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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with two hallmarks: $-amyloid plagues and neurofibrillary
tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while
mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested
several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however,
they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the
advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy
an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or
are currently being tested from various perspectives to provide insights for treatments of Alzheimer’s disease.

1. Introduction

Alzheimer’s disease (AD) is named after the German physi-
ologist who first presented neuropathological characteristics
of the dementia at the 37th meeting of Society of Southwest
German Psychiatrists in 1906 [1]. Alzheimer’s studied a
patient with progressive memory loss for five years and
analyzed the brain post mortem using silver staining [2].
This contributed to the identification of neuritic plagues
and neurofibrillary tangles (NFT) [1], two characteristics
employed to identify the dementia to date. It took another 20
years to determine $-amyloid (Af) and tau which are major
components of neuritic plagues and NFTs, respectively [3],
marking the modern era of study of AD research.

AD, as a progressive neurodegenerative disorder, deprives
patients of their memory and even lives. Memory loss is the
most notable symptom [4, 5] at the early stage but as the
disorder advances, difficulties with language, perception, and
execution of movement become prominent [6], followed by
neuropsychiatric and behavioral abnormality, muscle mass
loss, and mobility deterioration [6]. Loss of normal daily
living in those with dementia is inevitable.

In addition to the affliction and sufferings to patients,
Alzheimer’s disease can cost society substantially, especially
in developed countries. The expenditure of AD was around
$100 billion per year [7]; the bill was about €177 billion in
Europe solely in 2008 [8]. Due to deteriorating abilities to
live on their own, caregivers are necessary for progressed AD
patients. Burdens on these caregivers’ life including physical,
psychological, and economic aspects [9-11] can be a major
concern.

The global prevalence of dementia for people over the age
of 60 is estimated as high as 40 million in 2001, and the figure
is forecasted to double every 20 years [12, 13], indicating that
Alzheimer’s disease has become a modern epidemic. In the
near future, surging number of AD patients will become an
overbearing social issue. Therefore, the need for therapeutic
strategies for this devastating disease is urgent.

Currently, Food and Drug Administration (FDA)
approved AD drugs are still limited within two categories:
cholinesterase inhibitors and memantine [14-16] (a NMDA
receptor antagonist). Unfortunately, the effects and benefits
of these drugs are marginal and work only to alleviate the
symptoms [17-19]. However, in recent years, fundamental
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researches focusing on the pathogenesis of AD paved the
way for development of new treatments targeting the radical
source of Alzheimer’s disease [20]. Numerous trials have
been or are currently being conducted to determine effects
of various compounds on AD in different stages.

Alzheimer’s disease causes major impairment of indi-
vidual health and social economy due to the limited effec-
tive therapeutic approaches. With the explosive explorations
based on two hallmarks of AD, numerous clinical trials
targeting on or off Af3 have been or are being conducted. In
this paper, we will briefly summarize successes and failures
in clinical trials in Alzheimer’s disease and try to give a
systematic review in an attempt to derive insights from
previous experience.

2. Therapeutic Targets Focusing on Af3
Cascade Hypothesis (Table 1)

2.1. Inhibition of Af Production. Studies of familial Alz-
heimer’s disease (FAD) motivate the discovery of responsible
genetic factors, establishing Af-centered theory for AD.
Amyloid precursor protein (APP) experiences sequential
cleavages by 3-secretase and y-secretase and gives rise to the
dementia culprit $ amyloid (Af) that is thought to initiate
soluble oligomers, insoluble fibrils, and accumulated plagues
(Figure 1). APP can be alternatively processed by a-secretase
within the Af region and generate a longer C-terminal frag-
ment under the first cleavage. In terms of curbing production
of A, the three crucial enzymes processing APP have been
therapeutic targets in drug development. The rationale is
to inhibit -/y-secretase while promoting the «-secretase
activity to become the priority strategy.

2.1.1. 3-Secretase (BACEI) Inhibitor. Beta-site APP-cleaving
enzyme 1 (BACEI) is the protease responsible for the initial
cleavage of APP, giving rise to the production of neurotoxic
suspect Af [21, 22]. Mounting evidence corroborate the
availability of BACE1 inhibition. BACEI knock-out mice
indicated a close correlation between the BACEI inhibition
and the Af decline [23, 24]. It is reported that BACEl
inhibition improved memory deficits [25] and rescued Af-
driven cholinergic dysfunction [26] in APP transgenic mice.
Although the BACEI-deficient animal model presented a
relatively benign phenotype with high viability, suggesting
that the possibility of targeting f-secretase would be a safe
therapeutic approach, further testing indicated that the dras-
tic inhibition would result in hypomyelination and behavioral
abnormalities such as seizures [27-30]. This is because,
except from APP, BACEl has a series of substrates, like
neuregulin-1, related to myelination [29, 31]. AD pathology
onset was postponed in the APP x BACE1+/— mice; however,
it hinted at a partial inhibition that might mitigate the
potential safety problems [32, 33]. It has been noted that
the discrepancy between potency-required molecular weight
and CNS penetration-required size [34, 35] poses another
challenge.

Many BACE!l inhibitors are derived from approved
drugs for type 2 diabetes with properties regulating insulin
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metabolism. Nuclear peroxisome proliferator activated
receptor gamma (PPARy) functions as a transcription factor
regulating gene expression [36], modulating inflammation
response, promoting microglia-mediated Af endocytosis,
and declining cytokine secretion [37]. Thiazolidinediones
can activate PPARy to inhibit p-secretase and promote
ubiquitination to degrade amyloid load [38]. PPARy
agonists like thiazolidinediones derivatives rosiglitazone
and pioglitazone soften the peripheral insulin resistance
[39], which aggravates AD neuropathology, and this decline
of insulin sensitivity helps in Af proteolysis. The study
of rosiglitazone has been developed to a large phase 3
trial; however, it has been discontinued due to cardiac risk
concerns [40]. Pioglitazone has recently progressed into a
phase 3 clinical trial after precluding a previously reported
bladder risk. But due to the involvement of substrate
complexity and some adverse effects, other phase 3 clinical
trials for BACEI inhibitors are still lacking.

However, several novel drugs are currently under investi-
gation. Based on conjugation to a penetrant carrier peptide
[41, 42], the potent CNS impermeable compound, CTS-
21166, has completed the phase 1 trial. It showed a good
tolerance and a reduction of plasma A level in healthy
volunteers [43]. A phase 1b dose-escalating study for MK-
8931 demonstrated a positive effect in reducing the level of
toxic proteins in addition to safety and good tolerance. A
phase 2 trial recruiting 200 mild-to-moderate patients was
expanded to a larger 1960-participant phase 3 trial, including
conventional cognitive and functional primary outcomes,
and it recently passed an interim safety evaluation.

Another BACEI inhibitor, LY2886721, though it appeared
to be safe and lowered AfB42 in cerebrospinal fluid by more
than two-thirds in phase 1 trial [44], was terminated due to
the fact that 4 out of 45 patients showed liver abnormalities
during the phase 2 trial. Besides, RG-7129 was also terminated
in its phase 3 trials in 2013. These terminations again signaled
that significant challenges are remaining: whether BACEIL
inhibitors will be safe in the long run and if lowering BACE1
activity will slow cognitive decline.

2.1.2. y-Secretase Inhibitors (GSI) and Modulators (GSM). -
secretase is a transmembrane protease responsible for the
eventual cleavage of amyloid precursor protein (APP) to
generate Af3 (Figurel), thus it is considered a principal
therapeutic target in Alzheimer’s disease [45, 46]. This
enzyme complex consists of four components: Aphl, Pen2,
glycosylated nicastrin, and endoproteolyzed presenilin as the
catalytic core [47], and it is involved in myriads of physio-
logical process. The versatility places hurdles in the way of
y-secretase targeted drug development. In the human body,
aside from APP, there are more than 50 different substrates
that y-secretase is capable of reacting with, many of which
are neuronal substrates [48]. Importantly, y-secretase is also
responsible for cleavage of Notch 1, which leads to the release
of the Notch intracellular domain (NICD), subsequently
translocated to the nucleus to regulate genes involved in
cell development, cell survival, and cell fate determination
[49]. Thus, inhibition of y-secretase needs to be cautiously
designed to particularly circumvent the drawbacks caused
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FIGURE 1: B-amyloid hypothesis based therapeutic targets. APP, after sequentially being cleaved by BACE1 and y-secretase, gives rise to a
neuron toxic molecule Af42. This peptide can exist as monomers or aggregates into oligomers and plagues. The assembly of A342 triggers
downstream effects and induces tau phosphorylation. BACE1 inhibitors and GSI/GSM aim to prohibit the production of pathological A3, and
vaccines or Af antibodies promote clearance mechanism. As for tau, GSK-3f inhibitors and other antiaggregates are potential therapeutics

targeting on blocking tau hyperphosphorylation or aggregation.

by Notch signaling abnormality. Haematological [50] and
gastrointestinal [51] toxicity, skin reactions [52, 53], and
changes to hair color [54] are the most commonly reported
adverse effects of y-secretase inhibitor.

Several y-secretase inhibitors (GSIs) have been launched
in clinical trials. Many reduced the Af3 production in plasma
or CSF (cerebrospinal fluid), but few successfully avoided
the Notch-induced side-effects. Semagacestat decreases Af3
level in plasma and downregulates its generation in the
central nervous system (CNS) [55]. Semagacestat is the first y-
secretase inhibitor that have been taken into Phase 3 clinical
trials. While phase 1 trial suggested a dose-dependent decline
of Ap synthesis in CSF [55], phase 2 trial began exhibiting
skin-related side effects. Although Ap level in plasma has
significantly decreased, it was not duplicated in CSF and no
effects on cognition and function were found. Two pivotal
phase 3 trials were reluctantly started; however they were dis-
continued due to increased risk of skin cancer and infection
and lack of efficacy [56]. Fall of semagacestat, a potentially
promising drug candidate, repeated disappointing results
of other GSIs, which deemed that a deeper understanding
of interaction between 4 subunits and their substrates is
necessary.

Different GSIs present favor to interact with subunits of
y-secretase, exhibiting target specificity. DAPT and L685458
indicated the smallest selectivity, while MRK-560 and sulfon-
amide based GSIs strongly prefer to inhibit PS1 instead of PS2
[57, 58]. Aphl heterogeneity is critical for individual survival,
suggesting that targeting of Aphlb y-secretase specifically

would be more tolerated [59], although the feasibility of drug
design still remains difficult to determine.

Accordingly, the second generation Notch-sparing y-
secretase inhibitors aimed at selective inhibition of specific
sites took the spotlight. Avagacestat (BMS-708163), begaces-
tat, and NIC5-15 are such Notch-sparing GSIs under clinical
trials. It was reported that avagacestat (BMS-708163) has 137-
fold selectivity for APP over Notch in cell culture and robustly
reduces CSF A levels without causing Notch-related toxicity
in rats and dogs, although this is still being researched [60].
Phase 2 trials have to be terminated due to the adverse effects
of gastrointestinal and dermatological system in addition
to the lack of cognitive improvement compared to placebo
counterparts. Begacestat decreased the A concentration in
the plasma but not in CSF [49, 61], and a phase 1 clinical trial
in combination with cholinesterase inhibitor donepezil has
been completed, further data was unavailable. Another Notch
sparing GSI candidate, NIC5-15, a natural monosaccharide
[62], is currently under a phase 2 trial and demonstrated good
tolerance and safety [63].

Given that the unresolved adverse effects brought on
by GSIs are tricky to address, the concept of y-secretase
modulators (GSMs) was established with the expectation of
nonsteroidal anti-inflammatory drugs (NSAIDs). A subset of
NSAIDs, like ibuprofen, indomethacin, and sulindac sulfide,
disconnected from their cyclooxygenase (COX) properties
were discovered to be able to selectively reduce the produc-
tion of AB42 at the cost of elevated shorter peptide A338
[64, 65]. Surprisingly, this downregulation of toxic Af level
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lacks the inhibitory effect on Notch or other substrates [64].
This finding promoted the GSMs as promising therapeu-
tic candidates for Alzheimer’s disease, because the Notch-
induced drawbacks may be avoided and on the other hand,
the overproduction of shorter and more soluble A338 seems
less likely to aggregate and is less pathogenic.

Among the compounds described above, tarenflurbil (R-
flurbiprofen) relates to ibuprofen structurally and pharma-
cologically. Phase 1 trials with a broad dose range (400 to
1600 mg/day) revealed a low drug exposure in the brain [66],
while phase 2 trials narrowed this spectrum (400-800 mg,
twice daily) and showed trivial benefits on function with the
lowest dosage (400 mg). Although undesirable side effects
like nausea, dizziness, and diarrhea were observed, this com-
pound is still considered tolerable [67]. After modification,
phase 3 trial suggested neither functional improvement nor
clinical efficacy in the mild AD patients [68] and thus the
results were disappointing. The weak potency of tarenflurbil
can be attributable to low CNS penetration as shown in phase
1 trial, and on the other hand, NSAID residue activity curbed
Ap clearance mechanism mediated by microglia [69].

Another GSM CHEF-5074 based on R-flurbiprofen ame-
liorated brain Af load and improved the animals’ perfor-
mance in behavior tests. The drug’s safety and tolerability
have been evaluated and are undergoing a phase 2 trial.
Published data indicated that this compound may have an
additional function of acting independently of A342 [70, 71].
Nevertheless, a balance between lipophilicity and potency
of these compounds must be considered. The remarkably
increased potency in 2nd and 3rd generations of GSMs relies
heavily on the increase of lipophilicity, which has been proved
to result in off-targets, like hepatotoxicity [72].

2.1.3. a-Secretase Activator. APP can be cleaved by an alter-
native a-secretase rather than f-secretase in the first step
to circumvent the generation of pathological Af peptide.
Hence, increasing the chance of a-cleavage could be an
effective approach to decrease the A formation and promote
soluble APP production to protect neurons [73]. Agonists
of muscarinic, glutamate, and serotonin receptors (and the
agonists or antagonists of transmitters receptors would be
discussed in following section), statins, oestrogens, testos-
terone, and protein kinase C activators belong to this drug
classification that can motivate a-secretase activity, and they
have been launched in clinical trials, but data indicating their
use in AD is limited [74].

Etazolate (EHT-0202), a selective GABA, [75] receptor
modulator, has completed a phase 2 trial in patients with mild
to moderate AD. It presented a good oral bioavailability and
an elevation of sAPP« [76]. Bryostatin-1, a macrocyclic lac-
tone, caused a decline of brain A340/42, improved behavior
test in AD mouse model [77], and was under a phase 2 trial,
but the specific information is inaccessible.

Statin drugs such as atorvastatin and simvastatin lower
peripheral cholesterol production to prevent heart attacks
and other expressions of cardiovascular disease. Atorvastatin,
in combination with cholinesterase inhibitor, has completed
a phase 2 clinical trial and achieved a beneficial cognition and
function [78], but failed to repeat the outcome in a 641-patient

phase 3 clinical trial [79, 80]. Simvastatin can penetrate BBB
and long-term statin treatment can decline A level. In a
35-normal participant phase 4 trial of Simvastatin, it was
reported to reduce phospho-tau-181 in CSE while not total
tau or Ap level [81]. A follow-up study evaluating one year
simvastatin treatment in 120 cognitively normal and middle-
aged adults, effect on CSF levels of A 342, t-tau, and p-taul8l,
is ongoing.

2.2. Anti-3-Amyloid Aggregation. The pathological Af3 pep-
tides, prone to assembly into aggregate as neuro-/synaptic
toxic products spur the idea of inhibition of Af aggregation
or destabilization of the Af3 oligomers species. However, A3
aggregations are characterized with a high stability resistance
to disaggregation [82] and remain insoluble even with heat
or SDS [83]. The fact that amyloid fibrils have an extremely
low energy state [82] and the lack of thorough understand-
ing of Af3 aggregation process have complicated the issue.
Besides, another challenge would be to access the compounds
with high CNS bioavailability and low immunogenicity and
toxicity. It is generally believed there are three strategies
that block A aggregation: antiaggregate compounds, metal
complexing agents and immunization. They can disturb the
formation of either soluble oligomers or insoluble plagues.

2.2.1. Nonpeptidic Antiaggregates. 'The first class of mentioned
inhibiting aggregation compounds is nonpeptidic antiaggre-
gates, tramiprosate, derived from proprionic acid that is a
primitive representative. The promising outcomes of this
agent from the safety and tolerance [84] were neutralized by
two following phase 3 trials: the European trial precluded
methodological problems that might lead to the negative in
the North American trial and demonstrated the poor CNS
penetration and the weak potency [85] of this drug.

The second generation of nonpeptidic antiaggregates was
expected to meet those challenges. Scyllo-inositol is thought
to effectively impede Af3 aggregation, promote misfolding
modulation, and accelerate aggregates disassociation [86].
Because this compound can cross blood brain barrier (BBB),
with the assistance of inositol transporters, it can achieve
a high concentration in CNS via peripheral administration.
This drug is being tested in the phase 2 trial with mild-
to-moderate Alzheimer’s disease patients on the basis of
good tolerance and safety profile [87]. Although high doses
(1000 mg and 2000 mg) resulted in serious adverse effects, the
studies continued to test the low dose (250 mg) cohorts [88].
Epigallocatechin-3-gallate (EGCg), a polyphenol from green
tea, via disrupting unfolded peptide, stimulated a-secretase
activity and inhibited A aggregation in animal models
[89]. This agent was also involved in modulation of cell
transduction, regulation of cell survival and death [89], and
protection of mitochondrial function. The multiple effects of
this natural compound make it a promising candidate, and
a phase 3 trial with early AD patients with EGCg is being
conducted.

2.2.2. Metal Complexing Agents. After A} peptides were
produced and released into extracellular fluids, metals like
Zn and Cu can motivate oligomerization into fibrils. So metal



chelators or metal complexing agents that can interfere with
reaction of metal ions with Ap are likely to be a therapeutic
strategy. Clioquinol (PBT2), metal-induced A inhibitors,
also has a potent CNS permeability. PBT2 can redistribute
metal ions to neurons promoting metalloproteinase expres-
sion and thus an increment of Af degradation. A phase
2 trial was completed and it proved a decrease of Af42
concentration in CSF and an improvement of cognitive and
behavioral performance [90].

2.2.3. Active Immunization. It is conventionally thought that
clearance of CNS Af3 requires a BBB permeability property,
confining the therapeutic targets in a very narrow realm:
medicinal chemistry-driven and small molecules. Nonethe-
less, incredible work done by Schenk et al. revealed that
immunization of PDAPP transgenic mice markedly miti-
gated amyloid plaque burden, improved neuritic dystrophy,
and even reduced existed Af plagues [91]. This striking
breakthrough suggested that Af immunotherapy would be
a potential strategy to remove both soluble and aggregated 3
amyloid [92].

AN-1792, the first anti-Af vaccine (with full length A3
1-42) tested in active immunization clinical trial, was termi-
nated in the phase 2 trial in patients with early AD due to
the fact that some participants developed aseptic meningoen-
cephalitis and cerebral microhemorrhage [93]. The complica-
tion is attributed to cytotoxic T cell or autoimmune response
[94-96]. Therefore, employing only fragments instead of full
length of AB or other cell epitopes to circumvent toxicity
and inflammation is highlighted. Additionally, the security
of adjuvant and delivery approaches must be cautiously
considered.

The next generation of vaccine is devoid of any T-cell
epitopes. CAD-106, consisting Af3 1-6 peptides coupled to
a Qp virus-like particle, has recently completed the phase 2
trial in patients with mild AD and did not lead to menin-
goencephalitis [97]. Two other vaccines, UB 311 (Af31-14) and
V950 (A N-terminal conjugated to ISCO-MATRIX), both
containing B-cell epitopes, have also recently finished phase
1 trial. However, another vaccine AC-001(Af 1-7 conjugated
to inactivated diphtheria toxin) discontinued its phase 2 trial
in August 2013, because the studied drug elicited a strong
antibody response. Another active immunization approach
is developed on the foundation of Affitope using short six-
amino acid peptides that imitate the native A3 sequence. AD-
01 and AD-02, targeting N-terminal fragments of A, were
proved to rescue AD-like symptoms in animal models [98].
Recently, AD-02 has progressed into a phase 2 clinical trial.

2.2.4. Passive Immunization. Another strategy to avoid
immune response is direct administration of antibodies.
This passive immunization has an approximate potency
to remove amyloid plaques and rescue neuritic and glial
pathology [99], reduce early tau hyperphosphorylation [100]
and cytopathology [101], and reverse abnormal hippocampus
synaptic plasticity [102].

Bapineuzumab (AAB-001) is a humanized monoclonal
antibody, derived from 3D6, published to promote removal of
Ap plagues and rescue synapse loss in APP transgenic mice
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brain [99]. However, in a 234-patient phase 2A safety and
tolerability trial, this agent indicated no significant alteration
on primary measures of cognition and daily activity. For
apolipoprotein E (ApoE) &4 carriers, there is a temporary
vasogenic oedema, an adverse effect correlated with dose
administration [87]. Given that 4,000 mild AD patients
across North America and Europe showed no treatment effect
on either cognitive or functional outcomes, the phase 3 trial
was terminated. Solanezumab (LY2062430) is a humanized
monoclonal IgGl antibody directed against the mid-domain
of the Af peptide (Af3 16-24) and designed to specifically
bind soluble species of Af. Phase 2 study showed dose-
dependent increases of various Af species in plasma and
CSE an indication that insoluble A is released from plagues
and leaches into fluid [103]. Two trials in phase 3 suggested
a limited benefit for cognitive performance as compared to
cholinesterase-inhibitor drugs. A third trial started from July
2013 to test demonstrated brain amyloid burden, and data is
expected to be read out in December 2016. Gantenerumab,
a human IgGl antibody binding to Af fibrils, can elicit
phagocytosis to remove Af plagues in brain and rescue
A oligomers that induced impaired long-term potentiation
(LTP) in rats model. An expanded phase 2/3 trial of 770
participants is being conducted and is estimated to be
completed in 2016. Crenezumab, a novel humanized antibody
with IgG4 backbone, is believed to limit microglia mediated
inflammatory cytokines release to avoid vasogenic oedema. It
can recognize 3 amyloid oligomers, fibrils, and plagues with
a high binding affinity. Phase 1 study confirmed safety and
tolerance, followed by an ongoing phase 2 trial in patients
with mild to moderate AD using elevated dose as well as a test
for prevention of this progressive dementia. There are several
antibodies which have completed or have undergone the early
clinical trials, as shown in Table 1.

Many monoclonal antibodies are delivered intravenously,
whereas passive immunization can be also accomplished via
infusion of intravenous of immunoglobulins (IVIg) from
healthy donor. A small study in 8 patients showed increase
of AB antibodies in serum, decrease of Af in CSF and
stabilization of MMSE (mini-mental-state exam) scores over
18 months. A phase 2 trial with 24 patients suggested benefi-
cial cytokine concentrations alteration in plasma. However,
two critical phase 3 trials showed no difference between
study drug and placebo, though a trend toward benefit for
the higher dose, and thus were halted. Another published
phase 2/3 clinical trial evaluating infusion of albumin in
combination of IVIg is currently conducted in patients with
mild to moderate AD.

Active immunization maintains the body with a constant
high concentration of immunoglobulin, so this strategy calls
for fewer follow-up injections with a reasonable expense. But
to tackle with the T-cell induced inflammation would be a
tricky issue. Passive immunization is a more effective method
especially for elderly people considering their weakened
responsiveness to vaccines [104]. Selection of safe epitopes
can be readily met, as well as a better control of antibody
titer; however, antibody delivery could be inconvenient and
costly, and the risk of vasogenic oedema and cerebral amyloid
angiopathy might increase.
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2.3. Tau. According to A3 hypothesis, intracellular neurofib-
rillar tangles (NFTs) induced by altered phosphatase/kinase
activity is a downstream event of aggregation of $-amyloid
(Figure 1), and NFTs as a catalyst will aggravate the oxida-
tion and further result in neuronal dysfunction, cell death,
and transmitter deficits. Tau is normally a highly soluble
protein in cytoplasm binding to microtubules as a stabilizer.
Formation of NFTs as a result of hyperphosphorylated
and misfolded tau protein aggregation is toxic to neurons.
The pathological tau proteins lose the capability to aid
microtubules in transporting neuronal substance, leading to
neuronal dysfunction and apoptosis [105, 106].

2.3.1. Kinase Inhibitors. Protein kinase, a group of critical
enzymes responsible for tau overphosphorylation, is a pre-
requisite for the tau-induced toxicity. However, myriads of
kinases mutually play a central role in regulating cell function
and guaranteeing a normal physiological condition. The
development of tau-targeted therapy is therefore challenging
due to redundancy of kinase interactions and uncertainty of
which enzyme specifically catalyzes the phosphorylation that
we are focusing on [107, 108].

The first class of tau inhibitors aims to modulate tau phos-
phorylation via decreasing the activity of related kinase since
imbalanced interaction between glycogen synthase kinase
3 beta (GSK3p) and protein phosphate 2 (PP2A) enhances
tau hyperphosphorylation and NFT formation [109]. GSK3/3
appears to engage in AD pathogenesis given its impact on
cellular signaling and gene description [109]. Recently, it
has been reported that GSK3p is responsible for 31% of
the pathological phosphorylation sites of tau protein [110]
and is found colocalized with NFTs in postmortem brain
[111, 112]. Toxic A that promotes GSK3p activity bridges a
link between the two hallmarks of Alzheimer’s disease [110],
implicating that GSK3p inhibitor is a potential drug target.

Lithium and valproate reduced tau phosphorylation and
prevented reversed aspects of tauopathy in animal models
[113] but did not show cognitive improvement in clinical
trials with AD patients [114]. NP-031112 (NP-12), a non-ATP
competitive inhibitor of GSK3f3, counteracts tau phosphory-
lation, reverses amyloid burden in brain, prevents cell loss,
and rescues spatial memory deficits using animal models
[115]. But the phase 2b trial was terminated due to the
negative results. Development of some paullone, indirubin,
and maleimide family-derived GSK3p inhibitors is in the
pipeline, yet stuck in the preclinical trials concerning the
cytotoxic effects.

Cyclin dependent kinase 5 (cdk5) is another kinase tightly
associated with tau pathology. Cdk5 regulating protein was
found in AD brain and thus is probably causing a pathophys-
iological tau phosphorylation [116]. Cdk5-selective inhibitors
were demonstrated to penetrate BBB and reduce elevated
A level by regulating cdk5 [117] and are at preclinical
status. The test of several compounds targeting other protein
kinases, like cdk1/2/9, p38, Erkl/2, JNK, casein kinase, and
DYRKIA brought disappointing outcomes, and trials were
discontinued due to the poor efficacy or severe adverse
effects.

2.3.2. Inhibition of Tau Aggregation. Another scenario to
interfere with tau-induced NFT is to inhibit tau aggregation
or promote tau assembly disassociation. Rember (methylene
blue) is such a tau antiaggregant [118]. Preclinical data
revealed a learning deficit reversing property and a completed
phase 2 trial proved that this agent can slow down AD
progression with a good bioavailability [119, 120]. TRx0237,
another methylene blue, has an improved drug absorption,
bioavailability, and tolerability. Since 2008, intensive investi-
gation of this agent began, and growing evidence indicated
that TRx0237 benefits neuroprotection [121] and Af clear-
ance in transgenic mice and improves spatial learning in rats
[119, 122]. The antiaggregation properties were reported by
some papers, and three phase 3 studies are ongoing.

Epothilone D (BMS-241027) is a microtubule stabilizer,
via inhibition of tau release from microtubule to maintain
the transportation function of axon, and on the other
hand, precludes formation of tau aggregation. This agent
restored behavioral and cognitive deficits, inhibited neuron
loss, and curbed the tauopathy in animal models [123, 124].
Epothilone can penetrate BBB and exert a better efficacy at
low concentration and now undergoes a phase 1 clinical trial.
Nicotinamide, the precursor of coenzyme NAD+, reduces
phosphorylated tau and protects microtubules stabilization
in mouse model [125]. Nicotinamide has been launched into
clinical studies suggesting that it is safe and well tolerated and
a phase 2 clinical trial is ongoing in patients with mild-to-
moderate Alzheimer’s disease.

3. Putative Therapies Still Derived from
Neurotransmitter System

Neurotransmitters depletion (basically referring to acetyl-
choline, ACh) and synaptic dysfunction are two classical
features of AD [126]. Thus, two hypotheses have been
established—cholinergic hypothesis [127] and glutamatergic
hypothesis [128], based on which FDA approved therapies—
AchE inhibitors and NMDA receptor antagonists—to miti-
gate AD symptoms were developed. Although drugs regu-
lating transmitters’ production, release, and recycling cannot
prevent the progression of AD, pursuit of searching novel
receptor agonists and antagonists has never stopped (Table 2).

Cholinergic neurons impairment accompanies the early
progression of dementia. From animal and human studies,
cholinesterase inhibitors administration stimulated memory
and learning process [129]. Besides, a marked correlation
between loss of cholinergic neurons and deterioration of
defected memory was proved in animal models later [130,
131]. Therefore, improvement of cholinergic system, including
potentiating effects of acetylcholine (Ach) and inhibiting
activity of cholinesterase, is a potential therapeutic goal.

Ach is a ligand for nicotine receptors and exerts an exci-
tatory effect on the postsynaptic neuron, an essential event
for long-term potentiation (LTP) and memory formation.
Several nicotinic receptor agonists to reinforce this event are
being tested in clinical trials. EVP-6124, a selective agonist of
the a-7 nicotinic acetylcholine receptor, has finished a phase
1/2 trial showing safe and well tolerated results and recently
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(Oct 2013) entered two phase 3 trials to test the cognitive ben-
efits. Quite a few other clinical trials testing nicotinic agonists
are ongoing (ladostigil hemitartrate, phase 2; ispronicline,
phase 1), completed (RO5313534), or terminated (ABT-089).
A transmitter that indirectly modulates neuron degen-
eration and memory deficits is serotonin (5-HT). Growing
evidence indicated that inhibition of 5-HT, could facilitate
Ach release and via elevated cholinergic transmission, mem-
ory and learning defects were likely to be ameliorated. 5-HT
antagonists were widely reported in many studies to rescue
anticholinergic drugs-induced amnesia [132]. Recently, two
agents, PRX-03140(5-HT, antagonist) and SB-742457(5-HT,
antagonist), completed the phase 2 trials. Lu AE58054, an
antagonist of the serotonin 6 (5-HTy) receptor was recently
progressed into a phase 3 trial with 930 mild to moderate AD
patients in combination with AchE inhibitor donepezil.

4. Potential Findings of Therapeutics
for Alzheimer’s Disease from Other
Perspectives

In addition to the two hallmarks and neurotransmitter
system impairment, there are several other features found in
Alzheimer’s disease, including inflammation, oxidative stress,
mitochondrial dysfunction, neurotrophin deficiency, and so
forth. These aspects are not systematically and thoroughly
summarized and are likely to be neglected though; they do
provide new perspectives in developing AD treatments. Many
drugs of great therapeutic potential are under clinical trials
(Table 3).

4.1. Anti-Inflammation and Antioxidants. Chronic inflam-
mation is an essential feature of AD and contributes to
its pathogenesis in numerous ways. Microglia are brain’s
resident macrophages that monitor brain activity and play
a contributing role in removal of redundant and apoptotic
neurons [133, 134], remodeling of normal synapse [135],
and protection of CNS from pathogens and detritus [136].
However, they can shift to another phenotype to secrete
series of inflammatory factors, exerting detrimental effects
on bystander neurons and processes they are involved in.
Aggregated Af appears to be a robust agent driving this
alteration, since markers of activated microglia were densely
colocalized within the deposits [137, 138]. Microglia seem
incapable of degrading Af that they intake [139, 140], leading
to a frustrated phagocytosis instead. As clinical trials have
been a major disappointment, agents that drive microglia
to a phenotype that favors attack on pathogens rather than
bystander neurons may hold therapeutic potential.

Based on compelling evidence of the involvement of
inflammation in AD pathogenesis, anti-inflammatory drugs
have been investigated. COX inhibitors, aiming to reverse
the elevated A3 burden and cognitive deficits caused by
overexpression of COX2 [141, 142], showed limited efficacy
[143]. Glucocorticoid steroids, considered as potent drugs
by declining overexpression of proinflammatory mediators
[144], showed poor benefits [145] or adverse effects [146].
Flavonoid administration prevented cognitive impairment
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associated with inflammation in animal studies [147, 148];
however, the beneficial effects cannot be repeated in human
(149].

Another anti-inflammatory agent etanercept, an
approved arthritis drug, is a TNF-« antagonist to neutralize
the activated microglia secreted cytokines. Modulation of
immune system may have benefits for Alzheimer’s disease
patients and a phasel clinical trial in combination with
supplementation of some specific nutrients is ongoing in mild
to moderate AD patients. Curcumin, a natural polyphenol,
has anti-inflammatory and antioxidant properties and
exhibits other neuroprotective functions like promoting
metal chelation, curbing tau aggregation, and facilitating
neurogenesis. It undergoes a phase 2 study, but details are
not available.

Oxidative injury is the following causal event of inflam-
mation and the study of antioxidants in treatment of AD
achieved little success. Alpha-tocopherol, a synthetic vitamin
E, is thought to prevent brain cell damage by destroying
toxic free radicals and slowing down the cognitive decline
in the finished phase 3 trial. In addition, a phase 3 trial
of DHA (docosahexaenoic acid), an omega-3 fatty acid,
was terminated because cognitive decline was not changed
compared to placebo group.

4.2. Mitochondrial Dysfunction. Mitochondrial dysfunction
taking place in early AD enhances synaptic damages and
neuron apoptosis, so it is considered a causal factor of neu-
rodegeneration [150]. APP and A3 are transported into mito-
chondrion reacting with mitochondrial components, leading
to an impaired ATP processing and increased oxidative
stress level [150, 151]. ApoE4, a risk factor for sporadic AD,
harms mitochondrial trafficking and function and promotes
mitochondrial apoptosis [152, 153]. Replacing mitochondrial
DNA (mtDNA) form one cell line with mtDNA from
AD patients supported a mitochondrion cascade hypoth-
esis [154], offering new therapeutic targets. Latrepirdine
(dimebon), an antihistamine that preserves mitochondrial
structure and function and protects against Af induced pore
apoptosis, has been tested in a clinical trial in Russia and
phase 2 data showed improvement of all outcomes [155]
while phase 3 trial did not confirm it [156]. However, a
combination of therapy with donepezil was demonstrated
as well tolerated from preliminary results in phase 1 trial
and further information awaits analysis [157]. AC-1204 is
designed to improve mitochondrial metabolism [158] by
induction of chronic ketosis, thus rescuing regional cerebral
hypometabolism presented in early Alzheimer’s disease, and
this agent is undergoing a phase 3 clinical.

4.3. Diabetes. Diabetes is another risk factor for Alzheimer’s
disease [159] in which the insulin resistance and disrupted
glucose metabolism [160] can be attributed to a tumor
necrosis factor (TNF) induced inflammation pathway [161,
162]. Insulin can mediate A degradation by activating
insulin-degrading enzyme (IDE) [163]. A CSF insulin decline
in prodromal female AD patients [164], the presence of
insulin resistance, and the dysfunctional insulin signaling
pathway in dementia brain [165] are documented. Incretin
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and liraglutide, two drugs for hyperglycemia, implicating
beneficial effects on AD mice [166, 167], reinforced the
relationship between diabetes and AD, and a phase 2 study of
liraglutide, a glycogen like peptide 1 agonist is still ongoing.
These evidences brought the advent of concept “type 3
diabetes,” [168] and an intranasal insulin delivery with an
ameliorating cognitive function effect [169] has completed its
phase 2 study.

4.4. ApoE (Apolipoprotein) and Af Export. ApoE (apoli-
poprotein) is a powerful genetic factor [170, 171] for sporadic
AD beyond APP, PS1, and PS2 genes. The isoform ApoE4
substantially promotes the risk of AD and decreases the age
of onset [172]. ApoE is generally thought to regulate Af
clearance and thus influence fibrillogenesis. In CNS, ApoE,
responsible for transportation of cholesterol to neurons, is
primarily produced in astrocytes [173]. Af aggregation and
clearance are differently affected in an isoform (€2, €3, and
€4) dependent manner; frequency of AD and mean age at
clinical onset are 91% and 68 years of age in €4 homozygote,
47% and 76 years of age in €4 heterozygote, and 20% and 84
years in e4 noncarriers [172,174]. ApoE was found colocalized
with amyloid plagues [175] and this coexistence is more
abundant in ApoE4 carriers [176]. Additionally, ApoE4 is
associated with cognition decline before clinically appar-
ent syndromes [177, 178]. ApoE4, as previously described,
can work synergically with other risk factors, like insulin
resistance and peripheral vascular diseases [179, 180], thus
exerts a confounding effect on AD and triggers inflammatory
cascade. After being synthesized, ApoE is lipidated by the
ABCAL, a process regulated by nuclear receptor liver X
receptor (LXR) or retinoid X receptor (RXR), and transported
to form lipoprotein particles. The complex particle binds
soluble A, promoting transfer via neuron surface receptors
such as low-density lipoprotein receptor (LDLR), low-density
lipoprotein receptor-related protein 1 (LRP1), and heparin
sulphate proteoglycan (HSPG) [181, 182] into neurons where
degradation can be finished with proteolysis in lysosome.
ApoE &4 isoform has less affinity of binding Af3 compared
to €3, showing a less efficient clearance phenotype [183, 184].
Stimulation of LXR/RXR enhances removal of Af [185, 186]
while inhibition of ABCAI impairs Af3 clearance in ApoE4
rather than ApoE3 mice [187]. Therefore, the molecules and
receptors involved in ApoE metabolism can be potential
therapeutic targets for drug development.

Recent studies demonstrated that oral administration of
bexarotene, a RXR agonist and a FDA approved anticancer
drug, reduces Af plaques and improves cognitive function
in an ApoE-dependent manner in amyloid mouse model
[186], and a phase 2 clinical trial is currently ongoing to
determine its safety and effect on abnormal proteins in the
brain with 300 mg for one month compared to placebo. Other
drugs that aim to regulate ApoE expression (LXR agonist
TO901317) [185, 188], block ApoE-Af interaction, disrupt
ApoE4 domain (CB9032258, phthalazinone analogue) [189],
mimic the receptor binding region [190] (COGl12), and so
forth, have shown benefits of reversing Af burden in vivo or
in vitro, but did not reach the clinical trials yet. ApoE-targeted
therapies are still at the early stage of development and
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relevant approaches and strategies are required to carefully
evaluate them though, showing a huge promising battle with
Alzheimer’s disease.

4.5. Neurotrophin. Nerve growth factor (NGF) as a neu-
rotrophin plays a critical role promoting survival and main-
taining the function of cholinergic neurons [191, 192]. In AD
patients, transcription and translation levels of NGF were
changed [193, 194], suggesting that NGF supplementation
probably is a treatment approach for Alzheimer’s disease.
NGF with unfavorable size and polarity is a peptide that
cannot cross BBB [193, 195], so to safely and efficiently deliver
it to the brain will be a great challenge [196, 197]. However,
efforts have been made to overcome this obstacle. An example
of strategy is as follows: CERE-110 uses adeno-associated
virus to transfer a gene that makes NGF and is injected
into AD patients’ brain. This approach undergoes a phase
2 study.

5. Concluding Remarks

A cascade hypothesis was firstly proposed in 1992 [198]
assuming that B-amyloid would be the suspect initiating
pathogenesis of Alzheimer’s disease. So a series of explo-
rations focusing on physiological and pathological processes
that participate in the production, aggregation, and clearance
of Af have been widely studied. The identification of two
crucial enzymes (y-secretase and BACEL), responsible for the
cleavage of the presumably pathogenic A3 from its precursor,
suggests that the cure of AD may be around the corner.

However, failures in many large clinical trials using Af-
targeted drugs (Table 4) and FDA approved compounds
with marginal efficacy questioned the validity of Af cascade
hypothesis. Indeed, A hypothesis, having dominated the
AD realm for two decades, has always been controversial.
One of the most unfavorable evidences was the finding that
amyloid plagues were diffused in AD patients’ brain post-
mortem (and neuroimaging outcomes confirmed the autopsy
findings), which is abundant in healthy people [199, 200].
Nevertheless, plenty subsequent investigations put forward
the oligomeric form of Ap, rather than plagues, as the actual
culprit for synapse dysfunction [201, 202] and the following
amplifying events. This significant finding, at least partially,
defended the validity of A cascade hypothesis. But, still,
why do therapeutic strategies targeting the secretases only
have marginal efficacy? First, the two versatile secretases
(BACEI and y-secretase) are at the same time responsible for
processing other substrates, which unfortunately are either
vital to metabolism normality or tricky to avoid targeting.
The undesirable side effects are so overwhelming that they
prohibit drug’s efficacy and approval. Second, the drug
permeability through blood brain barrier (BBB) is another
considerable problem. Most drugs described above have a
poor capability to cross BBB, so it is reasonable to see
numerous clinical trials, including those having progressed to
phase 3, fail. Instead of questioning the plausible hypothesis,
it is more imperative to cautiously design clinical studies and
interpret the outcomes.
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Given limited benefits from inhibition of Af production,
more focus should be converted to the clearance strategy.
Delivery of antibodies may be a good choice due to the
safety leverage compared to vaccine. Besides, there are quite
a few ongoing clinical trials using passive immunization.
From Table 1, antibodies are capable of binding and clearing
multiple forms of AS. It is important because there is
equilibrium between oligomers and plagues of AS [203].
For a single-target antiaggregate disrupting formation or
enhancing disassembly of Af3 oligomers, plagues as a reser-
voir will replenish and maintain the balance [204, 205]. So
the property of simultaneously interfering different processes
during A aggregation suggested that passive immunization
might be of a promising value.

In recent years other AD risk factors have been widely
studied. Though no groundbreaking outcomes have been
shown, it provided quite a few unprecedented opportunities.
First, the validated AD specific biomarkers need to be
carefully developed and examined. Biomarkers should be
able to at least precisely indicate the response to therapeutic
intervention to avoid misinterpretation of clinical trial data.
Besides, current animal models have serious limitations.
Most transgenic mouse models published in AD studies over-
produce A solely mimicking familial Alzheimer’s disease,
might not suffice phenotypes of sporadic AD accounting for
the dominant populations.

In addition, AD is a disorder that is too intricate and too
factor-driven to be entirely understood from its pathogenesis.
As we discussed previously, various factors (A3, tau, inflam-
mation, and apoE) complicatedly interact with each other.
So the conventional “one protein, one drug, one disease”
hypothesis would not work for Alzheimer’s disease. From
the successful experience in therapeutic development in
multifactorial diseases like AIDS, atherosclerosis, cancer, and
depression, multitarget drugs or combination therapy can
possibly generate more benefits. Since drugs with more than
one target could possibly mitigate a redundancy effect in such
a complex nerve network, this combination therapy or similar
approach multitarget-directed ligands (MTDLs) might bring
new hope in search of therapeutics for Alzheimer’s diseases
[206, 207]. In this novel fashion, some combinations with
approved drug are under clinical trials (Tables 1, 2, and 3,
RCTs marked with *).

Notwithstanding these challenges, with more scientific
insights from basic researches and cooperation between
laboratories and pharmaceutical companies, it is very likely
to find the optimum treatment for Alzheimer’s disease in the
near future.

Abbreviation

AD: Alzheimer’s disease

ApB: Amyloid 8

NFT: Intracellular neurofibrillar tangles
FDA: Food and Drug Administration
APP:  Amyloid precursor protein
NMDA: N-Methyl-D-aspartic acid

PS: Presenilin
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NICD: Notch intracellular domain

GSL y-Secretase inhibitors

CSE:  Cerebrospinal fluid

CNS:  Central nervous system

CSE:  Cerebrospinal fluid

GSM:  y-Secretase modulators

NSAID: Nonsteroidal anti-inflammatory drugs
BACEL: Beta-site APP-cleaving enzyme 1
FAD:  Familial Alzheimer’s disease

BBB:  Blood brain barrier

COX: Cyclooxygenase
GABA: y-Aminobutyric acid
ApoE:  Apolipoprotein E

MMSE: Mini-mental-state exam
GSK3p: Glycogen synthase kinase 3 beta

PP2A: Protein phosphatase 2
cdk5:  Cyclin dependent kinase 5
TNF:  Tumor necrosis factor

IDE:  Insulin-degrading enzyme
LXR:  Liver X receptor

RXR:  Retinoid X Receptor

LDLR: Low-density lipoprotein receptor

LRPL:  Low-density lipoprotein receptor-related protein 1
HSPG: Low-density lipoprotein receptor-related protein 1

ABCAL: ATP-binding cassette transporter 1
Ach:  Acetylcholine

LTP: Long-term potentiation

5-HT: Serotonin

NGF:  Nerve growth factor.
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