

Insights into the Genome of the Anaerobic Acetogen *Sporomusa* silvacetica DSM 10669

Jonathan R. Humphreys, a PRolf Daniel, b Anja Poehlein

Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom^a; Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, Germany^b

ABSTRACT *Sporomusa silvacetica* is a spore-forming, anaerobic acetogen isolated from soil derived from east central Germany. The genome contains genes of the Wood-Ljungdahl pathway required for carbon fixation and genes involved in the biosynthesis of the amino acid pyrrolysine. The genome (5.92 Mb) harbors 4,355 predicted protein-encoding genes.

Negativicutes, a class within the phylum *Firmicutes*, contains the anaerobic, bananashaped, endospore-forming acetogens belonging to the genus *Sporomusa*. Species within this genus are able to metabolize a variety of substrates including methanol, ethanol, betaine, and *N*,*N*-dimethylglycine (1). As *Sporomusa* strains are able to catalyze the formation of acetate from H₂-CO₂ using the Wood-Ljungdahl pathway, they are potential industrial candidates for waste gas usage (1–3). *Sporomusa silvacetica* DSM 10669 was isolated from aggregate forest soil derived from east central Germany, an area that is often subject to changes in aeration and redox potential (4). The adaptability of some *Sporomusa* strains to environments that are not strictly anaerobic is of interest, as these strains may be more tolerant to industrial fluctuations. Here, we present the draft genome of *S. silvacetica* DSM 10669.

Chromosomal DNA of *S. silvacetica* DSM 10669 was isolated using the MasterPure complete DNA purification kit (Epicentre, Madison, WI, USA). The extracted DNA was used to generate Illumina shotgun paired-end sequencing libraries, which were sequenced with a MiSeq instrument and the MiSeq reagent kit version 3 as recommended by the manufacturer (Illumina, San Diego, CA, USA). Quality filtering using Trimmomatic version 0.32 (5) resulted in 3,234,427 paired-end reads. The assembly performed with the SPAdes genome assembler software version 3.9.0 (6) resulted in 165 contigs (>500 bp) with an average coverage of 107-fold. The assembly was validated and the read coverage determined with QualiMap version 2.1 (7). The draft genome of *S. silvacetica* DSM 10669 consisted of a single chromosome (5,929,109 bp), with an overall G+C content of 42.95%. Automatic gene prediction and identification of rRNA and tRNA genes were performed using the software tool Prokka (8). The draft genome contained 14 rRNA genes, 93 tRNA genes, 4,355 protein-encoding genes with predicted functions, and 1,285 genes coding for hypothetical proteins.

The gene cluster encoding the enzymes of the Wood-Ljungdahl pathway for carbon fixation was present in the genome and showed the same orientation as the ones of *S. ovata* (9) and *S. sphaeroides* (10). Genes encoding the enzymes PylB, PylC, and PlyC involved in the biosynthesis of the amino acid pyrrolysine were also found. Pyrrolysine is known as the 22nd amino acid and is encoded by the recoding of the stop codon UAG (11). Genes encoding the Rnf complex and several gene cluster coding for hydrogenases were also present.

Received 7 August 2017 **Accepted** 18 August 2017 **Published** 21 September 2017

Citation Humphreys JR, Daniel R, Poehlein A. 2017. Insights into the genome of the anaerobic acetogen *Sporomusa silvacetica* DSM 10669. Genome Announc 5:e00983-17. https://doi.org/10.1128/genomeA.00983-17.

Copyright © 2017 Humphreys et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Anja Poehlein, apoehle3@gwdg.de.

Humphreys et al. genameAnnouncements[™]

Accession number(s). This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. LSLK000000000. The version described here is the first version, LSLK01000000.

ACKNOWLEDGMENTS

We thank Melanie Heinemann for technical support.

This work was supported by the Bundesministerium für Bildung und Forschung (ERA IB 7 Program, project Overcoming Energetic Barriers in Acetogenic Conversion of Carbon Dioxide [OBAC], FKZ 031 B0274C). The funders (BMBF) had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

- 1. Möller B, Oßmer R, Howard BH, Gottschalk G, Hippe H. 1984. *Sporomusa*, a new genus of gram-negative anaerobic bacteria including *Sporomusa sphaeroides* spec. nov. and *Sporomusa ovata* spec. nov. Arch Microbiol 139-388_306
- 2. Diekert G, Wohlfarth G. 1994. Metabolism of homoacetogens. Antonie Van Leeuwenhoek 66:209–221. https://doi.org/10.1007/BF00871640.
- Tremblay PL, Höglund D, Koza A, Bonde I, Zhang T. 2015. Adaptation of the autotrophic acetogen *Sporomusa ovata* to methanol accelerates the conversion of CO2 to organic products. Sci Rep 5:16168. https://doi.org/ 10.1038/srep16168.
- Kuhner CH, Frank C, Griesshammer A, Schmittroth M, Acker G, Gössner A, Drake HL. 1997. Sporomusa silvacetica sp. nov., an acetogenic bacterium isolated from aggregated forest soil. Int J Syst Bacteriol 47:352–358. https://doi.org/10.1099/00207713-47-2-352.
- Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10 .1093/bioinformatics/btu170.
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new

- genome assembly algorithm and its applications to single-cell sequencing, J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.
- García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF, Conesa A. 2012. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28:2678–2679. https://doi.org/ 10.1093/bioinformatics/bts503.
- Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.
- Poehlein A, Gottschalk G, Daniel R. 2013. First insights into the genome of the Gram-negative, endospore-forming organism *Sporomusa ovata* strain H1 DSM 2662. Genome Announc 1(5):e00734-13. https://doi.org/ 10.1128/genomeA.00734-13.
- Villamizar GA, Daniel R, Poehlein A. 2017. First insights into the genome sequence of the strictly anaerobic homoacetogenic *Sporomusa spha-eroides* strain E (DSM 2875). Genome Announc 5(12):e00037-17. https://doi.org/10.1128/genomeA.00037-17.
- Zhang Y, Baranov PV, Atkins JF, Gladyshev VN. 2005. Pyrrolysine and selenocysteine use dissimilar decoding strategies. J Biol Chem 280: 20740–20751. https://doi.org/10.1074/jbc.M501458200.

Volume 5 Issue 38 e00983-17 genomea.asm.org **2**