingdom. COVID-19 is a potentially serious illness caused by the Coronavirus 2 of Severe
Acute Respiratory Syndrome (SARS-CoV-2) (https://fr.statista.com/statistiques/1101324/morts-
coronavirus-monde/).

Coronaviruses represent a large family of viruses that can cause a wide range of illnesses in
humans, ranging from common cold symptoms to life-threatening SARS (Yin andWunderink, 2018;
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Malik, 2020). SARS-CoV-2 belongs to the beta-coronavirus
subfamily ß-CoV and internalizes the body via the respiratory
tract or through the mucosa (e.g., eyes). The virus may spread via
saliva, respiratory secretions or droplets, which can be expelled
into the ambient air by an infected person through coughs and/or
sneezes and may remain suspended in the air for several hours. Its
spread in the population is mainly through close contacts or
aerosolization of viral particles into insufficiently ventilated
indoor spaces (Anderson et al., 2020). When SARS-CoV-2
infects the respiratory tract, it causes pneumonia (often pauci-
symptomatic) and may evolve to acute respiratory distress
syndrome (ARDS) in about 15% of cases (Ragab et al., 2020).

Mortality in COVID-19 patients is linked to a virus-induced
“cytokine storm” (Hu et al., 2020; Song et al., 2020). This is a
continuous mechanism involving hyper-activation of immune
cells, including lymphocytes and macrophages producing large
amounts of pro-inflammatory cytokines such as IL-1, IL-6, IL-18,
IFN-γ, and TNF- a leading to worsening of ARDS with the
appearance of generalized tissue damage, potentially leading to
multi-organ failure and patient death (Fara et al., 2020). Since the
start of the pandemics, other clinical manifestations concomitant
with pneumonia following viral infection have been described.
Those include coagulopathies (activation of coagulation) and
cardiac dysfunctions contributing to mortality, and even being
the main cause of death in some patients who develop
arrhythmias, acute coronary syndromes and venous
thromboembolic events (Middeldorp et al., 2020; Nishiga
et al., 2020; Ribes et al., 2020). The pathophysiology of
COVID-19 cardiac disease also leads to direct myocardial
lesions consecutive to viral-related cardiomyocyte damage, and
is potentiated by the consequences of systemic inflammation that
is a major and common mechanism responsible for cardiac
damage (Bansal, 2020).

Severe forms of COVID-19 are preferentially observed in the
elderly population, in people with underlying health problems
such as diabetes and in those with deficit in their immune system
(Shahid et al., 2020). In severe cases of COVID-19, damages can
spread beyond the lungs to other organs, including the heart,
kidneys, liver, brain, eyes, gastrointestinal tract, skin, and bone
marrow with its stem cell compartments and hematopoietic
progenitors, (Cipriano et al., 2020; Gupta et al., 2020; Khaled
and Hafez, 2020). The presence of viral RNA is detected post-
mortem in the endothelial cells of many organs, revealing
endothelitis (Jung et al., 2020; Varga et al., 2020). Endothelial
damage and thrombo-inflammation, immune system
deregulation and disruption of angiotensin converting enzyme
(ACE2) signaling pathways could contribute to the onset of these
extra-pulmonary manifestations of COVID-19. The expression of
ACE2 in the tissues facilitates the penetration of SARS-CoV-2, by
enabling the virus to propagate to the cells of many organs,
thereby decreasing the expression of this protein within the
infected cells themselves and increasing expression of
angiotensin II (Ang II) (Kuba et al., 2005; Banu et al., 2020;
Bourgonje et al., 2020). Furthermore, ACE-2 expression is found
in endothelial cells, smooth muscle cells and perivascular
pericytes of the vast majority of organs. SARS-CoV-2, once
present in the circulation, can therefore easily spread to other

parts of the body (Huertas et al., 2020). ACE2 has anti-
inflammatory and anti-fibrotic properties through its function
of conversion of angiotensin (Ang–II) into Ang (1–7), and its
decreased expression caused by the virus promotes disruption of
the immune system and contribute to the development of tissue
fibrosis. Combined with the activation of macrophages, such
impact on ACE2 could be involved in the development of
COVID-19-related fibrosis (He et al., 2006; Meng et al., 2014;
Patel et al., 2016; Rodrigues Prestes et al., 2017; Smigiel and Parks,
2018; Banu et al., 2020; Pagliaro, 2020). To date, the most
promising therapeutic approaches in COVID-9 pandemic are
linked to the development of vaccines. However, the fight against
COVID-19 pandemic in the short and mid-term cannot only rely
on vaccines strategies, in particular given the growing proportion
of more contagious and more lethal variants among exposed
population. As long as collective immunity is still not acquired,
some patients will have severe forms of the disease. Therapeutic
perspectives also rely on the implementation of strategies for the
prevention of secondary complications resulting from vascular
endothelial damage and from immune system deregulation,
which contributes to acute respiratory distress and potentially
to long-term tissue fibrosis.

The C5a complement factor and its receptor (C5aR1) have key
roles in the initiation andmaintenance of inflammatory processes
by recruiting neutrophils and monocytes, contributing to the
pathophysiology of COVID-19 related acute respiratory distress
syndrome. The levels of soluble C5a are increased in proportion
to the severity of COVID19 infection. In animal models,
inhibition of anti-C5aR1 axis prevented the C5a-mediated
recruitment and activation of human myeloid cells in damaged
lungs. These data open pharmacological perspectives for the
modulation of COVID-19 related inflammation(Carvelli et al.,
2020).

Several recent physiopathological and experimental data
suggest the possibility to modulate the inflammatory storm
related to COVID-19 pulmonary fsfsfs by exposing patients to
ionizing radiation at very low doses. Despite level of evidence is
only emerging, these preclinical findings open therapeutic
perspectives and are discussed in this article.

PATHOPHYSIOLOGICAL MECHANISMS OF
THE RESPIRATORY COMPLICATIONS OF
COVID-19
The diagnosis of ARDS is conventionally based on well-defined
parameters using the Berlin criteria, the oxygenation index and
the Murray/lung Injury Score used by intensive care physicians to
define the clinical, ventilatory, gasometric parameters (analysis of
blood gas) and radiological criteria to establish the diagnosis of
this serious pulmonary syndrome and to adapt the ventilatory
management as well as possible (ARDS Definition Task Force
et al., 2012; Huber et al., 2020). Respiratory physiology in patients
developing COVID-19 differs from the ”conventional” acute
respiratory distress syndrome (ARDS) (Gattinoni et al., 2020).
Indeed, there is an aberrant activation of the inflammatory system
and coagulation processes, and this pattern is somewhat
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characteristic of the “immuno-thrombostic” process observed in
COVID-19 pneumonia (Nakazawa and Ishizu, 2020). The
classical ARDS pneumonitis seen in patients infected with
SARS-CoV-2 is characterized by a decrease in lung distension
capability. Damages to lung tissue strongly affect the level of
ventilation capability. Many unventilated areas are filled with
fluid (alveolar edema) and cells. The alveolar air is replaced by a
pathological product, which leads to abnormal opacities (alveolar
condensations), as seen on computed tomography scans.

Chest scans are indicated to guide the management and
monitoring of pulmonary symptoms in a patient with
COVID-19. In addition to its use for early diagnosis, the chest
scan has a prognostic role, making it possible to visually assess the
extent of pulmonary lesions and monitor over time. The
abnormalities observed on the CT scan are correlated to
severity of clinical symptoms (Wong et al., 2003). Although
radiological changes observed in the context of SARS-CoV-2
infection are not specific, those are indicative of the diagnosis in
the current epidemic context. The most reported CT
abnormalities are as follows: ground-glass opacities, multifocal,

bilateral, and asymmetrical, with preferentially subpleural
localization predominant in the basal and posterior area. The
presence of bronchiolar micronodules, mediastinal
lymphadenopathy and pleural effusions is also suggestive. All
those characteristics may be found in pulmonary bacterial
infections. At a later stage, the radiological aspects evolves
toward a “crazy paving” aspect, with appearance of
intralobular reticulations (peak around the 10th day) and
linear condensations can be observed (Figure 1A) (ARDS
Definition Task Force et al., 2012; Smigiel & Parks, 2018;
Huber et al., 2020). In most severeforms of COVID19
pneumonia, CT scan shows extensive abnormalities and a
higher proportion of pulmonary condensation vs. ground-glass
opacities (Figure 1B). With time, weak regression of the
abnormalities can be observed, often associated with so-called
late fibrous sequelae (Figure 2).

Despite an unprecedented investment to look at therapeutic
strategies, there is currently no effective treatment for COVID-19
infection. Most potential treatments have been evaluated in
populations with significant heterogeneity and various levels of

FIGURE 1 | Chest computed tomography images of patients with COVID-19 pneumonia (A) shows Ground-glass opacities (blue arrows) (B) shows confluent
crazy-paving pattern and consolidation opacities: secondary appearance of intralobular reticulations (blue arrows).

FIGURE 2 | Chest computed tomography images of patients with COVID-19 pneumonia: shows extensive abnormalities and a proportion of pulmonary
condensation (blue arrows) vs. higher Ground-glass, with possible progression to pulmonary fibrosis.
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symptoms severity. Several existing antiviral treatments are being
tested: remdesivir, combination lopinavir/ritonavir, combination
lopinavir/ritonavir/interferon beta or even hydroxychloroquine.
Remdesivir did not show effect in patients presenting with severe
form of the disease, as assessed per mortality probability at day 28
(Beigel et al., 2020a; Wang et al., 2020). It nevertheless has a
possible beneficial effect in non-ventilated patients (Beigel et al.,
2020b). Hydroxychloroquine has shown no benefit in large
clinical trials (RECOVERY Collaborative Group et al., 2020b).
It also exhibits significant side effects. Lopinavir/ritonavir was
unsuccessful (RECOVERY Collaborative Group et al., 2020a; Cao
et al., 2020). Modulation of the immune response by specific
blockade of an interleukin was not effective after initially raising
high expectations. Patients who received tocilizumab had fewer
serious infections than patients who received placebo. In the
RECOVERY trial, tocilizumab reduced death from 33 to 29%. It
also reduced the chance of progressing to invasive mechanical
ventilation or death from 38 to 33%. (Stone et al., 2020;
RECOVERY Collaborative Group, 2021). Plasma from
convalescent patients has not shown an effect in the general
population (Simonovich et al., 2020). It could nevertheless be
effective in patients not developing an immune response.
Monoclonal antibodies targeted against the spike protein of
SARS-Cov-2 (casirivimab and imdevimab) (Baum et al., 2020)
have just been authorized by the FDA for patients with mild to
moderate symptoms of COVID-19. In combination, monoclonal
antibodies seem to reduce the probability of hospitalization or
needing urgent cares. Those however did not improve the
prognosis in hospitalized patients and may even make
ventilated patients worse. The only specific treatment which
demonstrated a decrease in mortality is corticosteroid as an
anti-inflammatory therapy, dexamethasone at a dose of 6 mg/
day with a modest decrease from 25.7 to 22.9% (RECOVERY
Collaborative Group et al., 2020b). The disappointing results of
specific therapies underline the importance of symptomatic
treatment and routine supportive care, such as adapted oxygen
therapy and prophylaxis of thromboembolic disease (which
frequently complicates severe cases) in combination with
nonspecific treatments of organs failure (Helms et al., 2020).

The long-term respiratory sequelae of COVD-19 are also a
significant clinical concern. Based on data from 2003 SARS-CoV,
showing that 35–60% of survivors developed pulmonary fibrosis
with reduced lung function, it can be expected that at the end of
this pandemic, a high number of patients surviving severe cases of
Covid-19 will be severely affected by persistent respiratory
complications. The true incidence of such late fibrosis in the
COVID-19 context is however still uncertain (Ronald). After
ARDS following SARS-CoV-2 infection, there is a progressive
accumulation of the extracellular matrix potentially leading to
respiratory failure. Anatomopathological examinations carried
out on patients who died of COVID-19 revealed the presence of
numerous lesions of alveolar epithelial cells, the formation of
hyaline membranes, type II pneumocyte hyperplasia, fibroblastic
proliferation with a matrix important extracellular and fibrin
deposits in alveolar spaces (Carver et al., 2007; Raghu et al., 2011;
Tian et al., 2020). The mechanistic phenomenon underlying the
onset of lung fibrosis following COVID-19 is poorly understood,

but may involve the continued presence of the immune response
causing deregulation of tissue repair. The magnitude of the
cytokine storm, and severity of cell alterations within the
alveolar tissue, may over time accelerate the development of
fibrosis in a diffuse manner across both lungs. Lung
transplants have been performed to treat patients presenting
with acute respiratory failure following a COVID-19 infection.
Pathological examination reveals that the virus may cause an
almost complete destruction of both lungs (Hu et al., 2020). Lung
transplantation could be an effective curative treatment for
terminal lung diseases. However, we must remain cautious
about this therapeutic possibility, because the recovery of a
lung transplant patient is long and very uncertain, and access
to lung transplants is highly limited worldwide (Roux et al., 2019).

RATIONALE FOR LOW DOSE IRRADIATION
IN THE INFLAMMATORY CONTEXT

As pointed out by Edward J Calabrese and Gaurav Dhawan,
during the first half of the 20th century, radiation therapy was
used a long time ago to treat pneumonia. Fifteen studies grouping
together around 700 cases of pneumonia of bacterial origin (lobar
and bronchopneumonia), including those unresponsive to
treatment with sulfonamides, and described as being
interstitial and atypical were treated effectively with low doses
of X-rays, showing a decrease in clinical symptoms, and a
lowering of mortality rates (Calabrese and Dhawan, 2013).
Low doses of irradiations were also used for skin or articular
inflammatory diseases, with most frequently high efficacy. Low
doses of irradiation have been proposed as an effective treatment
option in various benign inflammatory pathologies, including
osteoarthritis, keloids scares, eczema, lymphatic fistulas, age-
related macular degeneration, sialorrhea and suppurative
hydradenitis (chronic inflammatory skin disease) (Torres Royo
et al., 2020). This approach showed a beneficial effect on
autoimmune diseases such as arthritis and encephalomyelitis
(chronic fatigue syndrome) (Tsukimoto et al., 2008;
Nakatsukasa et al., 2010). Preclinical studies on diabetes have
demonstrated an antioxidant effect of low doses of irradiation
(Wang et al., 2008). These clinical and preclinical investigations
provided an increasing level of evidence of the effects of low doses
of irradiation, with an anti-inflammatory, anti-oxidant and anti-
proliferative potential, associated with high efficacy in reducing
clinical symptoms in some inflammatory pathologies.

However, the empiric beneficial effect of low doses of
irradiation has been debated for over 50 years, in part because
of the poor knowledge on the underlying mechanistic in the
context of major concerns in terms of potential radiation-induced
cancers (Jaworowski, 2010). Indeed, there is a significant risk of
radiation-induced cancers among survivors from a therapeutic
irradiation, and epidemiological data clearly documented an
increased risk for second neoplasms in cancer survivors
(Chargari et al., 2016; Chargari et al., 2020). The risk is the
highest among youngest patients, and seems to be organ-
dependent (highest risk for the breast and the thyroid). The
question of a dose threshold for this risk, as well as the
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uncertainties on the shape of dose/response curve, is still
unsolved. Those parameters have a major impact in the risk
estimate. Anyway, the potentially carcinogenic effects of low
doses of irradiation have led to almost abandon this approach
to treat inflammatory diseases, and this trend was obviously
accelerated by the increasing availability of highly effective
non-steroidal or steroidal drugs. Scarce indications for
noncancerous diseases do persist however, such as treatment
of refractory keloid scares (with high efficacy and low morbidity).
In Germany, approximately 50.000 patients are still referred and
treated by radiotherapy for non-malignant disorders, including
painful degenerative skeletal disorders, hyperproliferative
disorders and symptomatic functional
disorders(Seegenschmiedt et al., 2015). It should be
highlighted that systemic anti-inflammatory therapies also
present undesirable effects (severe bacterial complication, in
particular in the case of pulmonary infection, digestive
disorders such as gastritis or digestive ulcer complicated by
hemorrhage, renal damage such as renal failure, necrotizing
fasciitis) and a considerable number of patients do not
respond correctly (Aronoff and Bloch, 2003; Rödel et al., 2007;
Arenas et al., 2012; Legras et al., 2009; Arenas et al., 2012; Le
Bourgeois et al., 2016; Basille et al., 2017; Voiriot et al., 2019; Point
AINS.,).

An increasing number of preclinical investigations have been
carried out to better understand the underlying anti-
inflammatory effects of low doses of irradiation. In the light of
recent radiobiological data, the putative mechanisms for the anti-
inflammatory effects of low-dose irradiation are now well
understood. Those include the following patterns: increased
heme oxygenase, increased anti-inflammatory cytokines -
interleukin-10 (IL-10), increased tumor necrosis factor -beta
(TNF-β), activation of several transcription factors, such as
nuclear factor kappa beta (NFkB) and protein-1 (AP-1),
apoptosis promotion, transforming growth factor - beta 1
(TGFβ1) activation, and stimulation of the activity of
regulatory T cells (Dhawan et al., 2020; Genard et al., 2017).
As reviewed by Arenas and colleagues, the anti-inflammatory
effects of low dose irradiation can also be explained by a decreased
adhesion of polymorphonuclear cells to endothelial cells,
decreased expression of adhesion molecules, such as selectins,
ICAM, VCAM). Doses <0.7 Gy may modulate the expression of
adhesion molecules and the production of cytokines, decreasing
leukocytes/endothelial cells adherence. Other authors have
reported a decrease in NO and ROS, and increased activation
of NF-kB, and increase activator protein 1 (Ap-1) activity(Arenas
et al., 2012). Doses of approximately 0.5 Gy can modify the
immune microenvironment and exert an anti-inflammatory
effect, by causing macrophage polarization toward anti-
inflammatory macrophages (Lara et al., 2020). This anti-
inflammatory effect of the low doses of irradiation was
recently demonstrated in human lung macrophages (Ex vivo)
and in a preclinical study, using a viral pneumonia model
(influenza A PR8 virus (H1N1). Authors showed that low
doses of irradiation decreased both lung damages and
inflammation and had no effect on viral expansion (Meziani,
2020). These anti-inflammatory effects of low dose irradiation are

attractive to mitigate the covid-19 related cytokine storms,
though only few preclinical data tested this approach in
animal models of viral pneumonia. Beneficial effect of low-
dose irradiation to reprogram macrophages in anti-
inflammatory M2 promoting tissue repair or slowing the
progression of lung damage induced by covid 19 disease is
detailed and illustrated in Figure 3. A recent review of
radiobiological data published in 1937–1973 identified 6
studies evaluating post inoculation radiation exposure in
animal models; the results were heterogeneous, with one study
showing a significant increase in mortality and another showing a
significant decrease associated with radiation exposure. No
significant change was found in the four remaining studies.
These historical preclinical results do not provide support for
efficacy of post infection radiation exposure, but the added value
of such old reports to the current applicability of low dose
radiotherapy is uncertain (Little et al., 2020).

In spite of these limitations, several prospective trials are
currently being carried out in the context of the COVID-19
pandemic, encouraged by the lack of effective alternative and the
high mortality probability in most severe cases of COVID-19
pneumonia (Cosset et al., 2020; Wilson et al., 2020). In addition,
the probability that such doses would result in any deterministic
toxicity to healthy tissue is very low (Hanekamp et al., 2020).
Most often, these studies are designed to assess the possibility to
reduce the need for non-invasive or invasive ventilation by
administering a very low dose of X-rays in cases of severe
lung infection. To date, nine clinical studies are underway
worldwide, including 3 in Spain (UTLTRA-COVID,
LOWRAD-COV19), 1 study in Italy (COLOR-19) and the
PREVENT study in the United States ((ongoing studies:
NCT04380818, NCT04572412, NCT04534790, NCT04394182,
NCT0CT044, NCT04393948, NCT04466683) (PREVENT).
Preliminary results are encouraging. A clinical trial involving 5
patients over the age of 60 and hospitalized for oxygen therapy
showed that a single fraction of 0.5 Gy over the entire lungs, in
combination with the standard treatment then proposed, was
followed by a clinical improvement in 4/5 patients (Ameri et al.,
2020). In another pilot study for which only interim analysis on
Day 7 is available, 5 patients with a median age of 90 years were
irradiated at low doses and among them 4/5 presented a
significant clinical and radiological improvement, including 3
patients within 24 h. No acute toxicity was observed and of
importance, no worsening of the cytokine storm was observed
in 4 of the 5 patients. As highlighted by the authors themselves,
further evaluation to determine additional safety and efficacy
among patients with COVID-19 pneumonia is mandatory (Hess
et al., 2020). Recently, Sanmamed et al. published a preliminary
report of a prospective single arm phase I-II clinical trial enrolling
patients ≥50 years-old COVID-19 positive, at phase II or III with
lung involvement at imaging study and oxygen requirement.
Patients were exposed to 100 cGy to total lungs in a single
fraction. Among nine patients included, authors observed
statistically significant changes in the disease extension score
and improvement of SatO2/FiO2 index 72 h and 1 week after
irradiation. In parallel, they observed that LDH decreased
significantly one week after RT compared with baseline. Two
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patients had grade 2 lymphopenia after RT and another worsened
from grade 3 to grade 4. Overall, the median number of days of
hospitalization was 59 days (range 26–151). After RT the median
number of days in hospital was “only” 13 days (4–77). With a
median follow-up after RT of 112 days, seven patients were
discharged and two patients died, one due to sepsis and the
other with severe baseline chronic obstructive pulmonary disease
from COVID-19 pneumonia (Sanmamed et al., 2020). These
results are quite encouraging, but still those are preliminary data
deserving to be validated in larger-scale trials assessing the value
of low-dose pulmonary irradiation in this situation with a
comparative arm. Such approach could potentially improve
the quality of life of post-COVID19 patients, reduce the
number of deaths and reduce patients stay in intensive care
(Martin, 2003; Haas et al., 2018). In addition, the duration in
intensive care is not without side effects for patients who are
ventilated and immobilized by sedation over a long period. Such
approach, based on the anti-inflammatory properties of low dose
radiation therapy, should however be extremely cautiously tested,
prioritizing the patients who have the lowest risk for second
cancers (elderly population) and for whom no effective treatment
is available. Indeed, trials testing low dose irradiation have to take
into account the theoretical risk of radiation-induced cancer, and
the paucity of supportive preclinical data to treat COVID-19
pneumonia was highlighted (Chargari et al., 2016; Haas et al.,
2018; Kirsch et al., 2020). Furthermore, one cannot preclude that

irradiation would exacerbate an active COVID-19 infection
though an increase in the cytokine storm or lead to
cardiovascular morbidity. The use of low dose radiotherapy
for COVID-19 pneumonia cannot be recommended outside a
clinical trial. In addition, this approach should be particularly
cautious in young patients (<50–60 years) -who have in most of
the cases a good prognosis of their COVID-19 respiratory disease
- in particular because the mammary gland and thyroid are highly
sensitive to the carcinogenic effects of ionizing radiation, though
the effect of such low doses remains uncertain. The risk of second
cancer must be put into perspective in the context of elderly
patients, frequently ineligible for invasive resuscitation or
treatment with interleukin-6 inhibitors, for whom the problem
of radiation-induced cancers possibly occurring 10–20 years after
irradiation is not a priority concern. Thus, it is estimated that a
patient who receives low-dose pulmonary radiotherapy for the
treatment of COVID-19 at an age of 80 has a theoretical risk of
radiation-induced cancer of less than 1% (Chargari et al., 2016;
Cosset et al., 2016).

CONCLUSION

Although numerous data show that low dose radiotherapy may
have anti-inflammatory properties, the evidence supporting the
use of low dose radiotherapy to treat COVID-19 infection

FIGURE 3 | Beneficial effect of low-dose irradiation to reprogram macrophages in anti-inflammatory M2 promoting tissue repair or slowing the progression of
severe lung damage induced by covid 19 disease. Balance of M1/M2macrophage is necessary to achieve proper tissue repair. Hyperinflammation and the severity of the
lesions alter this balance (illustrated above each of the lungs A and B). (A): Illustrations and details of M1 macrophage stimulation in COVID19 in the lung and their pro-
inflammatory potential with very little macrophage reprogramming into anti-inflammatory M2. Depending on severity and duration inflammation (M1 persistent
activation) this leads to severe lung damage by covid 19 disease. (B): To generate an anti-inflammatory environment: stimulate the polarization of the M2 macrophages
with low dose radiotherapy (RT). Macrophages also switch to an anti-inflammatory (M2) phenotype, leading to a wound healing phase: Maintains M1/M2 balance or
slowing the progression of lung damage induced by covid 19 disease. 1/2/3 represent the 3 steps generated in case A, anM1macrophage phenotype within the lungs of
covid 19 patients, in case B, step 1 (effects of low doses of RT in lung, withaNO, ROS,aleukocytes/endothelial cells adhesion andbIL-10, TNF-β, NFkB, TGF 1, AP-1
et T-regulatory cells), step 2 (stimulation of the polarization of M2 macrophages in this environment post-low dose RT) and step 3: the secretion products of M2
promoting an anti-inflammatory environment.
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remains preliminary. This approach could potentially have a
favorable cost/effectiveness ratio, for a subgroup of COVID-19
patients for whom there is most often no therapeutic
alternative and in a context of lack of access to resuscitation
platforms (García-Hernández et al., 2020). A prerequisite for
achieving successful development of this experimental
treatment is to more accurately identify what population
could get benefit, if any, from this treatment, and to better
determine the optimal timing/dose/fractionation to achieve
the best therapeutic index with satisfactory safety profile. The
superiority of low dose radiotherapy over more conventional
systemic anti-inflammatory (e.g., steroids) remains

undemonstrated, and only a well-designed randomized
clinical trial will provide the evidence of a benefit (if any)
of low dose radiotherapy in this context. A step by step process
is required, from early phase trials to larger randomized
studies, to ensure that the beneficial effect of low dose
radiotherapy is superior to its potential side effects.
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