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We here compared results achieved by applying popular methods for reducing artifacts in magnetoencephalography (MEG)
and electroencephalography (EEG) recordings of the auditory evoked Mismatch Negativity (MMN) responses in healthy adult
subjects. We compared the Signal Space Separation (SSS) and temporal SSS (tSSS) methods for reducing noise from external and
nearby sources. Our results showed that tSSS reduces the interference level more reliably than plain SSS, particularly for MEG
gradiometers, also for healthy subjects not wearing strongly interfering magnetic material. Therefore, tSSS is recommended over
SSS. Furthermore, we found that better artifact correction is achieved by applying Independent Component Analysis (ICA) in
comparison to Signal Space Projection (SSP). Although SSP reduces the baseline noise level more than ICA, SSP also significantly
reduces the signal—slightlymore than it reduces the artifacts interferingwith the signal.However, ICA also adds noise, or correction
errors, to the waveformwhen the signal-to-noise ratio (SNR) in the original data is relatively low—in particular to EEG and toMEG
magnetometer data. In conclusion, ICA is recommended over SSP, but one should be careful when applying ICA to reduce artifacts
on neurophysiological data with relatively low SNR.

1. Introduction

Recordings of evoked-responses (also known as event-
related potentials, ERPs, or event-related fields, ERFs) with
electroencephalography (EEG) or magnetoencephalography
(MEG) are widely used methods in cognitive and clinical
neuroscience. One of the major challenges in research and
clinical applications of evoked-responses is the prevalent
strongly interfering electromagnetic signals from external
objects and devices in the surrounding MEG or EEG mea-
surement environment as well as nearby mechanical and
biological electromagnetic sources originating from the head
and other parts of the body of the subject. Since the inter-
fering environmental noise from, for example, laboratory

mechanics and electronic devices may be several orders of
magnitude stronger than the brain signals of interest (for a
review, see, e.g., [1]), it is necessary to remove this noise from
the recordings during or after the measurements. Moreover,
nonencephalic electromagnetic activity, such as that from the
eyes and from the cardiac and facial muscles, is also recorded
by EEG or MEG and can be up to a thousand times stronger
than the encephalic signal of interest [1]. Since some of these
interfering artifactual signals can be synchronous with the
brain signal of interest, significant parts of the continuous
measurement can be contaminated by artifacts. Hence, to
ensure a reliable measurement, it is necessary, in addition to
applying an average measure of an evoked-response across
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multiple time-locked data segments, also to omit or correct
the data contaminated with artifacts.

In the clinical routine, data from patients having a limited
control of muscular activity (such as stroke or dementia
patients or preterm infants) or with ferromagnetic implants
(such as cochlear implantees) typically contain a considerable
amount of artifacts. The time constraints of experiments
and tests on clinical populations exclude the possibility of
a large number of trials that would allow discarding the
artefactual ones. A viable alternative to simply rejecting parts
of the recorded data is that of correcting the data. Both
in clinical patient recordings and in experimental settings
with healthy subjects, strong electromagnetic noise from
electronic devices, static electricity, and in particular with
regard to EEG also the 50/60-Hz power-line noise may
interfere significantly with the measurements [2]. When
recording EEG in conjunction with transcranial magnetic
stimulation (TMS), methods have been developed for reduc-
ing the strong TMS artifacts appearing in the recording
[3]. In other cases where two neuroimaging modalities are
employed simultaneously, special care must also be taken
to reduce artifacts originating from the other modality.
For recording EEG concurrently with functional magnetic
resonance imaging (fMRI), it is necessary to reduce both
imaging artifacts caused by the switching gradient fields [4]
and ballistocardiogram artifacts caused by the subjects heart
beats moving the skin and electrodes in relation to the strong
magnetic field within the MRI scanner [5]. Furthermore, in
combined EEG/MEG recordings one should be aware that
eddy currents in the electrodes induce magnetic fields, which
may introduce artifacts in the MEG recordings for signals
in higher frequency ranges; however, signals at frequencies
below 100Hz are not critically affected by these types of
artifacts [6].

Apart from external artifact sources, it is important to
reduce the influence of the internal artifacts originating
from the head and the rest of the body of the subject.
Typically, MEG and EEG recordings are contaminated by
relatively strong artifacts caused by the eyes [2, 7–9]. They
can either be eye blinks (picked up mostly by the vertical
EOG) contaminating particularly the lower frequencies or be
saccades (visible mostly in horizontal EOG) also interfering
at higher frequency ranges, where certain saccadic spike
artifacts resemble high-frequency muscular artifacts [9].
Another typically interfering internal artifact is due to the
electric activity of the cardiac muscle, measured by electro-
cardiography (ECG or EKG) [2, 10]. Also, noises from dif-
ferent types of muscular activity, seen in electromyographic
(EMG) signals, are also a typical issue in MEG and EEG
recordings [2, 11]. These muscular artifacts may be caused by
mastication (chewing), deglutition (tongue movement), and
respiration [2].

Different methods have been developed to reduce the
influence of externally and internally originating artifacts.
The externally originating interference can be minimized
by applying physical shielding techniques in the laboratory
[12], by using gradiometer sensors instead of magnetome-
ters, by subtracting measurements of the external noise
signals recorded by one or more reference sensors or by

applying online or offline spatial filtering methods. MEG
systems by Elekta Oy (Helsinki, Finland) comprise both
magnetometers and gradiometers and they employ spatial
filtering techniques such as Signal Space Projection (SSP)
and Signal Space Separation (SSS) and its temporal extension
(tSSS) implemented in the Elekta Neuromag� MaxFilter�
software [13].The SSSmethod is based onMaxwell equations
and the multichannel measurement of the magnetic field
distribution; by using a basis comprising spherical harmonic
functions, contributions of signal sources within the sensor
array (brain signals) can be separated from sources external
to the array [13–18]. Since SSS is purely a spatial filter, which
only reduces noise originating from the external sources,
it retains also those brain signals that oscillate at the same
frequency as an external noise source [14]. However, nearby
sources of artifacts caused by, for example, movement of
magnetic materials, such as dental braces or implants, cannot
be sufficiently reduced by applying SSS alone.

The tSSS method is additionally able to filter out inter-
ferences from artifactual sources in the space between the
brain and the MEG sensor array, by reducing signals in the
common subspace through comparisons of the time series
in the internal and external spaces. For instance, it has been
shown that tSSS makes it possible to locate brain sources
on the cortex with beamformer methods in clinical patients,
although these patients wore strongly magnetically interfer-
ing dental braces; thereby, tSSS seems to allow extending the
clinical population compatible with MEG [17].

The internally originating artifacts can be reduced by
applying band-pass filtering [19] and component analysis
such as Principal Component Analysis (PCA) or Indepen-
dent Component Analysis (ICA) [20–43] or by recording
the artifacts to be removed, identifying their contribution
to the data by means of linear regression and subtracting
them out [10, 44, 45]. Also, methods for ignoring the
artifactual sources have been implemented as part of source
analysis algorithms [46, 47]. With regard to the component
analysis approaches, PCA is applied to estimate components
explaining the highest variance in the data, such as strong
artifacts. ICA is able to estimate components that explain
variance originating from statistically independent sources,
thereby reducing the risk of including signals of interest
in the derived artifact components. The ICA algorithms,
and, in particular, the infomax version of ICA, have gained
popularity as an efficient method for separating the recorded
signals into statistically independent components [43]. By
inspecting the independent components, only the artifactual
components can be rejected to reduce the influence of the
artifacts on the data. An alternative method of Signal Space
Projection (SSP) has gained some popularity in open source
software packages [48, 49]. SSP also decomposes the data
into components, often based on a prior PCA; however, in
contrast with ICA, these components may not be statistically
independent, and therefore there is a risk that artifactual
and brain signals of interest may be reduced simultaneously
[48].

To investigate the performances and risks of using differ-
ent popular artifact correction methods, we compared here
results achieved by applying SSS, tSSS, ICA, and SSP. We
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chose to study the performance of the correction methods
on the Mismatch Negativity (MMN) response, which is
a well-known evoked-response [50, 51]. In particular, we
wanted to investigate (1) whether tSSS improves the data
quality in healthy subjects not wearing any magnetically
disturbing implants; (2) whether the faster SSS alternative
performs as well as the more computationally demand-
ing tSSS; and (3) whether ICA is preferable over SSP (or
vice versa) for reduction of typical artifacts in healthy
subjects.

2. Methods

2.1. Participants. A sample of ten volunteers from a larger
database named “Tunteet” was chosen (for a description of
the experimental protocol, see Kliuchko et al., submitted).
The participants were six females and four males. Three par-
ticipants were nonmusicians, three were amateur musicians,
and four were professional musicians. All participants were
right-handed, and their average age was 24.8 years (range 18–
35 years). Written informed consent was obtained from each
participant, and the study was approved by the local ethics
committee.

2.2. Experimental Paradigm. The participants listened to a
melody pattern of 2100ms, repeated with variations during
∼25 minutes. The melody patterns were created from digital
piano tones (McGill UniversityMaster Samples) and followed
the rules of Western tonal music. All melodies started with
a triad (300ms) followed by four single tones (two of
125ms and two of 300ms) and an ending tone (575ms)
all separated by 50ms silent gap. Between all melodies
there was a silent gap of 125ms. Deviations of six types
were inserted into the melody patterns to evoke MMN
responses to a deviant tone as compared with corresponding
unaltered standard. The deviants are explained in Table 1
[52–54].

In total, the tested sample contained 120 brain responses,
which comprised the responses to the six standard and six
deviant conditions from each of the ten participants.

2.3. Data Acquisition. The simultaneous MEG and EEG data
were collected at the BioMag Laboratory of the Helsinki Uni-
versity Central Hospital. The measurements were performed
in an electrically and magnetically shielded room (ETS-
Lindgren Euroshield, Eura, Finland) with Vectorview� 306-
channelMEG system (Elekta Neuromag, Elekta Oy, Helsinki,
Finland) equipped with a compatible EEG system. The MEG
system had 102 triple-sensor elements, each comprising two
orthogonal planar gradiometers and one magnetometer. A
64-channel EEG electrode cap was used. The reference elec-
trodewas placed on the nose tip and the ground electrodewas
on the right cheek. Blinks, as well as vertical and horizontal
eyemovements, weremeasured with four electrodes attached
above and below the left eye and close to the external eye
corners on both sides. Four head position indicator coils
were placed on top of the EEG cap. Their positions were
determined with respect to the nasion and preauricular
points by an Isotrak 3D digitizer (Polhemus, Colchester, VT,

USA). MEG and EEG data were recorded with a sample rate
of 600Hz.

During the measurement, subjects were comfortably
seated and watched a silenced movie with subtitles. The
stimuli were presented with Presentation software (Neurobe-
havioral Systems, Ltd.). The sound was delivered through
a pair of pneumatic headphones at individually adjusted
loudness.

2.4. Artifact Correction. Elekta Neuromag MaxFilter 2.2
Signal Space Separation (SSS) and temporal Signal Space
Separation (tSSS) [13, 16] were applied separately to compare
their individual performance. For both SSS and tSSS, we used
the default inside expansion order of 8, outside expansion
order of 3, automatic optimization of both inside and outside
bases, and automatic detection and correction of bad MEG
channels. Additionally, for both SSS and tSSS the specific fine
calibration and cross talk correction data for the recording
site and date were applied. For the tSSS, we used the default
subspace correlation limit of 0.980 and raw data buffer length
of 10 seconds. The spatially filtered data were saved in 32-bit
float format at a sampling rate of 600Hz.

Correction for internal artifacts with Signal Space Pro-
jection (SSP) was performed with the MNE Python version
0.11.0 released with the MNE software version 2.7.4-3485
[55, 56]. We applied the default automatic settings, where
two principal components per artifact type are detected
for eye artifacts and for cardiac artifacts. Subsequently, the
detected ocular and cardiac artifact component projections
were removed from the data.

Independent Component Analysis- (ICA-) based correc-
tion for internal artifacts was achieved by applying the logistic
infomax algorithm implemented in the runica function [57]
for MATLAB� (MathWorks, Natick, Massachusetts). First,
the data were reduced to 64 principal components. The
independent components were then estimated for the EEG
channels, MEG magnetometers, and MEG planar gradiome-
ters separately. The resulting components were inspected,
and one component projection per vertical eye movement,
horizontal eye movement, or cardiac artifact type (explaining
most variance) was removed from the data, when the artifact
component was observed. On average, the total number of
observed artifact components per subject was 1.7 (1-2) for the
EEG, 1.8 (1–3) for the MEG magnetometers, and 2.0 (1–3) for
the MEG gradiometers.

2.5. Data Analysis. Event-related EEG and MEG responses
were extracted as single-trial epochs with a time window
of 0 to 400ms after the standard or deviant tone onset.
The trials were baseline-corrected by applying a baseline
of −100 to 0ms before the tone onset. Since the planar
gradiometer sensors measure along two orthogonal direc-
tions, the data from each pair of longitudinal and latitu-
dinal sensors were combined by applying the Pythagorean
distance formula, as implemented in the FieldTrip toolbox
for MATLAB (Donders Institute for Brain, Cognition and
Behaviour/Max Planck Institute, Nijmegen, Netherlands)
[58]; 𝑑 = √longitudinal2 + latitudinal2.
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Table 1: Deviant tones. Type of deviant is the type of change applied to the tone, and description explains the change. Occurrence describes
whether the change is presented in different patterns randomly (single) or is present constantly in each following pattern from the first
presentation until the next deviant of the same type occurs (consistent). Tone number denotes at which tone of the melody pattern the change
may occur.Melodies with deviants column shows the percentage of melodies containing the particular type of deviant.

Type of deviant Description Occurrence Tone number Melodies with
deviants

Mistuning 3% pitch frequency increase Single 1st, 2nd, 4th 14%
Timbre Flute sound Single 1st, 3rd, 4th, ending 8%

Timing delay 100ms silent gap before the tone Single 1st, 2nd, 3rd,
ending 8%

Melody modulation Tone replacement Consistent 3rd, 4th 12%

Rhythm modulation Duration switch between two successive
tones Consistent 2nd, 3rd 7%

Transposition Semitone pitch change of a pattern Consistent Initial triad 16%

EEG 012

(a)

MEG 1341

(b)

MEG 2222 and 2223

(c)

Figure 1: Topographical plots of MMN responses (without correction for internal artifacts). Showing topographical plots of MMN responses
to the mistuning deviants, which elicited the strongest and most consistent MMN responses in the tested sample in the EEG (a), MEG
magnetometers (b), and MEG gradiometers (c). The plots are based on grand averages from uncorrected data (only preprocessed with tSSS)
by applying a time window from 125 to 155ms after the tone onset.

For the sake of clarity, we performed the subsequent
analyses on one channel of each sensor type, those in
which the highest MMN amplitude was measured within a
typical MMN latency range of 75–200ms. In this case, we
analyzed the event-related waveforms from EEG channel 012
(frontal site), magnetometer channel MEG 1341 (right tem-
poral site), and the combined planar gradiometer channels
MEG 2222 and 2223 (right temporal site) (see Figure 1).
These analyzed channels behaved reliably and were not
detected as bad channels or subjected to any additional
correction.

We measured the MMN amplitude in response to each
type of deviant tone by taking the average value across the
time window from 125 to 155ms after the tone onset. To com-
pare the noise levels after utilizing each artifact correction
method, we first used a baseline standard deviation measure.
Since a flat baseline is desirable, we applied a baseline
standard deviation (STD) measure to show the flatness of the
baseline in a single trial (where lower baseline STD means a
more flat baseline) [59].We calculated the standard deviation
across the baseline time points from −100 to 0ms (in relation
to the stimulus onset) in each trial separately and extracted

the mean baseline STD across trials. Also, minimal variance
in the measured signal across trials is desirable.Therefore, we
also calculated the signal STD across trials for each time point
in 125 to 155ms:

𝜎

𝑥
=

√

∑

𝑛

𝑖=1
(𝑥

𝑖
− 𝑥)

2

𝑁

,

(1)

where 𝑥 is the measured value, 𝑥 is the mean value, 𝑖 is the
trial number, and 𝑁 is the total number of trials [18] and
we averaged these values to obtain the mean signal STD. For
additional comparisons, we applied a signal-to-noise ratio
measure; SNR = amplitude/𝜎

𝑥
[18].

The Mismatch Negativity (MMN) evoked-response is
analyzed by comparing the average response to the deviant
stimulus with the average response to the standard stimulus
[50, 51]. Also,MMNwaveforms are conventionally calculated
by subtracting the average response to the standard stimulus
from the average response to the deviant stimulus [50, 51].
However, we here analyze the noise levels across multiple
single-trial MMN responses, which does not allow us to
create difference waveforms by simply subtracting particular
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Signal STD change in magnetometer channel MEG 1341
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Figure 2: Percentagewise standard deviation (STD) reduction in the signal latency range achieved by applying the SSS or tSSS methods in
comparison to the level (at 0% STD) in the raw data recording without spatial filtering. The differences are shown for the amplitude peak
channel of the magnetometers (a) and gradiometers (b) in Tukey box plots. Bold horizontal lines indicate medians, brown boxes indicate the
first 50 percent of the case range, and vertical lines indicate cases within the 1.5 interquartile range from the edge of the 50% of the cases.
Outliers more than 1.5 (circles) or 3.0 (stars) interquartile ranges from the edge of the 50% of the cases are denoted with circles or stars, and
case numbers are provided for each outlier. The median values are shown in femtoteslas (fT) and femtoteslas per centimeter (fT/cm). 𝑧 and
𝑟 indicate the effect size, and 𝑝 indicates the level of statistical significance.

pairs of deviant and standard trials among multiple equally
possible pairings of trials. The responses to both deviant and
standard stimuli are relevant for any subsequent analyses of
MMN, and it is therefore important to know the noise levels
of responses to both stimuli. Therefore, we here analyzed the
noise levels in the responses to both the deviant and standard
stimuli.

Statistical comparisons were made with SPSS version 20
(IBM, Armonk, New York, USA). Since the resulting values
were not normally distributed, we applied the Wilcoxon
signed-rank test to compare the values achieved after utilizing
the different artifact correction methods.

3. Results

3.1. SSS and tSSS. A statistically significant and slightly better
reduction of the signal standard deviation (STD) is achieved
by applying tSSS in comparison to SSS for for both the
MEG magnetometer and gradiometer data (see Figure 2).
Importantly, in 6% (7/120) of the tested cases, the signal
STD actually increases when applying SSS to the MEG
gradiometer data, whereas the signal STD either is retained
or decreases when the tSSS method is applied.

3.2. ICA and SSP. From grand average waveforms of the
event-related responses (across all participants and condi-
tions), it can be seen that the SSP-based artifact correction
reduces the signal amplitude, whereas the signal amplitude is
similar before and after the artifact correction based on ICA
(see Figure 3).

The SSP method results in lower baseline standard
deviation (STD) and signal STD in comparison to the ICA

method (see Figure 4). The baseline STD even appears to
increase when applying the ICA-based artifact correction,
in particular with respect to the EEG and magnetometer
channels. However, for the gradiometers, ICA yields slightly
but statistically significantly better SNR than that achieved by
applying the SSP method (see Figure 5).

The SNR achieved by applying the ICA-based artifact
correction is similar to that achieved by applying the SSP
methodwith respect to the EEG andmagnetometer channels.
However, for the gradiometers applying the ICA method
results in statistically significantly and slightly better SNR
than that achieved by applying the SSPmethod (see Figure 5).

4. Discussion

We compared the noise suppression results achieved with
SSS and tSSS on healthy subjects not wearing magnetized
material. MaxFilter with tSSS resulted in better suppression
of artifacts from external and nearby noise sources in com-
parison to SSS. In particular, the application of tSSS instead
of SSS was important with respect to the MEG gradiometers,
since SSS correction in 6% of the cases resulted in an increase
of the noise level in the MEG gradiometer data, and thus the
reliability of the gradiometer data decreased in comparison to
that before SSS. We also compared the performance of ICA
and SSP in reducing internal electrophysiological artifacts,
originating from eye movements and heart beats of the
participants. The ICA-based artifact correction performed
better than the SSP method. The SSP method reduced part
of the signal of interest along with the artifacts, and the SNR
was slightly higher after applying the ICA method than after
applying the SSP method. However, after ICA-based artifact
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EEG (channel 12) Magnetometer (channel 1341)

Gradiometer (channels 2222 and 2223)

Grand average event-related waveforms
Raw
ICA
SSP

0.4

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

(𝜇
V

)

(ms)
400350300250200150100500−50−100

(ms)
400350300250200150100500−50−100

(ms)
400350300250200150100500−50−100

−10
−8
−6
−4
−2
0(fT

) 2
4
6
8

10

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

(fT
/c

m
)

Figure 3: Grand average event-related waveforms. Showing the channels with the signal peak amplitude among the EEG channels,
magnetometers, and gradiometers, without any artifact correction (black) and after artifact correction based on Independent Component
Analysis (ICA) (red) and Signal Space Projection (SSP) (blue).

correction the baseline noise level increased, in particular in
the EEG and magnetometer channels, which have relatively
low SNR in the original data. These findings support both
the importance of reducing the bias on measures of evoked-
responses with EEG and MEG caused by artifacts and the
importance of minimizing the bias introduced by errors in
artifact correction methods.

With regard to the suppression of external noise, we
here observed that the averaged MMN evoked-response in
6% of the cases with the MEG gradiometers even became
more unreliable after applying SSS correction than before.
Possibly, the influence of nearby artifacts on the evoked-
response can become stronger after the external artifacts
have been reduced with the SSS. When tSSS is applied the
influence of such nearby artifacts on the evoked-responses
would be reduced. In general, it seems relevant to further
investigatewhether correctionmethods for reducing one type
of artifact, such as SSS, in some cases might enhance the
influence of other artifacts on the averaged event-related
waveform.

The comparisons of the ICA and SSP methods for
suppression of internal artifacts revealed particular biases
appearing after the corrections. For the SSP method, there
is a risk that the artifacts and signals of interest are not
described by orthogonal components [48]. We observed this
issue after applying the SSP artifact correction method, and
we found that part of the signal of interest was reduced
along with the influence of the artifacts. For the ICA
method, there is another risk that after correction on chan-
nels with relatively low SNR is applied—such as correction
on EEG channels, magnetometer channels, and channels

located distantly from the signal peaks—additional noise is
added to these channels. This happens because the errors
in estimating the mixing matrix for the ICA will increase
when the SNR decreases [60]. Our results emphasized this
issue in showing that the baseline noise level increased
after applying the ICA-based correction, in particular in the
EEG channels and in the MEG magnetometer channels, and
also the difference in SNR between applying ICA and SSP
was smaller for the EEG channels and MEG magnetometer
channels than for theMEG gradiometer channels, suggesting
a relatively smaller improvement for the EEG and MEG
magnetometer channels after applying the ICA-based artifact
correction.

In summary, our test results suggest that tSSS is recom-
mendable for reducing the influence of artifacts originating
from external and nearby sources instead of SSS only.We find
that the noise level decreases more with tSSS than with SSS in
this sample of EEG and MEG data from healthy participants
despite the fact that they were not wearing strongly magne-
tized materials. For the reduction of internal physiological
artifacts, we showed that the highest signal-to-noise ratio
(SNR) is achieved with ICA-based artifact correction on the
tested sample. However, both ICA- and SSP-based artifact
corrections are subject to certain limitations. In particular,
one must be aware of the risk when processing data with
relatively low SNR, such as EEG and MEG magnetometer
data, that artifact correction based on ICA may decrease the
interference from artifacts while simultaneously increasing
the noise level, due to increasing errors in estimating the
mixing matrix in the context of data with lower SNR
levels.
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comparison to the level (at 0% STD) in the raw data recording with tSSS only. Median values are shown in microvolts (𝜇V), femtoteslas
(fT), and femtoteslas per centimeter (fT/cm). Outliers more than 1.5 interquartile ranges from the edge of the 50% of the cases are denoted
with circles. Case numbers are provided for each outlier.
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Figure 5: Signal-to-noise ratios (SNR) achieved by applying artifact
correction based on Independent Component Analysis (ICA) or
Signal Space Projection (SSP). Tukey box plot showing the SNR
levels achieved by applying the ICA or SSP method in the signal
amplitude peak channel of the EEG, magnetometers (Mag.), and
gradiometers (Grad.) (the SNR shows the relationship between the
signal and noise level in single trials). Outliersmore than 1.5 (circles)
or 3.0 (stars) interquartile ranges from the edge of the 50% of
the cases are denoted with circles or stars, and case numbers are
provided for each outlier.
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