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Abstract: Stress has become an increasingly serious problem in the current society, threatening
mankind’s well-beings. With the ubiquitous deployment of video cameras in surroundings,
detecting stress based on the contact-free camera sensors becomes a cost-effective and mass-reaching
way without interference of artificial traits and factors. In this study, we leverage users’ facial
expressions and action motions in the video and present a two-leveled stress detection network
(TSDNet). TSDNet firstly learns face- and action-level representations separately, and then fuses the
results through a stream weighted integrator with local and global attention for stress identification.
To evaluate the performance of TSDNet, we constructed a video dataset containing 2092 labeled video
clips, and the experimental results on the built dataset show that: (1) TSDNet outperformed the
hand-crafted feature engineering approaches with detection accuracy 85.42% and F1-Score 85.28%,
demonstrating the feasibility and effectiveness of using deep learning to analyze one’s face and action
motions; and (2) considering both facial expressions and action motions could improve detection
accuracy and F1-Score of that considering only face or action method by over 7%.
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1. Introduction

Stress has become more and more widespread and severe in the modern society. Stress that is
left unchecked and handled could contribute to many health problems, threatening people’s feelings,
thoughts, behaviors, and well-being. Being able to detect stress can help people take active steps to
manage the stress before bad consequences are incurred.

Traditional stress detection relies on psychological questionnaires [1] or professional psychological
consultation [2]. As the results of questionnaires depend largely on the answers given by individuals,
the stress measure is quite subjective. When people choose to express their psychological states with
reservations, the result scale would be biased. To overcome the limitations of the questionnaire surveys,
the methods of automatically detecting stress by sensing an individual’s physical activities through
wearable devices such as mobile phones with embedded sensors [3–8] or based on physiological
signals such as heart rate variability HRV, electrocardiogram ECG, galvanic skin response GSR, blood
pressure, electromyogram, electroencephalogram EEG, etc. from dedicated sensors [9–12] have been
developed. While these methods are able to objectively sense people’s stress states, they usually
demand wearable equipments and sensors, which could hardly realize contact-free measurement.

Currently, the ubiquitous deployment of contact-free video cameras in surroundings, together
with the rapid progress of data collection and analysis techniques, offers us another channel to detect
one’s stress based on image sequences captured from a monitoring video camera. Compared with
previous sensory devices, the later offers the following three benefits. First, it is more convenient,
particularly in places like schools, hospitals, and restricted areas like prisons, where no carry-on
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devices are needed or allowed. Second, it has a very long standby time and can easily reach mass
audience at a very low-cost. Third, the continuous frames it captures enable us to grasp and analyze
people’s stressful states more naturally without interference of artificial traits and factors.

The aim of this study is to leverage contact-free video cameras for stress detection.
There are several recent studies reporting findings that facial signs and expressions can provide

insights into the identification of stress [13–15], and symptoms of stress are usually linked with
fluctuations in physiological signals (e.g., heart rate, blood pressure, galvanic skin response, etc.) and
physical activities [16]. Most of the existing work in the literature focused on extracting facial signs
such as mouth activity, head motion, heart rate, blink rate, gaze spatial distribution, pupil dilation,
and eye movements from different facial regions [13,17,18], or used the Facial Action Coding System
(FACS) [19] and extracted Action Units (AUs) from the face frames for stress detection [20,21].

Deep learning has been widely and successfully applied in many fields such as computer vision,
emotion analysis and so on. Different from the existing work which extracted the features through
hand-crafted feature engineering methods, in this work, we conduct stress detection through deep
learning of features’ representations. Furthermore, beyond facial regions analysis, we leverage and
integrate user’s action cues to enhance the video-based stress detection. The rationale could be
glimpsed from Figure 1, which shows two image sequences of the same person watching an unstressed
video clip (upper) and stressed video clip (lower), respectively. The facial expressions of the person
under two states are very similar, but her action motions offer some clues for the discrimination of the
stressful state. The subject touched the ear unconsciously when unstressed, but grabbed the hair above
the head when she felt stressed. In this case, action motions and facial expressions could complement
each other with valid information contributing to stress detection.

Figure 1. Two image sequences of the same person when watching an unstressed video clip (upper)
and stressed video clip (lower).

To this end, we proposed a Two-leveled Stress Detection Network (TSDNet), which firstly learns
face- and action-level representations separately, and then fuses the results through a stream weighted
integrator for stress identification.

To address the challenge that images manifesting subject’s stressed states usually hide in a long
sequence of image frames with subtle distinctions, in addition to fusing actions and facial expressions,
we designed a number of attention mechanisms, including face-level multi-scaled pooling attention,
action-level frame attention, aiming to capture affective facial expressions and action motions from the
video. A stream weighted integrator with local and global attention was also implanted to strengthen
the detection performance.

Overall, the contributions of the paper can be summarized as follows.

• We presented a two-leveled stress detection network (TSDNet), which learns to fuse facial
expressions and action motions in videos for stress detection.

• A set of attention mechanisms were particularly designed to capture affective facial expressions
and action motions from the video, and integrate the results with local and global attention.

• A video dataset containing 2092 labeled video clips was constructed. The experimental results on
the built dataset showed that: (1) TSDNet outperformed the hand-crafted feature engineering
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approaches with detection accuracy 85.42% and F1-Score 85.28%, demonstrating the feasibility
and effectiveness of using deep learning to analyze one’s face and action motions; (2) considering
both facial expressions and action motions could effectively improve detection accuracy and
F1-Score of that considering only face or action method by over 7%.

The remainder of the paper is organized as follows. In Section 2, we provide relevant related
work on stress detection. In Section 3, we describe materials and our method of video-based stress
detection. We evaluate the performance of the proposed method in Section 4, conclude the paper with
a brief discussion of future work in Section 5.

2. Related Work

In this section, we review some closely related work on image-based and video-based
stress detection.

2.1. Image-Based Stress Detection

Observing that the signs of stress could be more easily detected by looking at the condition of
the face, particularly the lines or wrinkles around the nose, mouth, and eyes, [22,23] investigated
three facial parts (the eyes, nose and mouth) which are significant for stress detection. [23] extracted
Gabor filter and HOG (Histogram of Oriented Gradients) features from each part of the face in pixels
through visual image encoding process, and fed them into three different SVM classifiers. The obtained
three results were then fed into slant binary tree to get the final results. Experiments were performed
on the ten-women JAFFE dataset, where each subject has a stress expression image and a neutral
expression image [24]. The experimental result shows that the nose is a part of the face that mostly
indicates stress, and about 86.7% of detection accuracy can be achieved. Along the same line [22]
extracted relevant facial features from an image pixel using DoG (Difference of Gaussians), HOG,
and DWT (Discrete Wavelet Transform) histogram methods, and then combined and reconstructed
the obtained multi-histogram features into global features. A Convolutional Neural Network with
three convolutional layers and two max-pooling layers was trained on the color FERET face database.
The stress recognition accuracy reached about 95%.

As symptoms of stress are usually linked with fluctuations in physiological (e.g., heart rate,
blood pressure, galvanic skin response, etc.) and physical activities [16], such facial features like
gaze spatial distribution, saccadic eye movement, pupil dilation, and blink rate, etc., were utilized to
distinguish stress levels. In [25], the authors detected stress and anxiety based on a set of facial signs,
including mouth activity, head motion, heart rate, blink rate, and eye movements. Methods used for
extracting these features from different facial regions were discussed and the performance was tested
on a data set containing 23 subjects.

2.2. Video-Based Stress Detection

2.2.1. Facial Cues Based

Ref. [13] extended the previous image-based stress detection work, and proposed a stress and
anxiety analysis framework based on facial cues recorded from videos. It extracted four groups
of features (eyes related features, mouth related features, head movements and heart rate) from
facial videos, and further analyzed the correlation between facial parameters and the amount of
stress/anxiety perceived by the participants. The experiment results showed that the four groups
of facial cues including eyes related features, mouth activity, head movements and heart rate were
effective for stress/anxiety classification and could well discriminate stress and anxiety.

Based on the findings that mouth activities correlate with signs of psychophysical status, [17]
developed a semi-automated algorithm to extract mouth activity from videos. The algorithm
utilized Eigen-features and template-matching to classify mouth actions. The performance of the
proposed mouth action classification algorithm was evaluated on a dataset containing 25 subjects,
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the classification accuracy could reach 89%. Furthermore, the proposed algorithm was evaluated
for stress/anxiety assessment. The tests on 23 participants demonstrated that the stressed/anxious
participants were more likely to open mouth and their openness intensity was greater.

Ref. [18] developed a real-time non-intrusive monitoring system, which detected two stress related
emotional states (anger and disgust) of the driver from facial expressions. It used a near-infrared
camera on the dashboard to capture the near frontal view of the driver’s face. The developed system
consisted of two parts. The first part was face acquisition module, which detected and tracked the
drivers’ faces and captured the facial landmarks. The second part was stress detection module,
where a pre-trained emotion detection model was applied to detect the facial expressions and then
the frame level expressions were integrated to determine the stress of the driver on sequence level.
The experiments on the two recorded datasets (one was recorded in an office and the other is recorded
in a car) showed that the system can reach 90.5% accuracy for in-door tests and 85% accuracy for in-car
tests [18].

2.2.2. Facial Action Units (AUs) Based

Ref. [20,21] used the Facial Action Coding System (FACS) to extract Action Units (AUs) from the
face frame for stress detection. As known, FACS [19] divides the face into 46 primary action units
(AUs) from upper-level to lower-level. Under the assumption that each emotion is associated with
different facial muscle patterns, FACS determines the emotions of the individual by analyzing facial
regions where these muscles are activated.

Ref. [20] examined five one-hour long videos. Each video was about a subject who was typing,
resting, and exposed to a stressor task (i.e., a multitasking exercise combined with social evaluation).
Then, 17 different Action Units (AUs) like Inner Brow Raiser, Brow Lowerer and Dimpler were
extracted from upper-level to lower-level face frame-wise. Based on the extracted features, four
classical machine learning methods (i.e., Random Forest, LDA, Gaussian Naive Bayes and Decision
Tree) were employed to detect mental stress. The experimental result showed that the proposed
AUs-based approach was able to achieve an accuracy of up to 74% in subject independent classification
and 91% in subject dependent classification, indicating that the AUs which are most relevant for stress
detection are not consistently the same for all 5 subjects, and using facial cues, a strong person-specific
component was found during classification.

Ref. [21] decided Depression Anxiety Stress Scale (DASS) levels based on 31 AUs extracted
through FACS and a three-layered noninvasive architecture. The first layer normalized the video
frames, and classified the extracted AUs using a method based on Active Appearance Models (AAM)
and a set of multi-class Support Vector Machines (SVMs). The second layer built a matrix based
on the intensity levels of the selected AUs. Finally, obtaining the matrix output from the second
layer, the third layer employed a neural network to analyze the patterns and predict the DASS
levels (Normal, Mild, Moderate, Severe, or Extremely Severe) for each of the three emotional states
(depression, anxiety, and stress). The experimental results showed that the method can achieve 87.2%
accuracy for depression, 77.9% for anxiety, and 90.2% for stress.

2.2.3. Fusion of Visual and Thermal Spectrums for Stress Recognition

Inspired by the research results that stress could be successfully detected from thermal imaging
due to changes in skin temperature under stress [26], as well as the successful use of both thermal
spectrum (TS) and visible spectrum (VS) imaging in modeling, analyzing, and recognizing facial
expressions [27–34] proposed a stress recognition method by fusing visual and thermal spectrums of
spatio-temporal facial data. A temporal TS and VS video database ANUStressDB, containing videos
of 35 subjects watching stressful and non-stressful film clips, was proposed for stress recognition.
It used a hybrid of a genetic algorithm (GA) and SVM to select salient divisions of facial block
regions and decide whether using the block regions can enhance the performance of stress recognition.
The experimental results showed that compared with the stress recognition performance using VS or
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TS videos independently, there is an obvious improvement after using the fusion of facial patterns
from VS and TS videos. Moreover, the genetic algorithm selection method led to better performance
than using all the facial block divisions. The best performance was obtained from HDTP (dynamic
thermal patterns in histograms) features fused with LBP-TOP (local binary patterns on three orthogonal
planes) features for TS and VS videos using a hybrid of a genetic algorithm and a SVM, achieving a
86% accuracy.

Furthermore, [35] further extended the work by representing a thermal image as a group of
super-pixels, and extracting the features from thermal super-pixels rather than from pixels directly
as done in [34]. According to [36], Super-pixel (a group of adjacent pixels which have similar
characteristics and special information) representation has been used for face recognition. Besides,
a thermal super-pixel is thus a group of pixels with similar color (temperature) which seems like a
more natural representation for thermal images as compared to dividing images into non-overlapping
blocks. In this way, with highly correlated adjacent pixels grouped together, the effectiveness of stress
recognition can be improved and the processing speed has also been increased. The experimental
results on ANUstressDB database showed that the method outperformed [34], achieving a 89%
classification accuracy.

The work reported here differs from the previous work in the following two aspects. Firstly, we
took a deep learning strategy to avoid the labor-intensive hand-crafted feature engineering approach.
Secondly, besides facial regions analysis, we employed user’s action cues to enhance the detection
performance. A stream weighted integration method embedded with local and global attention
mechanisms was particularly designed and evaluated.

3. Materials and Methods

3.1. Data Collection

We invited 122 volunteers (58 males and 64 females of age 18–26) to participant in our study.
The participants are college students from eight universities located in three different places (Beijing,
Harbin, and Shanghai) in China. A Participant Consent Form was issued and signed by each participant
before the study.

Preparation for Data Collection. There are many kinds of stressors that may stimulate stress.
Playing computer games [37,38], answering difficult questions [39], and solving difficult problems [40]
are some example stressors. In this work, we referred to the method of using infrared cameras to
record the affective reactions (neutral, relaxed, and stressed) of the participants when they watched
three different types of 2-min video clips [25,40]. The neutral video clips were about scenery or food
making. The relaxed ones were highlights of variety show. The stressed ones were science programs
with rich knowledge. Each scientific program was followed by a question-answering test. Each test
contained ten questions. Half of them were multiple choices and the other half were blank fillings.
The total score was 100. We designed the questions in such a way that it was very hard to come up with
the correct answers unless the participants could understand the content and grasp the knowledge
points well enough in the video. To stimulate the cognitive stress a bit, before the test, we announced
to the participants that they could get some extra rewards if achieving test scores over 50 as incentive.

Procedure of Data Collection. We let the participants firstly watch a relaxed video clip followed
by a neutral one with 10 s as a break in between. Before playing the third science video clip, we guided
the participants to go through the follow-up test questions for 30 s in advance, and completed the
online tests after watching the video clip.

We developed an application tool to automatically collect and save the videos of the participants
when they watched the three types of video clips. Correspondingly, each obtained video lasted for
2 min. The videos collected while the participants watching the relaxed and neutral video clips were
labeled “unstressed”, and “stressed” otherwise.
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Pre-Processing of Collected Video Data. We collected totally 490 videos about the participants.
The total duration of the collected videos was 2 h 38 min 52 s. The frame rate of the camera
used is 30 fps.

We dropped the collected videos which failed to capture the faces due to the misaligned camera
or the dim ambient light, or had the short recording time due to the abnormal program exit.

To cut down the training time, we partitioned each video into eight 15-s samples. If the last
sample was less than 15 s, we appended it with its precedent sample. In this way, we acquired 2092
video samples, including 920 labeled “stressed” and 1172 labeled “unstressed”.

We randomly split the subjects into three groups, where 60% of the subjects for training, 20% of
the subjects for validation, and the rest 20% of the subjects for testing. Especially, to obtain the more
reliable results, we did three divisions and calculated the average results. The numbers of segmented
15-s video samples used for training, validation, and testing are given in Table 1.

Table 1. Video samples used for training, validation, and testing.

Divisions Video Samples #Training #Validation #Testing #Total

1
Stressed 595 173 152 920
Unstressed 746 214 212 1172
Total 1341 387 364 2092

2
Stressed 590 171 159 920
Unstressed 741 228 203 1172
Total 1331 399 362 2092

3
Stressed 560 182 178 920
Unstressed 739 212 221 1172
Total 1299 394 399 2092

We further resized all the input images (including face images, still images, and optical flows) to
70 × 70 pixels. To prevent over-fitting, we conducted a random 64 × 64 cropping and normalization to
the training images, and a center-around 64 × 64 cropping and normalization to the validation and
testing images.

3.2. Framework

The task of our video based stress detection is to sense the affective state (stressed or
unstressed) of a user based on his/her video data V = ( f rame1, f rame2, · · · , f ramen), where
f rame1, f rame2, · · · , f ramen is a sequence of image frames of the video.

The proposed model TSDNet firstly learns face- and action-level representations separately,
and then fuses the results through a stream weighted integrator with local and global attention for
stress identification.

3.2.1. Face-Level Representation Learning

The learning of the face-level representation proceeds in three steps.
Step 1: Localize the face region in each frame of the video.
We adopted the technique [41] to automatically extract the face region in each frame, and

then invited 5 volunteers to manually check the obtained face images. Let FaceSeq(V) =
{ f ace1, f ace2, · · · , f acen} denote a sequence of face images framed from V.

Step 2: Identify the key face images from the sequence of face images.
Considering the subtle differences among the face images in the video, to capture affective

expressions hidden in the sequence of similar face images and strengthen the detection performance,
we identified two key face images (the most expressive face image and the most expressionless face
image) from the sequence of face images. Their distance would be served as the basis for stress
detection in the next Step 3.
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We turned the identification of these two key face images into a binary classification and sorting
problem. For each face image, we expected to obtain the probability eProb(·) that represents whether
this face is expressive or not.

We built an expression classifier to discriminate expressive and expressionless face images based
on Resnet [42]. We trained the expression classification network on the modified FER2013 dataset [43].
FER2013 is the dataset for facial expression recognition. It contains 7 labels (i.e., “angry”, “disgust”,
“fear”, “happy”, “sad”, “surprise”, “neutral”). We kept the data labeled “neutral" as “expressionless”
and regarded the other six kinds of labels as “expressive”.

We fed each face image f ace1, f ace2, . . . , f acen ∈ FaceSeq(V) into the pre-trained binary
expression classification model, and got the probability eProb( f ace1), eProb( f ace2), · · · , eProb( f acen).
We sorted the probabilities in an descending order, and selected the corresponding first and last
face image as the most expressive face image (denoted as f acee) and most expressionless face image
(denoted as f acel).

Step 3: Learn the face-level representation.
The face level learning of one’s affective state was based on the difference between the most

expressive and the most expressionless face images. Apart from the multi-scaled fine and coarse
grained differences exploration, we also investigated possible difference correlations between the two
images. Through the thorough and extensive comparison of the most expressive and expressionless
face images, we established the face level representation for stressful state detection.

(1) Computing the Fine-Grained Difference

Applying two parameter-shared Resnets to face image f acee and f acel , we acquired their basic
feature maps Resnet( f acee) and Resnet( f acel) in the domain of RC×H×W , where C, H, and W represent
the channel number, height, and weight, respectively. In the study, C = 512, H = 8, and W = 8.

We computed their fine-grained difference D0( f acee, f acel) via an element-wise minus operation:

D0( f acee, f acel) = Resnet( f acee)− Resnet( f acel) ∈ RC×H×W (1)

To learn the difference further, we fed D0( f acee, f acel) into a residual block, consisting of a
two-convolution layer, a Batch Normalization layer, and an active function (i.e., ReLU function),
and obtained output D( f acee, f acel) with residual connection.

(2) Computing the Coarse-Grained Differences

To target at high-level differences covering multiple regions of the face, we rolled up from the
basic fine-grained difference between f acee and f acel , and derived coarse-grained differences through
a multi-scale pooling operation with a two-layered attention mechanism.

As shown in Figure 2, an average pooling with kernel size of (1 × 1), (2 × 2), and (4 × 4) was
enforced on D( f acee, f acel), generating three coarse-grained differences D1×1 ∈ RC×H×W , D2×2 ∈
RC× H

2 ×
W
2 , and D4×4 ∈ RC× H

4 ×
W
4 , respectively.

To learning the influential distribution of each coarse-grained metric, an attention block using
convolutional layers, batch normalization layers, and ReLU function layers with Softmax function was
designed, and obtained the attention distribution feature maps Att1×1 ∈ RC×H×W , Att2×2 ∈ RC× H

2 ×
W
2 ,

and Att4×4 ∈ RC× H
4 ×

W
4 .
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Figure 2. Face-level representation learning.

AttB(·) = Conv(ReLU(BatchNorm(·))) (2)

Att1×1 = So f tmax(AttB(AttB(AttB(Conv(D1×1)))))

Att2×2 = So f tmax(AttB(AttB(AttB(Conv(D2×2)))))

Att4×4 = So f tmax(AttB(AttB(AttB(Conv(D4×4)))))

(3)

We employed element-wise multiply to the attention distribution feature maps and the original
post-pooling feature maps, mapping the attention distribution back to the post-pooling feature maps.

AD1×1 = D1×1 × Att1×1 + D1×1

AD2×2 = D2×2 × Att2×2 + D2×2

AD4×4 = D4×4 × Att4×4 + D4×4

(4)

For ease of computation, we reshaped AD1×1, AD2×2, and AD4×4 into two dimensions, i.e.,

AD1×1 ∈ RC×H×W reshape−→ AD′1×1 ∈ RC×HW ,

AD2×2 ∈ RC× H
2 ×

W
2

reshape−→ AD′2×2 ∈ RC× HW
4 ,

and AD4×4 ∈ RC× H
4 ×

W
4

reshape−→ AD′4×4 ∈ RC× HW
16 ,

and concatenated them together as the face level representation R.

R = concat(AD′1×1, AD′2×2, AD′4×4) ∈ RC× 21×H×W
16

(3) Learning the Difference Correlations

Considering difference correlations exist among different parts of the face (e.g., month region and
nose region usually differ synchronously in the most expressive and most expressionless face images),
we implanted a self-attention mechanism [44] to extract possible correlation representations Rq, Rk,
and the original information remaining representation Rv first.

Rq = ReLU(R×W4 + b4)

Rk = ReLU(R×W5 + b5)

Rv = ReLU(R×W6 + b6)

(5)

where W4, W5, W6 ∈ R 21×H×W
16 × 21×H×W

16 and b4, b5, b6 ∈ RC× 21×H×W
16 are trainable parameters.
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We applied the scaled dot product operation twice to obtain the matrix representation of the
correlation between each pair of channels, and then got the weighted average representation S.

S = So f tmax(
Rq × RT

k√
C

)× Rv, (6)

where C is the channels and S ∈ RC× 21×H×W
16 .

Finally, we reshaped S to one dimension:

S ∈ RC× 21×H×W
16

reshape−→ S′ ∈ R
21×C×H×W

16

and used a fully connected layer to get the final face level representation.

U f ac = ReLU(S′ ×W7 + b7) (7)

where W7 ∈ R 21×H×W
16 ×m, b7 ∈ Rm are trainable parameters, and m = 20 in the study.

3.2.2. Action-Level Representation Learning

The learning of the action-level representation intends to grasp user’s action cues linked to
stress. We explored the used of two streams derived from the user’s video V, which were (1) an
image sequence StiSeq(V) = ( f rame1, f rame2, · · · , f ramen), denoting still image frames, and (2)
an optical flow MotSeq(V) = (mot1on1, motion2, · · · , motionn−1), representing the motion between
frames. We used the OpenCV warppers (https://github.com/feichtenhofer/gpu_flow) for optical flow
extraction. Two networks were built for concurrently learning action-level representations. As both
networks followed the same structure, we detail one of them in the following. Figure 3 shows the two
steps of action-level representation learning based on the user’s still image sequence StiSeq(V).

(a)Representation learning of image sequence stream.

(b)Representation learning of optical flow stream.

Figure 3. Action-level representation learning.

Step 1: Learn and assign contribution weights to the still image frames.

https://github.com/feichtenhofer/gpu_flow
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Like the previous face images in Section 3.2.1, we applied Resnet [42] to the
still images f rame1, f rame2, · · · , f ramen ∈ StiSeq(V) to get respective basic feature maps
Resnet( f rame1), Resnet( f rame2), · · · , Resnet( f ramen) ∈ R2048×2×2.

To cut down the size of the feature maps, we executed the (2× 2) average pooling to each basic
feature map and lowered the 3-dimension to 1-dimension:

f ′i = Pool(Resnet( f ramei)) ∈ R2048×1×1 reshape−→ fi ∈ R2048

where (1 ≤ i ≤ n) and ( f ramei ∈ StiSeq(V)). We concatenated the obtained feature maps
f1, f2, · · · , fn together:

F = [ f1, f2, · · · , fn]

We computed a contribution distribution matrix AttF, which represents the importance and
contribution of each still frame.

F′ = ReLU(F×W1 + b1) ∈ Rn (8)

AttF = So f tmax(W2 × F′ + b2) ∈ Rn (9)

where W1 ∈ R2048×1, W2 ∈ Rn×n, and b1, b2 ∈ Rn are trainable parameters.
In this way, we could bind the still frames with respective contribution weights through applying

element-wise multiplication with residual connection.

F̃ = AttF × F + F ∈ Rn×2048 (10)

Step 2: Learn the action-level representation based on the sequence of the weighted still
image frames.

We presented F̃ ∈ Rn×2048 in a frame-wise representation F̃ = (F̃1, F̃2, · · · , F̃n), where F̃i ∈ R1×2048.
We fed these weighted frames into LSTMs for sequential modeling, with an aim to capture the

sequential action information.
ht, ct = LSTM(F̃t, ht−1, ct−1), (11)

where ht and ct respectively represent the hidden state and the cell state at the t-th time in the sequence
(F̃1, F̃2, · · · , F̃n). With the last state cn out of the LSTMs, we generated the action-level representation
based on the still image frame sequence:

Usti = ReLU(W3 × cn + b3), (12)

where Usti ∈ Rm is the output, W3 ∈ Rm×2048 and b3 ∈ Rm are trainable parameters.
In a similar manner, we could get Umot as the action-level representation based on the motion

sequence in the video (as shown in Figure 3b).

3.2.3. Integrating Face- and Action-Level Representations for Stress Detection

We designed a weighted integration with local and global attention method to learn
the contributions of face-level and action-level streams and incorporated them as weights for
stress identification.

As shown in Figure 4, the three inputs Usti, Umot, and U f ac went through the respective local
attention layer with three weights Usti, Umot, and U f ac being derived.

wsti = ReLU(W8 ×Usti + b8) (13)

wmot = ReLU(W9 ×Umot + b9) (14)

w f ac = ReLU(W10 ×U f ac + b10) (15)
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where W8, W9, W10 ∈ R1×m, and b8, b9, b10 ∈ R1 are trainable parameters.

Figure 4. Integrating face- and action-level representations for stress detection.

We concatenated the three weighted streams into one, which was then passed through a global
attention layer, and arrived at the final classification layer for stress identification.

U = [wsti ×Usti, wmot ×Umot, w f ac ×U f ac] ∈ R3m (16)

G = ReLU(W11 ×U + b11)×U + U ∈ R3m (17)

y = So f tmax(W12 × G) (18)

where W11 ∈ R3m, b11 ∈ R3m, and W12 ∈ Rclassnum×3m are trainable parameters, and classnum = 2 in
this paper.

4. Results

4.1. Evaluation Metrics

We evaluated our proposed TSDNet on the collected video dataset. We compared the performance
of TSDNet and several existing methods in terms of four widely used metrics: F1-Score, precision,
recall, and accuracy, where

F1-Score is an often-used metric in the fields of information retrieval and natural language
processing. It is interpreted as the weighted average of precision and recall. It is a measure of the
statistical accuracy of the model given as follows:

F1− Score(precision, recall) =
2× Recall × Precision

Recall + Precision

Recall is the measure of the ability of the model to select instances of a certain class from the
dataset. It is the sensitivity of the model defined as:

Recall =
TP

TP + FN

where TP is the number of true-positive classifications and FN is the number of
false-negative classifications.

Precision is the measure of the accuracy if a specific class is classified:

Precision =
TP

TP + FP

where FP is the number of false-positive classifications.
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Accuracy is the measure of the accuracy over all the classes:

Accuracy =
TP + TN

TP + FP + TN + FN

4.2. Implementation Details

We followed the uniform random distribution U (−0.001,0.001) to initialize all the trainable
parameters in the model. The learning rates were initialized as 0.01. All the learning rates were divided
by 2 every 15 epochs. The batch size was 64. We used 120 epochs to train our stress detection model.
The optimization process fine-tuned all the layers with stochastic gradient descent (SGD) through a
weight decay of 0.01 with a momentum of 0.9.

As the study focused on low-end video camera without thermal spectrums, we compared
the performance of our method with the following two categories of video-based stress
detection approaches.

(1) Action Units (AUs) based: (1) The Dependent Model [20] extracted 17 different Action Units
(AUs) from videos of people’s facial expressions, and applied different classifiers (including Random
Forest, Gaussian Naive Bayes, and Decision Tree) to detect stress. (2) FDASSNN [21] also employed
the Facial Action Coding System (FACS) to extract facial action units as features, and then constructed
a three-layered neural network architecture to detect Depression Anxiety Stress Scale levels.

(2) Facial Cues (FCs) based: [13] was a representative approach, which extracted a set of facial
signs including mouth activity, head motion, heart rate, blink rate, and eye movements from different
facial regions to classify one’s stress and anxiety level.

Our implementation was based on the deep learning framework PyTorch. All the experiments
were conducted on two NVIDIA GTX Titan X GPU with 24 GB on-board memory in total.

4.3. Performance Evaluation

Three sets of experiments were conducted to evaluate the performance of TSDNet in stress
detection, as well as its design details, including face-level, action-level, and integration local and
global attention mechanisms and different integration strategies.

4.3.1. Experiment 1: Performance Comparison

Table 2 shows the performance of our TSDNet method compared with two other categories of
video-based stress detection methods. TSDNet outperformed the best among all the methods with
the highest accuracy 85.42% and F1-Score 85.28%. In comparison, the Action Units based approach
(FDASSNN) achieved up to 74.11% of detection accuracy and 73.71% of F1-Score, and the Facial Cues
based approach (FC) had the lowest accuracy 46.64% and F1-Score 42.61%. The results demonstrated
the feasibility and advantages of using deep learning to analyze one’s face and action motions over the
traditional hand-crafted feature engineering strategy.

Table 2. Performance comparison among two-leveled stress detection network (TSDNet) and two other
categories of video-based stress detection methods.

Category Method Accuracy F1-Score Precision Recall

FCs-based FC 46.64% 42.61% 52.47% 49.98%

Dependent Model (Random Forest) 67.17% 66.82% 66.97% 67.14%

AUs-based Dependent Model (Gaussian Naive Bayes) 70.46% 70.28% 71.39% 71.08%
Dependent Model (Decision Tree) 68.77% 68.35% 68.36% 68.41%
FDASSNN 74.11% 73.71% 74.00% 74.06%

Face only 78.62% 78.17% 78.31% 77.97%
TSDNet Action only 78.40% 78.13% 78.20% 78.60%

Face + Action 85.42% 85.28% 85.32% 85.53%
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From the TSDNet’s confusion detection matrix shown in Table 3, we can find that TSDNet worked
evenly well in stress detection.

Table 3. Confusion matrix of TSDNet in stress detection.

Actual
Detected Stressed Unstressed

Stressed 86.91% 13.09%

Unstressed 15.72% 84.28%

Moreover, considering the motions of both face and action in TSDNet could effectively improve
the detection accuracy and F1-Score of that considering only face or action method by over 7%.

4.3.2. Experiment 2: Effectiveness of Attention Mechanisms in TSDNet

The second experiment investigated the effectiveness of different attention mechanisms (including
face-level multi-scaled pooling attention, action-level frame attention, and integration local and global
attention), which we designed and incorporated in TSDNet. We conducted three ablation studies
which respectively removed the attention mechanisms from TSDNet. From the results presented
in Figure 5, we can find that without the face-level multi-scale pooling attention, action-level frame
attention, and integration local and global attention, the detection accuracy and F1-score respectively
drop about 5%, 3%, and 3%, respectively. The results verify the effectiveness of our designed attention
mechanisms for stress detection.

(a)face-level multi-scale pooling
attention

(b)action-level frame attention (c)integration local and global
attention

Figure 5. Effectiveness of attention mechanisms in TSDNet.

In the face-level multi-scaled pooling attention, we took an average pooling with kernel size of
(1 × 1), (2 × 2), and (4 × 4). We compared the different pooling combination methods, i.e., (1 × 1) +
(2 × 2) pooling, (1 × 1) + (2 × 2) + (4 × 4) pooling, and (1 × 1) + (2 × 2) + (4 × 4) + (8 × 8) pooling.
As shown in Table 4, the pooling (1 × 1) + (2 × 2) + (4 × 4) achieved the best result, and more or less
pooling might lead to a similar decline in accuracy and F1-Score.

Table 4. Performance of pooling sizes in the face-level multi-scaled pooling attention.

No Pooling Combination Methods Accuracy F1-Score Precision Recall
(1 × 1) (2 × 2) (4 × 4) (8 × 8)

1 X × × × 81.42% 81.13% 81.30% 81.09%

2 X X × × 82.13% 81.82% 81.88% 81.87%

3 X X X × 85.42% 85.28% 85.32% 85.53%

4 X X X X 83.37% 83.03% 83.34% 83.02%
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4.3.3. Experiment 3: Effectiveness of the Stream Weighted Integration Method in TSDNet

We compared our designed stream weighted integration with local and global attention method
with three other integration approaches, which are early integration, loss-based early integration,
and later integration, as illustrated in Figure 6.

Figure 6. Three other integration methods: Early integration, loss-based early integration, and later
integration. In the loss-based early integration Loss = λ1loss1 + λ2loss2 + λ3loss3 + λ4loss4, λ1, λ2, λ3,
and λ4 are set as 0.2, 0,2, 0,2, and 0,4, respectively.

Table 5 shows the performance of different integration methods in stress detection. The designed
stream weighted integration method used in TSDNet achieved the best result with 85.42% in accuracy
and 85.28% in F1-Score. It verified that in different scenes Usti, Umot and U f ac contributed differently,
and the stream weighted integration with local and global attention method could automatically
distribute the weights of the three streams under different situations.

Table 5. Performance of different integration methods.

Integration Method Accuracy F1-Score Precision Recall

Early Integration 82.49% 82.22% 81.86% 81.63%
Loss-based Early Integration 84.44% 84.24% 84.41% 84.31%
Late Integration 82.20% 82.04% 82.05% 82.31%
Weighted Integration with Local and Global Attention 85.42% 85.28% 85.32% 85.53%
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5. Conclusions

In this paper, we presented a video-based Two-leveled Stress Detection Network (TSDNet),
which integrates face-level detector and action-level detector to understand facial expressions and
action motions for stress identification. In particularly, we designed a face-level multi-scale pooling
attention mechanism and an action-level frame attention mechanism. The former employed the
multi-scaled average pooling with different kernel sizes to grasp stress-related facial features, and the
latter focused on key body movement frames related to stressed states. A stream weighted integrator
with local and global attention was used to fuse the results from face- and action-level detectors.
We built a video dataset containing 2092 labeled video clips, and evaluated the performance of TSDNet
on the data set. The experimental results show that TSDNet outperformed the existing hand-crafted
feature-engineering strategies, and integrating face-level and action-level detectors could improve
detection accuracy and F1-Score by over 7%.

In future work, we plan to add the audio stream into the framework to explore the audio–video
methods for stress detection.
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