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1  | INTRODUC TION

A growing food demand and advances in farming technologies 
have led to intensified agricultural practices, that is, more efficient, 

industrial farming. This has caused massive losses of biodiversity 
in various ecosystems, with dramatic negative effects on ecosys-
tem functions and services that are essential for human well-being 
(Dirzo et al., 2014). Habitat loss and land conversion have thus been 
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Abstract
A growing food demand and advanced agricultural techniques increasingly affect 
farmland ecosystems, threatening invertebrate populations with cascading effects 
along the food chain upon insectivorous vertebrates. Supporting farmland biodiver-
sity thus optimally requires the delineation of species hotspots at multiple trophic lev-
els to prioritize conservation management. The goal of this study was to investigate 
the links between grassland management intensity and orthopteran density at the 
field scale and to upscale this information to the landscape in order to guide manage-
ment action at landscape scale. More specifically, we investigated the relationships 
between grassland management intensity, floral indicator species, and orthopteran 
abundance in grasslands with different land use in the SW Swiss Alps. Field vegeta-
tion surveys of indicator plant species were used to generate a management intensity 
proxy, to which field assessments of orthopterans were related. Orthopteran abun-
dance showed a hump-shaped response to management intensity, with low values 
in intensified, nutrient-rich grasslands and in nutrient-poor, xeric grasslands, while 
it peaked in middle-intensity grasslands. Combined with remote-sensed data about 
grassland gross primary productivity, the above proxy was used to build landscape-
wide, spatially explicit projections of the potential distribution of orthopteran-rich 
grasslands as possible foraging grounds for insectivorous vertebrates. This spatially 
explicit multitrophic approach enables the delineation of focal farmland areas in 
order to prioritize conservation action.
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listed as the main drivers of biodiversity loss, along with fertiliza-
tion and pesticide application (Sánchez-Bayo & Wyckhuys,  2019). 
Land-use changes lead to increased habitat homogeneity through 
the establishment of large intensively managed monocultures and 
removal of natural structures (Vickery & Arlettaz, 2012) which re-
sults in a decline of many animal taxa (Benton et al., 2003; Robinson 
& Sutherland, 2002). Extensively managed semi-natural grasslands 
are particularly affected by land-use changes and thus considered 
among the most threatened habitats in Europe (Canals & Sebastià, 
2000). These grasslands are important habitats, hosting a high 
floral diversity and offering shelter for numerous endangered in-
vertebrates and vertebrates that find their last refuges in these ex-
tensively managed habitats, such as insectivorous birds that have 
become rare (Knaus et al., 2018).

In the past decades, a severe global insect decline has been ob-
served across many habitat types (Hallmann et  al.,  2017; Seibold 
et  al.,  2019). Intensified agricultural practices come along with in-
creased irrigation and the application of herbicides, pesticides, and 
fertilizers. In intensively managed meadows, insect populations 
are affected either directly through insecticides (Goulson,  2013), 
mowing (Buri et  al.,  2016; Humbert et  al.,  2012), fertilization, and 
irrigation (Andrey et  al.,  2014), or indirectly through herbicides 
homogenizing plant diversity or limiting food resources (Robinson 
& Sutherland, 2002). Several studies have shown the negative im-
pact of these intensification processes on vegetation structure (i.e., 
Cernusca et al., 1996) as well as on arthropod abundance, richness, 
and biomass (Lessard-Therrien et al., 2018; Marini et al., 2008) indica-
tive of a negative relationship between plant/insect species richness 
and grassland intensification. This does not only affect invertebrate 
communities but also cascades to animal groups depending on inver-
tebrates as their food resources (Wilson et al., 1999). Therefore, the 
disappearance and degradation of extensively managed grasslands 
dramatically affects both faunal and floral biodiversity, underlining 
the importance of their preservation and necessary steps to take 
appropriate conservation action.

For a comprehensive protection and conservation planning of 
grassland biodiversity, we need strategies acting on multiple spatial 
scales. On the field scale, a fine understanding of the often-com-
plex relationships between intensification processes and floral and 
faunal diversity helps us adapting local management strategies such 
as mowing regimes and chemical inputs. In addition, effective com-
plementary conservation strategies need to act on larger scales 
(landscape scale) in order to identify target key areas that ensure 
habitat and therefore population connectivity. However, to build 
such large-scale conservation strategies, fine-scaled field data are 
often not available or rarely cover large areas. This is why modeling 
tools such as species distribution models or essential biodiversity 
variables (Guisan et  al.,  2013; Kissling et  al.,  2018), which enable 
extrapolations of data on large scales are now increasingly used to 
complement these gaps. While some studies use stacked species 
distribution models or species richness models to prioritize conser-
vation management areas (Vincent et  al.,  2019) major information 
on farming intensity and on species abundances—variables known 

to influence strongly species assemblages (Baudraz et al., 2018)—are 
often missing.

Remote sensing approaches are regularly used to distinguish 
semi-natural from anthropogenic vegetation, to characterize eco-
system structure (grassland vs. shrubs) (Alleaume et  al.,  2018) as 
well as to produce a large-scale assessment of grassland use inten-
sity (Franke et al., 2012). These approaches are useful for the clas-
sification of grasslands into different land-use categories, while not 
considering intracategorical variation. However, understanding this 
local intracategorical variation is of primary interest. Taking the ex-
ample of extensively managed grasslands, the floral diversity they 
are hosting can shift dramatically depending on land use, insect 
diversity, and abundance despite being in the same meadow cate-
gories (Andrey et al., 2014; Buri et al., 2016). These fine scale phe-
nomena are often not taken into account in modeling processes but 
are precious to identify areas of interest for conservation planning. 
With such high-resolution quality maps, high quality areas could 
be prioritized for habitat preservation, while low quality areas can 
be incorporated into future habitat restoration actions. More fine-
scaled projections of local grassland management intensity, incorpo-
rating both floral and faunal diversity could serve as better tools for 
conservation planning and allow the delineation of high-biodiversity 
grasslands at landscape scale.

The aim of this study was thus (a) to develop a proxy for man-
agement intensity based on vegetation surveys and remote sensing, 
to (b) investigate the complex links between grassland management 
intensity and floral and faunal biodiversity at field scale; and finally 
(c) to project this local information obtained from different trophic 
levels (vegetation and orthopterans) to the wider landscape provid-
ing a tool for local conservation management.

2  | MATERIAL S AND METHODS

2.1 | Study area

The study was conducted from May to August 2018 in the SW Swiss 
Alps in the Canton of Valais (46°13'45.30"N 7°27'34.99"E) from an 
elevation of 500 to 1,400 m and thus ranging from the foothill belt 
to the beginning of the montane belt. A total of 57 meadows (Figure 
A.4, mean area 7,952 m2) located between Brig and Fully were se-
lected for sampling. The meadow selection was randomized and bal-
anced between the lowland and foothills, and the plots were equally 
distributed across the study area and along the elevation belts. The 
different plots are covering the whole gradient of intensification 
from natural steppe-like grasslands to natural but intensively man-
aged meadows and finally sown meadows.

On each of the 57 meadows, 10 random sampling points (for or-
thopteran sampling) were generated (random point tool (Quantum 
GIS Development Team 2018)). Among the 10 sampling points per 
site, three points (for vegetation surveys) were selected to fall inside 
distinct Sentinel-2 pixels (10 x 10 m grid, provided by the Copernicus 
program led by the European Commission, processed at level 2A/3A 
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by the CNES for the data center THEIA) on each meadow. To avoid 
clustering and edge effects (Knop et al., 2006), points which accumu-
lated or met buildings, bushes, streets, trees, or edges were moved 
to the closest pixel of the grid. The normalized difference vegeta-
tion index (NDVI) was calculated from infrared and near-infrared 
bands Sentinel-2 as an estimation of primary production (Pettorelli 
et al., 2011) following the formula (NIR-RED/NIR + RED). To avoid 
biased values, the pixels had to be free of confounding structures 
like bushes, trees, or buildings. NDVI was calculated for each month 
of the field sampling (April to August 2018).

2.2 | Data collection

2.2.1 | Vegetation surveys

59 indicator plant species (Table A.1) were defined and consid-
ered representative for the predominant grasslands in the study 
area (Delarze et  al.,  2008). The presence and abundance of these 
different species vary along the intensification gradient allowing 
for a classification of the meadows from unmanaged grasslands to 
intensively managed grasslands. The species were chosen accord-
ing to the definition of the different habitat types sensu Delarze 
et al. (2008), completed by the Swiss center for agricultural research 
species list used as an identification key to habitat types (Buholzer 
et al., 2015) and recommendations of botanists with local expertise 
(pers. com. P. Vittoz and A. Litsios-Dubuis). Using a list of indicator 
species reduces drastically the sampling effort, maximizing thus the 
efficiency and the costs. It is thus commonly used by environmental 
offices. For example, such method is largely used to define grassland 
types in Switzerland (Delarze et al., 2008). In our case, we pooled 
and extracted from the existing lists the species from the local spe-
cies pool.

Vegetation surveys were conducted on 3 vegetation plots (each 
a square of 4 m2, falling into distinct Senetinel-2 pixels) per meadow 
between the 7th of May and 29th of July. The presence and abun-
dance (% coverage) of all 59 indicator plant species was assessed to 
allow a gradual classification of each meadow according to differ-
ent land-use intensities. For a small number of meadows (n = 3), the 
vegetation was already mown at the first field visit; therefore, the 
vegetation surveys had to be conducted later in the season.

2.2.2 | Orthopteran sampling

On each of the 10 random points, orthopterans were sampled 
using a Biocenometer, which consists of a net fastened around a 
1 m square hard circle, allowing to count the density of orthopter-
ans on a standardized area (technique and sample size in line with 
Badenhausser et al., 2009; Humbert et al., 2012). All grasshoppers 
inside the device were counted and distinguished in categories 
(Table A.2). Orthopteran surveys took place in 4 sessions from 6th 
of June to 16th of August between 8:45 a.m. and 19:45 p.m., at a 

minimum temperature of 15 degrees and sunny weather (Pradervand 
et al., 2013). To avoid timing effects, sampling sites were randomized 
between each session. Additional variables were assessed in the 
field (Table 1).

2.3 | Statistical analyses

2.3.1 | Estimating grassland management intensity

The ecology of all plant species of Switzerland is summarized by 
ecological and biological traits called Landolt values. These values 
are showing the multidimensional space favorable for a given spe-
cies, describing its environmental niche (Landolt et  al.,  2010). We 
attributed to each indicator plant species its corresponding Landolt 
values, the ecological indicator values (EIVs). Among the different 
ecological values we selected; temperature (T), continentality (K), 
light preference (L), soil moisture variability (W), soil pH (R), nutrient 
content (N), and soil aeration (D) for the analyses.

T indicates temperature preference and is highly correlated 
with temperature from climate models (Scherrer & Guisan, 2019), 
expressed in a gradient 1–5 from cold-indicator to warmth-indica-
tor. L is associated with plant light preference and expressed in a 
gradient 1–5 from shaded to sunny areas. K indicates continentality, 
associated with plant distributions (Descombes et al., 2020), and ex-
pressed in a gradient 1–5 from atlantic to continental climates. W 
is indicative of soil moisture variability and expressed in a gradient 
1–3 from low to high intra-annual variability in soil moisture. R in-
dicates soil pH, expressed as a gradient 1–5 from acidic to alkaline 
soils. N is indicative for soil nutrients (i.e., nitrogen, phosphorus) and 
expressed in a gradient 1–5 from nutrient-poor to nutrient-rich soils. 
D indicates soil aeration (oxygen supply) and is associated with hy-
dromorphology (Descombes et al., 2020), expressed in a gradient 
1–5 from waterlogged/low-aerated soil to rocky/sandy soil. These 
indicator values have been shown valuable for assessing soil and cli-
matic conditions, even outperforming traditional broad-scale topo-
climatic predictors such as temperature, precipitation, moisture, or 
pH proxies (Descombes et al., 2020), as EIVs taken from local com-
munities give information on much more local conditions than other 
measures.

For each vegetation plot, a mean Landolt value per variable was 
computed by averaging the respective Landolt values of all species 
present on a plot and accounting for their relative abundance, fol-
lowing Dubuis et al. (2013). A Detrended Correspondence Analysis 
(DCA, (Hill & Gauch, 1980)) was conducted in R (R Core Team, 2018), 
using the decorana function of the vegan R package (Oksanen 
et al., 2018) to test whether the computed average Landolt values 
can be used as a proxy for management intensity on each meadow. 
We then used the value from the first axis of the DCA for each plot, 
as this axis is strongly shaped by nutrient content (N) and soil aera-
tion (D) thus representative of the intensification gradient. The final 
meadow value resulted in the average DCA value of the three plots 
per meadow.
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2.3.2 | Orthopteran analysis

To understand which variables were influencing orthopteran abun-
dance and orthopteran species richness, we used two model selec-
tion approaches with these variables as responses. Orthopteran 
abundance was defined as the sum of orthopteran individuals per 
plot (including nymphs). The number of species groups was con-
sidered as a proxy for species richness, as it has been shown that 
higher taxa diversity can be used as a surrogate for species diversity 
(Báldi, 2003; Balmford et al., 1996). For the categories which had not 
been identified to species level, the genus was considered a species 
group (e.g., Chorthippus, see Table A.2), providing a conservative 
measure of species richness. Nymphs were excluded from this part 
of the analysis, as they could not always be attributed to species 
groups.

The explanatory variables were management intensity and col-
lected in the field; month, and survey session, bare ground, mean 
vegetation height, irrigation, grazing, mowing, and an interaction be-
tween month and (management intensity)2 (Table 1). In addition, the 
bioclimatic variables precipitation (averaged period: 1981–2010) and 
the mean of growing degree days (GDD, a proxy of heat accumula-
tion above 3°C from 2000 to 2015, used to predict the development 
rates of plants (computed following Zimmermann & Kienast, 1999)) 
were extracted for each sampling point from (Broennimann, 2018). 

As the data were on a 25 x 25 m grid resolution, we resampled it to 
a 10 x 10 m resolution using spline interpolations, fitting the NDVI 
grid cells.

All variables were analyzed on plot scale (1  m2). The response 
variables had poisson distributions and showed no signs of zero-in-
flation (DHARMa package in R (Hartig, 2019)). The model analyses 
were performed with generalized linear mixed models (GLMM) using 
the function glmer of the lme4 R package (Bates et al., 2015). The 
meadow ID and sampling plot ID were included as random factors. 
In a first step, univariate models were performed on all explanatory 
variables (linear and quadratic (2), with collinearity lrl < 0.7 (Figure 
A.5), Spearman rank correlation tests, (Dormann et al., 2013)) and 
the 11 (abundance), respectively, 10 (richness) best variables were 
included in the further analyses (Table A.3). The response variables 
were standardized (mutate_at function of dplyr R package (Wickham 
et  al.,  2018)) to improve model convergence. Multivariate models 
were then performed and ranked by Akaike information criterion 
(AIC) with the dredge function of the multimodel inference (MuMIn) 
R package (Barton, 2018). Overdispersion of count data was tested 
with the dispers_glmer function of the blmeco R package (Korner-
Nievergelt et  al.,  2015) and accounted for by including observa-
tion-level random effects (Harrison, 2014). Finally, all models with 
Δ AIC <2 were used to compute an averaged best model and spatial 
autocorrelation was tested for with a mantel test.

Variable Description Multivariate models

Month June, July, August Abundance Richness

Mowing If a meadow was mown (categorical: 
0 = no, 1 = yes, 2 = second 
vegetation)

Abundance Richness

Grazing If a meadow was grazed (categorical, 
0 = no, 2 = signs of former grazing, 
3 = animals on a meadow)

Abundance Richness

Irrigation Irrigation or irrigation system installed 
(categorical, 0 = no, 1 = yes)

Abundance Richness

Mean vegetation 
height

Height of vegetation on 1 m2 plot in 
[cm]

Abundance Richness

Proportion of bare 
ground

Amount of bare ground 1 m2 plot in [%] Abundance

Sampling round Sampling session (1, 2, 3, 4)

Management intensity Index for grassland management 
intensity, See Figure 1

(Management 
intensity)2

Index for grassland intensification, See 
Figure 1

Abundance Richness

GDD Mean of growing degree days (GDD) 
above 3°C from 2000 to 2015, proxy 
of heat accumulation used to predict 
the development rates of plants 
(Zimmermann & Kienast, 1999)

Abundance Richness

Note: The variables in italics were collected in the field, while the DCA management intensity proxy 
was derived from the analysis (linear and quadratic (2)), and the variable growing degree days was 
extracted from the WSL bioclim database (Broennimann, 2018). All variables except sampling 
session were included in the analysis. The last column lists all significant variables of the univariate 
models which were then included in the multivariate models.

TA B L E  1   Explanatory variables which 
were used for the statistical analysis
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All response relationships were produced by using the sim func-
tion of the arm R package (Gelman et al., 2018), which is simulating 
the response of the averaged best model by drawing samples from 
joint posterior distributions.

2.3.3 | Projection on the landscape scale

In order to obtain high-resolution maps of management intensity 
and orthopteran abundance at landscape scale, new models were 
built, incorporating additional variables on a broader spatial scale. 
As local variables (such as irrigation, grazing, mowing, bare ground, 
vegetation height, etc.) are not available or possible to sample on 
large contiguous areas, we projected management intensity and or-
thopteran abundance using a set of variables available for the whole 
area. The model projections were carried out in two steps. The first 
step was to use NDVI calculated from the Sentinel data to project 
management intensity on the landscape scale, while the second was 
to use this prediction to further project orthopteran abundance 
on the landscape scale of the whole Canton of Valais (548,578.4, 
679,788.4, 87,708.77, 167,428.8, open vegetation areas below 
1,400 m elevation).

Univariate models were performed on NDVI variables from April 
to August 2018 (year of sampling), distance to bushes, distance to 
forest, mean temperature, mean precipitation, growing degree days, 
aspect, slope, curvature, and solar radiation (computed following 
method by (Zimmermann & Kienast, 1999), with collinearity lrl <0.7, 
Spearman rank correlation tests, (Dormann et al., 2013)). The best 
variables (p values <.05) were included in the final models with 

management intensity and orthopteran abundance as response vari-
ables. Seven outliers were excluded from further analyses as they 
were traced back to confounding structures in the NDVI grid cells. 
The only significant way to model management intensity was a lin-
ear model (lm) using the DCA1 output (DCA1, unit: vegetation plot) 
based on NDVI of April 2018 as explanatory variable. A generalized 
linear model (glm, Ortho  ~  management intensity projection) was 
used to predict orthopteran abundance at landscape scale, based on 
the previously projected management intensity proxy. Orthopteran 
abundance was predicted as the mean orthopteran sum per meadow 
to account for variation caused by microscale effects (as shown in 
3.2.) which cannot be included as model predictors.

The accuracy of both models was assessed using repeated 
cross-validation, the most commonly used method when indepen-
dent datasets are not available (Guisan & Zimmermann, 2000), and 
for the management projection, we randomly selected 1,000 times 
80% of the data (weighted by habitat type sample size) as a train-
ing dataset and predicted the model on the remaining 20%. For 
cross-validation of the orthopteran projection, 70% were used for 
training and 30% for validation, accounting for a small sample size 
(Fielding & Bell,  1997). In addition, we randomly drew 100 points 
(avoiding confounding structures like trees/bushes) falling inside 
the Swiss inventory of dry meadows and pastures—thus extensive 
to very extensive meadows—(Bundesamt für Umwelt,  2017) and 
compared the predicted DCA1 values with this independent dataset.

3  | RESULTS

3.1 | Vegetation

The DCA was shown to distinguish the vegetation plots according to 
the predefined grassland land use following indicator plant species 
(Figure 1). DCA axis 1 explained 76.43% of all variance and fitted 
the gradient of management intensity. The first two axes together 
explain 95.43% of the variance in the data, and both are driven by 
a combination of different Landolt values (see Figure 1). Therefore, 
the DCA axis 1 value was attributed to each vegetation plot. This 
value was then used as a management intensity proxy ranging from 
low values for low-zero management intensity to high values for very 
high management intensity (artificial, i.e. sown meadows).

3.2 | Orthopterans

A total of 8,725 orthopteran individuals were counted with the bio-
cenometer sampling.

According to univariate models, eight environmental variables 
affected orthopteran abundance (Table A.3). Including these vari-
ables in the model selection approach, three models were compet-
itive with a Δ AIC < 2 (Table A.4). The conditional averaged model 
(Table 2) showed that orthopteran abundance had a hump-shaped 
relationship with management intensity (−0.34  ±  0.10, z  =  3.31, 

F I G U R E  1   Detrended correspondence analysis (DCA) for the 
mean Landolt values per plot, computed from field vegetation 
surveys. Grayness illustrates the coverage weighted values of the 
indicator plant species (dark = more extensive), which are linked to 
differential land use according to Buholzer et al. (2015) and Delarze 
et al. (2008). Therefore, DCA1 shows the management intensity 
gradient from zero-low and low-medium management intensity on 
the left to high-medium and very high management intensity on the 
right. The arrows correspond to the Landolt values T (Temperature), 
K (Continentality), L (Light preference), W (Soil moisture variability), 
R (Reaction), N (Nutrient content), D (Soil aeration) and illustrate 
how they are driving the DCA axes.
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p < .001; Figure 2). Furthermore, orthopteran abundance decreased 
with higher amount of bare ground (−0.17 ± 0.03, z = 6.22, p < .001), 
increasing growing degree days (−0.29  ±  0.10, z  =  2.87, p  >  .01), 
presence of irrigation (−0.27 ± 0.11, z = 2.38, p <  .05; Figure 3a), 
month (−0.41 ± 0.02, z = 14.31, p < .001), and mowing (second veg-
etation = regrown after mowing: −0.32 ± 0.09, z = 3.34, p < .001/ 
freshly mown: −0.23 ± 0.10, z = 2.36, p <  .05; Figure 3b). In addi-
tion, there was a significant interaction between the degree of in-
tensification and month on orthopteran abundance (−0.05 ± 0.02, 
z = 2.01, p = .05). Visual inspection indicates that the hump-shaped 
relationship was most pronounced in June and became weaker later 
in the season. There was no sign for spatial autocorrelation in the 
orthopteran data (Mantel test, p > .05).

Species richness was affected by eight environmental variables 
according to univariate models (Table A.3). Including these vari-
ables in the model selection approach, three models were compet-
itive with a Δ AIC < 2 (Table A.4). The conditional averaged model 
(Table 2) showed that orthopteran species richness had a hump-
shaped relation with the degree of intensification (−0.29 ± 0.07, 
z = 3.90, p <  .001; Figure A.2) and was negatively affected with 
vegetation regrowth (second vegetation: −0.26 ± 0.10, z = 2.53, 
p < .05), bare ground (−0.09 ± 0.03, z = 3.97, p < .01), and mean 
vegetation height (−0.16  ±  0.04, z  =  2.14, p  <  .05). In contrast, 
species richness increased with month (0.20  ±  0.03, z  =  3.90, 
p <  .001) and previous grazing (formerly: 0.39 ± 0.11, z = 3.55, 
p > .001).

TA B L E  2   Summary of the model-averaged coefficients (conditional average) of all models with Δ AIC < 2 (see Table A.4) investigating 
orthopteran abundance and richness

Model Variables
Var. 
importance Estimate ± SE z value p value

Orthopteran abundance Management intensity 1.00 0.11 ± 0.10 1.09 ns (<0.5)

Management intensity2 1.00 −0.34 ± 0.10 3.31 <0.001

Month 1.00 −0.41 ± 0.02 14.31 <0.001

Bare ground 1.00 −0.06 ± 0.03 1.79 ns (<0.1)

Bare ground2 0.90 −0.17 ± 0.03 6.22 <0.001

Vegetation height 1.00 0.04 ± 0.03 1.24 ns (<0.5)

Vegetation height2 1.00 −0.20 ± 0.03 6.88 <0.001

GDD 0.96 −0.29 ± 0.10 2.87 <0.01

Grazing2 (formerly) 0.47 −0.10 ± 0.11 0.87 ns (<0.5)

Grazing3 (yes) 0.14 ± 0.13 1.02 ns (<0.5)

Irrigation 0.87 −0.27 ± 0.11 2.38 <0.05

Mowing (freshly mown) 0.99 −0.23 ± 0.10 2.36 <0.05

Mowing (2nd vegetation) −0.32 ± 0.09 3.34 <0.001

(Management intensity)2 x 
Month

0.79 −0.05 ± 0.02 2.01 <0.05

Orthopteran species richness Management intensity 1.00 0.15 ± 0.08 1.89 ns (<0.1)

Management intensity2 1.00 −0.29 ± 0.07 3.90 <0.001

Month 1.00 0.20 ± 0.03 6.95 <0.001

Bare ground 0.95 −0.03 ± 0.04 0.73 ns (<0.5)

Bare ground2 0.95 −0.09 ± 0.03 2.97 <0.01

Vegetation height 1.00 −0.08 ± 0.04 2.14 <0.05

Vegetation height2 1.00 −0.16 ± 0.04 4.13 <0.001

GDD 0.60 −0.12 ± 0.07 1.72 ns (<0.1)

Grazing (formerly) 1.00 0.39 ± 0.11 3.55 <0.001

Grazing (yes) 0.11 ± 0.14 0.77 ns (<0.5)

Mowing (freshly mown) 1.00 0.16 ± 0.10 1.66 ns (<0.1)

Mowing (2nd vegetation) −0.26 ± 0.10 2.53 <0.05

(Management intensity)2 x 
Month

0.29 0.02 ± 0.02 0.64 ns (<1)

Note: All variables (significant ones shown in bold, (linear and quadratic (2))), their relative importance in the averaged model and estimates with 
standard error, z value, and p value are shown (ns, not significant, p > .05).
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3.3 | Projection on the landscape scale

Among the different variables available at the landscape scale, 
namely NDVI variables from April to August 2018 (year of sam-
pling), distance to bushes, distance to forest, mean temperature, 
mean precipitation, growing degree days, solar radiation, aspect, 
slope, and curvature, only NDVI was significantly linked to the 
management intensity. We thus used it for the projection as linear 
model DCA1 ~ NDVI April 2018 (0.79 ± 0.04, p < .001, Figure A.4). 
When performing a habitat-weighted repeated cross-validation 
for the vegetation projection, a correlation of 86.27% (p  <  .001) 
was obtained, indicating a high accuracy of the model. The model 
performed thus very well in predicting management intensity 
(Figure A.3a), while there is a weak overprediction on the intensive 
part of the gradient between 0.05 and 0.2. In addition, the model 
proofed accurate when drawing 100 random points from the dry 
meadow inventory, which yielded mean predicted DCA1 values of 
−1.89 ± 0.08 (from −0.30 to 0.08), therefore fitting the expected 
values for extensive meadows from our management projection. 
In total, the projection predicts 29.97% of the study area (total 
247,900 ha) to be covered by grassland, of which 34.19% (10.25% 
of the study area) is attributed to high-medium management inten-
sity, 32.25% (9.64% of the study area) to medium-low management 
intensity, 24.58% (7.37% of the study area) to very high manage-
ment intensity and 8.99% (2.69% of the study area) to low-zero 
management intensity.

Similarly, orthopteran abundance at field scale was affected 
by management intensity (quadratic) and solar radiation (qua-
dratic). Orthopteran abundance was projected as generalized lin-
ear model Ortho  ~  management intensity (−3.86  ±  2.53, p  <  .2) 
+ management intensity2 (−4.28*101  ±  1.35, p  <  .01)  +  Solar 
radiation (−1.22*10−2  ±  3.83*10−3, p  <  .01) + Solar radiation2 
(2.44*10−7  ±  7.41*10−8, p  <  .01). When performing repeated hab-
itat-type weighted cross-validation for the orthopteran projection, 
a correlation of r  =  40.15% (p  <  .001) was obtained. The model 

performed well in predicting low to average values but still with an 
important error rate (Figure A.3b). A few points showing a high or-
thopteran abundance like the three outliers from Figure A.3b host-
ing more than 10 orthopterans show an important underprediction. 
See Figure 4 for maps with the projected management intensifica-
tion (a) and orthopteran abundance (b), Figure A.6 for residuals and 
the spatial distribution of the prediction error.

4  | DISCUSSION

First, using vegetation surveys to infer management intensity, set in 
relation to orthopteran abundance, we demonstrate an optimum in 
traditionally managed meadows. Second, by upscaling to the land-
scape, grasslands of high importance could be spatially delineated, 
delivering an important tool for large-scale conservation planning. 

F I G U R E  2   Orthopteran abundance in relation to the 
management intensity index (see Figure 1).

F I G U R E  3   (a,b) Orthopteran abundance in relation to 
the management intensity index (see Figure 1). Colored lines 
show different (a) irrigation and (b) mowing states (second 
vegetation = regrown after mowing)

(a)

(b)
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In the following sections, we will discuss the management intensity 
proxy, the relationship of different environmental and management-
related factors with orthopteran abundance and richness, and finally 
our projections to the landscape scale.

Vegetation surveys are necessary to assess habitat quality at 
local scale. While grassland is often only classified into broad land-
use categories, our method incorporates intracategorical variation 
by allocating a field-data based degree of management intensity to 
each meadow. This proxy acts as basis for a more fine-scaled analy-
sis of the relationships between land use and insect abundance and 
diversity.

Orthopteran abundance and richness showed a quadratic rela-
tionship to grassland management intensity, with low values in ei-
ther high-medium and low-zero intensity meadows and an optimum 
in medium-low intensity meadows. The highest orthopteran abun-
dance and richness were found in Mesobromion meadows, tradition-
ally managed grasslands known to harbor a high diversity of plant 
species (Delarze et  al.,  2008). These Mesobromion meadows now-
adays only cover about 1% of the agricultural area of Switzerland 

and have been dramatically declining following agricultural inten-
sification, with losses of up to 90% of their historical area since 
1945 (Eggenberg et al. 2001; Masé, 2005). In Valais, our results in-
dicate that there is still a very high proportion of these meadows 
with 32.25% of the projected grassland area and 9.64% of the pro-
jected study area, illustrating the high responsibility of this region 
for the conservation of this kind of grasslands and its associated 
biodiversity. Their importance for orthopterans and related preda-
tors also makes them most effective for conservation efforts (Kleijn 
et al., 2012), while their preservation is essential, as they have been 
predicted to disappear without active counter-measures (Masé, 
2005). The low values of orthopterans in intensified grasslands are 
in line with previous studies (e.g. Delley, 2014) as several known fac-
tors were shown to negatively affect orthopterans. Human distur-
bance has been shown to affect insects (Kati et al., 2012), while an 
important factor for orthopteran mortality is mowing, as orthopter-
ans are either killed through the mechanical process or exposed to 
predators due to low grass height (Arlettaz, 1996) or flee to unmown 
refuges, thereby decreasing orthopteran abundance on the meadow 
(Buri et al., 2016; Humbert et al., 2012). After regrowth of the vege-
tation, orthopteran abundance increased again without reaching the 
initial values. Frequent mowing can be associated with intensively 
managed meadows that are heavily fertilized and irrigated. In line 
with this and former studies (Andrey et al., 2014), irrigation had a 
negative effect on orthopteran abundance and richness. This finding 
is illustrated by the quadratic relationship with management inten-
sity and shows that traditional low-medium intensity management 
is associated with higher orthopteran abundance and richness com-
pared with very extensive grassland habitats (Stipo-Poion) that are 
rarely managed, but harbor a low orthopteran abundance and rich-
ness. Stipo-Poion is listed as grassland of international importance, 
not because of its high insect abundance but because it is occupied 
by floral and faunal specialists of xeric and warm habitats (Delarze 
et al., 2008; Masé, 2005). Linked to this, there was a negative effect 
of the amount of bare ground on orthopteran abundance, as steppes 
are a habitat with extreme conditions and much bare ground, typi-
cally occupied by specialists (Delarze et al., 2008; Masé, 2005) such 
as Calliptamus italicus and Oedipoda spp. (Baur et al., 2006). Overall, 
orthopteran abundance was shown to decrease throughout the 
reproductive season, while species richness increased. In the early 
season, a high abundance of nymphs explains the high orthopteran 
abundance, while most of the nymphs are doomed to die before 
reaching maturity. Species richness was shown to increase after 
mowing, supporting the role played by seasonality, as phenology 
leads to higher species richness in July and August compared with 
June. In addition, grazing was shown to have positive effects on 
species richness, as semi-extensive meadows which harbor a higher 
diversity of species groups are often grazed (Delarze et al., 2008).

We show how diverse environmental and management factors 
influence orthopterans at the field scale. The findings illustrate the 
negative effects of land use and management intensification on or-
thopterans, in line with the current drastic declines of insect pop-
ulations (e.g. Seibold et al., 2019) and previous studies on land-use 

F I G U R E  4   (a) Model projection map showing the extrapolated 
management intensity index to the whole landscape. Green areas 
are predicted to be more extensively managed than red areas which 
are predicted to be intensively managed. (b) Model projection map 
showing the extrapolated orthopteran density (as drawn from the 
intensification index map, Figure 1). Green areas are predicted to 
harbor a higher density of orthopterans than red areas.

(a)

(b)
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change (Hofstetter et al., 2015). Previous studies have also shown 
dramatic population declines of higher trophic levels, which depend 
on insects as a food resource (Bowler et al., 2019). These declines 
are especially drastic for insectivorous farmland birds, relying on 
grassland (Bowler et al., 2019), suggesting a link to land-use inten-
sification processes and the disappearance of traditionally managed 
grasslands.

While modeling approaches are often dealing with species distri-
butions or richness, we often miss proxy for taxa abundances. Such 
data are however crucial when conservation targets insectivorous 
predators which depend on food resources. Our approach on the 
projection of floral and faunal diversity proxies provides a new and 
efficient technique for the assessment of different trophic levels of 
diversity and abundance on a landscape scale. The management in-
tensity proxy was highly correlated to NDVI and therefore allowed 
a very accurate projection at landscape scale. The further projec-
tion of orthopteran abundance performed less accurately but still 
explained nearly half of the variance in the overall data, providing 
a solid tool for the delineation of priority grasslands, even high-
lighting small scale differences in management, like uncut refuges 
along mown meadows. The shortcomings of our projections are, 
first, the dependency of the second projection on the first, which 
comes along with an error accumulation and a drop of explained 
variance. Second, several microscale factors (see 3.2) were shown 
to influence orthopterans, but could not be included in the projec-
tions at landscape scale, due to the impossibility to record these data 
at that scale; therefore, orthopteran values had to be averaged per 
meadow. The high correlation of orthopterans and the intensifica-
tion index with NDVI and the absence of significant response of the 
topoclimatic variables are probably indicating that at the scale of our 
study, land-use changes are more important than topoclimatic driv-
ers like (Baudraz et al., 2018) showed in the Prealps. Thus, the main 
limitation of the projections is linked to the concept of remote sens-
ing, which always leads to simplification through averaging values on 
pixel grids, thereby causing information loss with regard to meadow 
heterogeneity, confounding structures, and especially microscale ef-
fects, which are limited to the field scale. This partly explains the un-
derprediction of the orthopteran count as orthopteran distribution 
can vary strongly within a single meadow due to small undetectable 
structures. These microscale effects that cannot really be assessed 
remotely with our approach include landscape characteristics (Le 
Provost et  al.,  2017) such as grassland cover, vegetation height, 
bare ground, irrigation, and dryness, but also ecological links where 
specific plant species are preferred as food resources (Schaffers 
et al., 2008). However, our new multiscale approach to project our 
land-use management intensity proxy on a landscape scale by com-
bining vegetation surveys with remote sensing data, and then in turn 
with orthopteran data, has to be considered as a first step to high-
light valuable objects for biodiversity on which the results of the fine 
scale analysis can then be applied. The technique is time and labor 
effective and provides a valuable method to build prediction maps of 
grassland management and orthopteran abundance that can be used 
as a tool for applied conservation management. On the one hand, 

grasslands of excellent quality (which we show are still prevalent in 
Valais) can be prioritized for conservation, notably by promoting ex-
tensive management practices on these areas. On the other hand, 
grasslands of lower quality can be prioritized for habitat restoration: 
for instance, habitat quality can be improved if these areas are de-
clared and subsidized as biodiversity promotion areas (wildflower 
strips or unmown refuges, etc.). To that aim, our fine scale results 
provide a promising approach not only for the delineation of focal 
areas but also for specifying which measures should optimally be 
applied.

5  | CONCLUSIONS

In the framework of the current biodiversity decline, our results 
highlight the importance of traditionally managed low-middle in-
tensity meadows and show that orthopteran abundance and rich-
ness are highly affected by agricultural management and land-use 
processes. This illustrates the importance of conservation measures 
linked not only to the preservation but also to the restoration of 
semi-extensive grassland habitats in order to retain a high abun-
dance and diversity of orthopterans. If not considered an end in it-
self, orthopterans are a very important resource for higher trophic 
levels such as insectivorous birds and have to be maintained in order 
to protect insectivores that currently count among the most im-
pacted biodiversity taxa. Operating with field-collected information 
about vegetation intensification and prey abundance while upscaling 
with an informative proxy we were able to build an efficient tool to 
highlight and prioritize focal areas for grassland biodiversity conser-
vation and restoration in an inner Alpine valley.
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