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Abstract: Septo-optic dysplasia (SOD) is a developmental phenotype characterized by midline
neuroradiological anomalies, optic nerve hypoplasia, and pituitary anomalies, with a high degree
of variability and additional systemic anomalies present in some cases. While disruption of several
transcription factors has been identified in SOD cohorts, most cases lack a genetic diagnosis, with
multifactorial risk factors being thought to play a role. Exome sequencing in a cohort of families
with a clinical diagnosis of SOD identified a genetic diagnosis in 3/6 families, de novo variants in
SOX2, SHH, and ARID1A, and explored variants of uncertain significance in the remaining three. The
outcome of this study suggests that investigation for a genetic etiology is warranted in individuals
with SOD, particularly in the presence of additional syndromic anomalies and when born to older,
multigravida mothers. The identification of causative variants in SHH and ARID1A further expands
the phenotypic spectra associated with these genes and reveals novel pathways to explore in septo-
optic dysplasia.
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1. Introduction

Septo-optic dysplasia (SOD) is a rare, heterogenous phenotype reported in 1 out of
10,000 live births and is characterized by any combination of midline neuroradiological
anomalies, including absence of the septum pellucidum or agenesis of the corpus callosum,
hypoplasia of the optic chiasma/nerves, and hypothalamic–pituitary dysfunction [1]. The
phenotype is highly variable, with additional anomalies present in many cases. Several
transcription factors were shown to play a role in SOD, with the first factor, HESX1, identi-
fied in 1998 [2] and variants in SOX3, SOX2, and OTX2 being more recently implicated [1,3].
However, variants in these genes explain only a small number of cases, highlighting the
need to identify additional novel players. In the majority of cases, SOD is sporadic with a
low recurrence risk; young maternal age, primigravida status, viral infections, and other
environmental causes have also been implicated, suggesting that the phenotype is likely to
be multifactorial in many cases [1,3].

2. Materials and Methods

This human study was conducted according to the guidelines of the Declaration of
Helsinki and approved by the Institutional Review Board of Children’s Wisconsin. Exome
sequencing was undertaken through Psomagen (previously Axeq; Rockville, MD, USA), the
University of Washington Center for Mendelian Genomics, or via clinical testing and then
analyzed, as previously described, utilizing the SNP &Variation Suite or VarSeq software
(Golden Helix, Bozeman, MT, USA), including annotations for gnomAD v2.1.1, OMIM
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genes, CADD Scores 1.4, and REVEL Functional Predictions [4]. The data were reviewed
for rare variants in known SOD genes (HESX1, SOX3, SOX2, OTX2) and OMIM genes,
along with a standard trio analysis (when available) and review of ultra-rare (≤5 alleles in
gnomAD) and damaging (Loss of Function (LOF) or REVEL > 0.4 and CADD > 20) coding
variants. Causative variants were confirmed by Sanger sequencing using region-specific
primers. Six families with a clinical diagnosis of SOD in the proband underwent exome
sequencing, including four trios (affected proband plus unaffected parents), one quad
(affected siblings plus unaffected parents), and one singleton. Tissue-expression patterns
for novel genes were investigated in The Human Protein Atlas (proteinatlas.org).

3. Results

Causative variants were identified in three SOD families, including one variant in
SOX2. No rare variants were identified in other SOD genes.

In Family 1, the affected individual is a 5-year-old White male with mild optic nerve
hypoplasia, absent septum pellucidum, hypoplasia of corpus callosum, and dilated lateral
ventricles identified by Brain MRI; the individual was born as the second child to a 30-year-
old mother (Figure 1). He has global developmental delay, hypotonia with unsteady gait
requiring the use of supports (forearm crutches), complex seizures, and hyperopia with
mild optic disc pallor by clinical exam. Trio exome sequencing identified a de novo variant
in SOX2, NM_003106.4:c.70_89del20 p.(Asn24Argfs*65); Sanger sequencing confirmed the
presence of the variant in the child and its absence in the mother (Table 1; Figure 2).
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Figure 1. Magnetic resonance imaging (MRI) data for affected individuals. Family 1 (A,B) Coronal 
T2 image (A) from the proband showing absent septum pellucidum; Sagittal T1 image (B) showing 
hypoplasia of the corpus callosum. Family 3 (C) Coronal T1 image of the proband showing absent 
septum pellucidum, absent corpus callosum, and ventriculomegaly. Family 4 (D,E) Sagittal T1 im-
age of proband (D) showing hypoplastic corpus callosum (curved white arrow), ectopic posterior 
pituitary (straight white arrow), and hypoplastic optic chiasm (arrowhead); Sagittal T1 image of 
affected brother (E) demonstrating a slightly hypoplastic corpus callosum (curved white arrow), 
ectopic posterior pituitary (white arrow), and hypoplastic optic chiasm (arrowhead). Family 5 (F,G) 
Coronal T1 image (F) with absent septum pellucidum and a small hypoplastic optic chiasm (arrow-
head) (F); Sagittal T1 image (G) showing hypoplastic small pituitary (arrow). Family 6 (H) Sagittal 
T1 image showing marked hypoplasia of corpus callosum (curved white arrow) and hypoplastic 
optic chiasm (arrowhead). 

Figure 1. Magnetic resonance imaging (MRI) data for affected individuals. Family 1 (A,B) Coronal
T2 image (A) from the proband showing absent septum pellucidum; Sagittal T1 image (B) showing
hypoplasia of the corpus callosum. Family 3 (C) Coronal T1 image of the proband showing absent
septum pellucidum, absent corpus callosum, and ventriculomegaly. Family 4 (D,E) Sagittal T1 im-
age of proband (D) showing hypoplastic corpus callosum (curved white arrow), ectopic posterior
pituitary (straight white arrow), and hypoplastic optic chiasm (arrowhead); Sagittal T1 image of
affected brother (E) demonstrating a slightly hypoplastic corpus callosum (curved white arrow),
ectopic posterior pituitary (white arrow), and hypoplastic optic chiasm (arrowhead). Family 5
(F,G) Coronal T1 image (F) with absent septum pellucidum and a small hypoplastic optic chiasm (ar-
rowhead) (F); Sagittal T1 image (G) showing hypoplastic small pituitary (arrow). Family 6 (H) Sagittal
T1 image showing marked hypoplasia of corpus callosum (curved white arrow) and hypoplastic optic
chiasm (arrowhead).
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Table 1. Pathogenic variants identified in individuals with a clinical diagnosis of SOD.

Family Gene Nucleotide Change Predicted
Effect MAF 1 ACMG/AMP

Classification Family History

1 SOX2 NM_003106.4:
c.70_89del20 p.(Asn24Argfs*65) NP Pathogenic

(PVS1, PS2, PM2, PP5) De Novo

2 SHH NM_000193.2:
c.562+1G>A

Abnormal
splicing NP Pathogenic

(PVS1, PS2, PM2, PP5) De Novo

3 ARID1A NM_006015.6:
c.6625C>T p.(Gln2209*) NP Pathogenic

(PVS1, PS2, PM2) De Novo

1 Frequency in gnomAD v2.1.1; NP, not present.
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explained families with genotypes indicated for corresponding variants in SOX2 (Family 1), SHH 
(Family 2), and ARID1A (Family 3) and Sanger traces showing variants in each affected individual 
as well as absence in unaffected parent(s). (D–F) Pedigrees of genetically unexplained families. 
Filled symbols represent affected individuals; empty symbols represent unaffected individuals. 
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In Family 3, the affected individual is a 6-week-old White male with absent septum 
pellucidum, absent corpus callosum, ventriculomegaly, aqueductal stenosis, and intra-
ventricular hemorrhage identified on Brain MRI (Figure 1), born at 33 weeks of gestation 
as the 5th child of a 32-year-old mother. Eye exam at 5 weeks of age identified bilateral 
optic disc pallor, asymmetric optic discs with the right larger than the left, and a peripapil-
lary halo also more notable on the right. Additional systemic anomalies included a ven-
tricular septal defect and a patent foramen ovale, 13 pairs of ribs, bilateral clinodactyly, 
single palmar crease, broad large toe with hypoplastic nail, cleft palate, choanal atresia, 
seizures, apnea, and dysmorphic facial features, including down-slanting palpebral fis-
sures, long columella, low-set and posteriorly rotated ears, depressed nasal bridge, scant 
hair due to premature birth; he died at 6 weeks of age. Trio exome sequencing identified 

Figure 2. Pedigrees of Families 1–6 with a clinical diagnosis of SOD. (A–C) Pedigrees of genetically
explained families with genotypes indicated for corresponding variants in SOX2 (Family 1), SHH
(Family 2), and ARID1A (Family 3) and Sanger traces showing variants in each affected individual as
well as absence in unaffected parent(s). (D–F) Pedigrees of genetically unexplained families. Filled
symbols represent affected individuals; empty symbols represent unaffected individuals.

In Family 2, the affected individual is an 18-month-old Hispanic female with absent
septum pellucidum, partially absent corpus callosum (anterior absent), left optic nerve
hypoplasia, and right retinal coloboma with mild asymmetry of the orbits noted by clinical
exam, with the right eye appearing somewhat smaller than the left, born as the third
child of a 35-year-old mother. She also has a bilateral complete cleft palate and a right
complete cleft lip, a single central incisor, microcephaly, mandibular hypoplasia, alveolar
gap, global developmental delay, failure to thrive (1st centile), asymmetric thigh creases,
coxa valga, dysphagia requiring g-tube feeding, and diabetes insipidus due to pituitary
dysfunction. At 13 months of age, measurements confirmed normal placement of the
eyes with an inner canthal distance of 2 cm (50th centile) and an outer canthal distance
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of 7 cm (25th–50th centile). Trio exome sequencing identified a de novo variant in SHH,
NM_000193.2:c.562+1G>A, which was confirmed to be present in the child and absent in
both parents by Sanger sequencing (Figure 2).

In Family 3, the affected individual is a 6-week-old White male with absent septum
pellucidum, absent corpus callosum, ventriculomegaly, aqueductal stenosis, and intraven-
tricular hemorrhage identified on Brain MRI (Figure 1), born at 33 weeks of gestation as the
5th child of a 32-year-old mother. Eye exam at 5 weeks of age identified bilateral optic disc
pallor, asymmetric optic discs with the right larger than the left, and a peripapillary halo
also more notable on the right. Additional systemic anomalies included a ventricular septal
defect and a patent foramen ovale, 13 pairs of ribs, bilateral clinodactyly, single palmar
crease, broad large toe with hypoplastic nail, cleft palate, choanal atresia, seizures, apnea,
and dysmorphic facial features, including down-slanting palpebral fissures, long columella,
low-set and posteriorly rotated ears, depressed nasal bridge, scant hair due to premature
birth; he died at 6 weeks of age. Trio exome sequencing identified a de novo variant in
ARID1A, NM_006015.6:c.6625C>T p.(Gln2209*), which was confirmed to be present in the
child and absent in both parents by Sanger sequencing (Figure 2). The variant appeared to
be mosaic: it was present in 59/179 (33%) exome reads and had a lower peak as determined
by Sanger sequencing (Figure 2).

Family 4 consists of a 4-year-old White/Native Hawaiian male with hypoplastic
corpus callosum and genu, bilateral optic nerve hypoplasia, and panhypopituitarism with
an ectopic posterior and a severely hypoplastic anterior pituitary gland on Brain MRI
(Figure 1) along with global delay and seizure-like activity, gastroschisis with jejunal atresia,
and a ventricular septal defect, born to a 23-year-old primigravida mother. He has a
2-year-old affected brother with bilateral optic nerve hypoplasia, a mildly hypoplastic
corpus callosum, and panhypopituitarism with posterior pituitary ectopia with small
sella and hypoplasia of the anterior pituitary gland on Brain MRI (Figure 1) along with
global delay, depressed nasal bridge, and simple, cupped ears. Quad exome sequencing
did not identify a causative variant and no rare variants were identified in known SOD
genes; variants of uncertain significance included compound heterozygous variants in
MIB2 and a hemizygous missense variant in AKAP4 (Table 2). A review of the shared,
ultra-rare, damaging variants identified seven inherited variants of uncertain significance
shared by both brothers (Supplemental Table S1), including a heterozygous missense
variant in CHD5.

Family 5 consists of a 5-month-old White male with absent septum pellucidum, hy-
poplastic corpus collosum, and bilateral optic nerve hypoplasia on Brain MRI (Figure 1)
along with growth hormone deficiency, borderline micropenis, and mild global develop-
mental delay, born to a 29-year-old primigravida mother. Trio exome sequencing did not
identify a causative variant; variants of uncertain significance include compound heterozy-
gous missense variants in FAT3 and a homozygous frameshift variant in RPTN (Table 2).
Review of ultra-rare damaging variants identified seven inherited variants of uncertain
significance (Supplemental Table S1), including a missense variant in TRPM3.

Family 6 consists of a 7-year-old Hispanic female with a hypoplastic corpus callo-
sum and midline anomalies as well as bilateral optic nerve hypoplasia on Brain MRI
(Figure 2) along with highly arched palate, spastic hemiplegia, dysphagia, enamel hy-
poplasia, high-arched palate, hemolytic anemia, and global delay, born to a 20-year-old
primigravida mother. Singleton exome sequencing did not identify a causative variant.
A review of ultra-rare damaging variants identified 17 variants of uncertain significance
(Supplemental Table S1), including a homozygous variant in DMXL1 and a heterozygous
variant in CCDC13 (Table 2).
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Table 2. Select variants of uncertain significance discovered in individuals with a clinical diagnosis
of SOD.

Family Gene Zygosity Nucleotide Change Predicted
Effect MAF 1 CADD/

REVEL3 Segregation

4 MIB2 Compound
heterozygous

NM_080875.3:c.-48C>T
NM_001170688.1:c.124C>T

?
p.(Arg42*) 4/185998 33 N/A Paternal

(het)

4 MIB2 Compound
heterozygous NM_080875.3:c.1766A>G p.(Gln589Arg 270/

259488 10.19 0.041 Maternal
(het)

4 AKAP4 Hemizygous NM_003886.3:c.1835G>A p.(Cys612Tyr) 1/183267, 0 hemi 14.58 0.089 Maternal
(het)

4 CHD5 Heterozygous NM_015557.3:c.5809G>A p.(Gly1937Arg) NP 24.3 0.443 Paternal
(het)

5 FAT3 Compound
heterozygous NM_001008781.3:c.9772G>A p.(Val3258Ile) 3/271900 24 0.131 Paternal

(het)

5 FAT3 Compound
heterozygous NM_001008781.3:c.11546G>A p.(Arg3849Gln) 33/

249054 24.2 0.41 Maternal
(het)

5 RPTN Homozygous NM_001122965.1:c.489delA p.(Lys163Asnfs*48) NP 14.88 N/A Biparental
(het)

5 TRPM3 Heterozygous NM_001366145.2:c.871C>T p.(His291Tyr) 1/31412 23.2 0.419 Paternal
(het)

6 DMXL1 Homozygous NM_005509.6:c.9002G>A p.(Gly3001Glu) 1/251182 31 0.614 Unknown

6 CCDC13 Heterozygous NM_144719.4:c.631C>T p.(Gln211*) NP 40 N/A Unknown

1 Frequency in gnomAD v2.1.1; 3 CADDphredhg19 and REVEL scores (from dbNSFP v4.1a, accessed through
Varseq). N/A, not applicable; NP, not present.

4. Discussion

While septo-optic dysplasia (SOD) typically has a low rate of genetic diagnosis, the
genetic analysis of this small cohort of individuals with SOD identified a genetic etiology
in 50% of the families. Cases with a genetic diagnosis were more likely to have atypical
optic nerve findings, but all had been given a clinical diagnosis of septo-optic dysplasia
prior to genetic testing, highlighting the variability of this phenotype. Interestingly, cases
without a genetic diagnosis were more likely to be born to younger, primigravida mothers,
consistent with previous associations [1,3], although potentially contributing variants were
identified in novel genes in each of these families.

SOX2 intragenic variants and deletions are the most common cause of anophthalmia/
microphthalmia, typically syndromic with commonly seen esophageal, genitourinary,
and neurological anomalies [5]. A connection to SOD was noted in a mouse model, and
subsequent screening in a cohort of individuals with SOX2 variants identified pituitary
hypoplasia and hypogonadotropic hypogonadism along with anomalies of the corpus
callosum and medial temporal structures [6]. As expected, all of the individuals with
loss-of-function variants also had anophthalmia/microphthalmia, with variable additional
syndromic features. Absent septum pellucidum was only noted in two individuals with
missense variants (p.(Gly130Ala) and p.(Ala191Thr)) and an isolated SOD phenotype
with normal eye size; both of these variants were inherited from phenotypically normal
parents and are now known to be present in the general population, with population max
frequencies of 0.02% and 0.05% in gnomAD, higher than the frequency of SOD, suggesting
that these are likely to be benign, population-specific variants. Individual 1 of this study is
the first case of SOD with normal eye size and a lack of additional birth defects to have a
loss-of-function variant in SOX2. Interestingly, the identified SOX2 variant, c.70_89del, is a
recurrent variant now reported in 20 individuals; while the majority of cases presented with
a severe phenotype of syndromic anophthalmia/microphthalmia, phenotypic variability
has been reported in some cases [5]. An abnormal gait, often described as ataxic and
requiring the use of a walker or other assistive devices, is typical for SOX2 disruption [5].
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In humans, SHH variants are associated with holoprosencephaly (HPE), another devel-
opmental anomaly affecting the brain [7], and explain up to 37% of dominant HPE [8]. HPE
is characterized by incomplete separation of the forebrain into right and left hemispheres,
typically associated with craniofacial anomalies including microcephaly, hypotelorism,
single central incisor, and cleft lip/palate [8]. Phenotypic variability is well-recognized for
SHH, with family members often presenting with only subtle midline craniofacial features
or developmental delays/ADHD [9,10]. While the conditional knockout of Shh in the
hypothalamus of mice resulted in an SOD phenotype [11], this is the first association of
variants of this gene with an SOD diagnosis in humans. The specific variant identified
in Family 2 was previously reported in two cases with holoprosencephaly [12,13]. The
presence of a cleft lip/palate along with SOD may suggest SHH disruption. Interestingly,
Sox2 and Shh act in the same pathway, with Sox2/3 expression being required for Shh
expression in the hypothalamus (via direct action of a long-range Shh enhancer) and disrup-
tion of this pathway in the hypothalamus was found to result in SOD in mice [11]. Another
major SOD gene, the paired homeodomain transcription factor HESX1, is also implicated
in the Sox2 pathway, with SOX2 binding to the Hesx1 promoter in vitro; observations of
decreased expression of Hesx1 in Sox2-deficient mice indicate likely direct regulation of
Hesx1 by Sox2 [6].

ARID1A encodes a member of the SWItch/Sucrose NonFermenting (SWI/SNF) com-
plex; variants in genes encoding the components of the SWI/SNF complex result in Coffin-
Siris syndrome, a syndromic form of intellectual disability frequently associated with
agenesis or hypoplasia of the corpus callosum [14,15]. While SOD has not been reported,
other syndromic features seen in this individual show a strong overlap and early lethal-
ity has been seen with ARID1A variants in particular [16]. The variant identified here,
c.6625C>T p.(Gln2209*), is the most C-terminal variant identified to date, but five other
premature termination alleles within this final exon have been reported (HGMD [17]). The
presence of multiple additional syndromic anomalies—particularly a hypoplastic big toe-
nail, sparse hair, and heart defects—in an individual with SOD may indicate the presence
of Coffin–Siris syndrome. The identification of a role for ARID1A in SOD proposes the
involvement of a novel pathway in this disorder. Examination of ARID1A and related
factors in SOD is warranted.

With regard to the latter finding, it is interesting to note the identification of com-
pound heterozygous variants of uncertain significance in MIB2 shared by the two affected
siblings in Family 4. MIB2 (skeletrophin) is a RING finger-dependent ubiquitin ligase first
identified in a screen for genes that were upregulated by truncated ARID1A (SWI1) in
neuroblastoma cells displaying increased cell–cell adhesions and aggregations. MIB2 was
also found to bind JAG2, a ligand in the Notch family [18,19]; Notch and Hedgehog are
major signaling pathways that regulate the early steps of pituitary organogenesis and
eye development, with interplay between these pathways including the restriction of Jag2
expression by Shh [20]. A mouse model of Mib2 deficiency showed variable neural tube
closure defects [21], and an abnormal eye morphology was reported in the Mouse Genome
Informatics database (http://www.informatics.jax.org/, accessed on 18 April 2022). Since
the nonsense variant affects only a single transcript (out of several known isoforms) and
the missense variant has weak predictions, the significance of these variants is unclear. The
brothers also shared a heterozygous missense variant in CDH5, whose knockdown has
been associated with reduced head and eye size in zebrafish [22]; however, this variant was
inherited from the unaffected father.

The compound heterozygous missense variants in atypical cadherin 3, FAT3, that were
identified in Family 5 both fall within identified domains, the Cadherin 30 and Laminin
G-like domains [23]. Fat3 has been shown to be strongly expressed in the embryonic
but not adult brain in mice and rats [24], making it an interesting candidate for SOD.
Variants in other members of this family, FAT1 and FAT2, were found to be associated with
recessive syndromic ocular coloboma [25] and dominant spinocerebellar ataxia-45 [26]. The

http://www.informatics.jax.org/
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heterozygous missense variant in TRPM3, with links to ocular development and intellectual
disability [27,28], is also notable, but it was inherited from the unaffected father.

In Family 6, the most interesting candidate variant is a homozygous missense variant
in DMXL1, which encodes a WD-repeat protein. This gene was identified as a candidate
gene within the 5q22.3q23.3 deletion region in a patient with iris coloboma and Chiari I
malformation [29]; a homozygous frameshift variant was reported in an individual with
global delay, seizures, hypotonia, and optic disc edema, along with heart and kidney
defects [30]. Abnormal development was also noted in a Drosophila mutant [31]. A
heterozygous nonsense variant in the Coiled-Coil domain containing 13 gene, CCDC13, is
also notable for its high CADD score (40) and absence in gnomAD. While little is known
about the gene beyond a possible role in ciliogenesis [32], its RNA expression was found to
be enriched in human brain and eye tissues [33].

The outcome of this study suggests that investigation for a genetic etiology is warranted
in individuals with a clinical diagnosis of SOD, particularly in the presence of additional
syndromic anomalies and when born to older, multigravida mothers. The identification of
causative variants in SHH and ARID1A further expands the phenotypic spectra associated
with these genes and identifies novel pathways to explore in septo-optic dysplasia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13071165/s1, Supplemental Table S1: Variants of uncertain
significance identified in Families 4–6.
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