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Asthma is a major public health concern. Cockroach allergen exposure and cockroach allergic sensitization could contribute to
the higher prevalence of asthma. However, the underlying immune mechanism and the genetic etiology remain unclear. Recent
advances have demonstrated that several receptors (PAR-2, TLRs, CLRs) and their pathways mediate antigen uptake from the
environment and induce allergies by signaling T cells to activate an inappropriate immune response. Cockroach-derived protease
can disturb airway epithelial integrity via PAR-2 and leads to an increased penetration of cockroach allergen, resulting in activation
of innate immune cells (e.g., DCs) via binding to either TLRs or CLRs. The activated DCs can direct cells of the adaptive immune
system to facilitate promotion of Th2 cell response and subsequently increase risk of sensitization. Mannose receptor (MR), as a
CLR, has been shown to mediate Bla g2 (purified cockroach allergen) uptake by DCs and to determine allergen-induced T cell
polarization. Additionally, genetic factors may play an important role in conferring the susceptibility to cockroach sensitization.
Several genes have been associated with cockroach sensitization and related phenotypes (HLA-D, TSLP, IL-12A, MBL2). In this
review, we have focused on studies on the cockroach allergen induced immunologic responses and genetic basis for cockroach
sensitization.

1. Introduction

Asthma prevalence has markedly increased worldwide over
the past three decades [1]. Exposure to indoor allergens
is known to exacerbate asthma. Asthma symptoms due to
exposure to cockroaches have been recognized since the
1940s. Scientific studies over the years have demonstrated
that cockroach allergen is one of the major risk factors for
the development of asthma [2–4]. Particularly, cockroach
allergen exposure appears to have a greater effect on asthma
morbidity than that of dust mite or pet allergen among
inner-city children with asthma [5–7]. However, while
there appears to be a rather clear relationship between
allergen exposure and allergen sensitization or respiratory
symptoms, the dose-response relationship is most relevant
for “susceptible” individuals [7, 8]. Furthermore, a segment
of the population, even when exposed to very high con-
centrations of allergen, will never become sensitized [9].
These studies suggested that there may be a genetic basis
for allergen sensitization which contributes to the risk of
asthma and/or the severity of asthma. It was recognized

that interaction between gene and environment may control
the development of asthma, but little is known regard-
ing the causal relationship between cockroach exposure,
sensitization, and asthma. A possible mechanism for the
cockroach allergen induced allergic sensitization is illustrated
in Figure 1. Cockroach allergen contains and produces many
proteins and macromolecules, such as proteases [10, 11].
Cockroach-derived protease can disturb airway epithelial
integrity and leads to an increased penetration of allergen
proteins, resulting in activation of innate immune cells
(e.g., dendritic cells (DCs)), which will direct cells of the
adaptive immune system to Th2 cell development, lead to
the lung inflammation and, subsequently, increased risk of
sensitization [12, 13]. Protease-activated-receptor- (PAR-) 2,
a receptor for protease, has been shown to mediate activation
of airway epithelial cells [14, 15], and development of
allergic diseases [16, 17]. Studies on PAR-2 deficient mice
have demonstrated that PAR-2 mediates allergen-derived
proteases in cockroach frass-induced airway allergic inflam-
mation [18]. On the other hand, proteases may also serve as
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Figure 1: The mechanism of cockroach allergen-induced allergic sensitization. Cockroach-derived proteases can disturb airway epithelial
integrity and lead to an increased penetration of cockroach allergen, which can activate innate immune cells (e.g., dendritic cells (DCs))
via binding to Toll-like receptors (TLRs) or C-type lectin receptors. The activated DCs can direct cells of the adaptive immune system
to a promotion of Th2 cell response and subsequently increase risk of sensitization. On the other hand, genetic factors, particularly genetic
variants in TLRs, CLRs, CD14, either alone or in interaction with cockroach exposure, confer the susceptibility to increased risk of cockroach
sensitization and subsequently inflammation in the lung and asthma.

ligands for pattern recognition receptor (PPR). It was evident
that German cockroach frass contains a Toll-like-receptor-
(TLR) 2 ligand because it directly affected neutrophil
cytokine production via TLR-2 [19, 20]. Furthermore, C-
type lectin receptors (CLRs) are crucial in recognition of
complex glycan structures and facilitate the endocytosis and
presentation of pathogens [21–23]. Mannose receptor (MR),
as a CLR, has been shown to mediate the uptake of diverse
native allergens by DCs and to determine allergen-induced T-
cell polarization [24, 25]. Significant binding of allergens and
allergen extracts with variable binding activities to DC-SIGN
and its receptor, L-SIGN, have been recently demonstrated
[26]. Our recent studies have explored the mechanisms for
cockroach allergen-induced allergic sensitization, including
investigation of the Th1/Th2 cytokine profile of cocul-
tured plasmacytoid dendritic cells (pDCs) and CD4+ T-
cells and identification of the “transcript signatures” for
the immune response to cockroach allergen using high-
throughput expression profiling of cocultured cells [27].
Furthermore, we performed initial genome-wide association
studies (GWASs) for cockroach sensitization among African
Americans. This paper focuses on studies on the cockroach
allergen-induced immune response and genetic basis for
cockroach sensitization.

2. Cockroach Allergen Exposure and
Sensitization and Risk of Asthma

Indoor allergens associated with the development of asthma
include those derived from cockroach [28], house-dust mites
[29], animal dander [30], and mold spores [31]. Among

them, cockroach allergen exposure is a strong risk factor for
asthma associated with increased frequency and severity of
childhood allergies and asthma among inner-city children [5,
6, 32]. For example, in the children’s bedrooms, 50.2% had
cockroach allergen levels that exceeded the disease-induction
threshold, compared with 9.7% for dust mite allergen levels
and 12.6% for cat allergen levels. The rate of hospitalization
for asthma was 3.4 times higher among children who were
skin test positive to cockroach antigen and whose bedrooms
had high levels of cockroach allergen. The same group
also had 78% more visits to health care providers, experi-
enced significantly more wheezing, and missed more school
because of asthma compared to the children who were skin
test negative to cockroach allergen. Early life exposure to
cockroach allergen can lead to allergic sensitization [1, 32],
which also has been associated with an increased risk for
persistent asthma and bronchial hyperresponsiveness and
with a greater loss of function [33, 34]. Studies from
the Inner-City Asthma Consortium showed that allergen-
specific IgE levels were correlated with allergen exposure
among sensitized participants (P < 0.0001 for cockroach),
and specific IgE levels for cockroach are also correlated with
a range of inflammatory, physiologic, and clinical markers,
suggesting that the allergen-specific IgE level could be a
surrogate measure of the combination of sensitization plus
degree of exposure, and ultimately asthma severity [35].
Similarly, in the New York City Neighborhood Asthma and
Allergy Study (NAAS), Chew et al. found that increased
allergen exposure was associated with increased probability
of sensitization (IgE) to cockroach (P < 0.001) [36], and
cockroach allergen (Bla g2) was more prevalent in the bed
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dust taken from the homes in the high asthma prevalence
neighborhoods (HAPNs) compared with low asthma preva-
lence neighborhoods (LAPN), while sensitivity to cockroach
allergen was twice as common at 23% versus 10% [7]. These
studies further supported the notion that cockroach allergen
exposure increases the risk of allergic sensitization, which is
in turn related to the development of asthma. Importantly,
it is worthwhile to note that the combination of cockroach
sensitization and exposure to high levels of this allergen
increased the frequency of asthma-related health problems
overall in the inner city environment when compared with
either of them alone, suggesting that allergic sensitization
is a specific, major contributor to asthma morbidity for
individuals with high exposure [5, 6].

3. Cockroach Allergen and Protease-Activated
Receptors (PARs)

Environmental factors, including cockroach, house dust
mite, and mouse, are thought to be risk factors for asthma.
In particular, exposure to high levels of cockroach allergens
in the home is a major risk factor for symptoms in sensitized
individuals. Cockroach allergen is believed to derive from
feces, saliva, and the bodies of these insects. Both Blatella
germanica (German cockroach) and Periplaneta Americana
(American cockroach) are important producers of major
cockroach allergens [37]. German cockroach is especially
ubiquitous, particularly in large, crowded cities in the United
States [38]. However, it remains unclear how the cockroach
allergens induce allergic sensitization and asthma. Cockroach
allergen, like many of other allergens, HDM, fungi, pollen,
and cat, contain and produce many proteins and macro-
molecules, such as proteases. Indeed, protease activities were
detected in German cockroach frass and whole-body extract
[10, 11]. It was suggested that cockroach-derived proteolytic
enzymes disturb airway epithelial integrity, resulting in
increased penetration of allergen proteins and increased risk
of sensitization [12, 13]. Proteases may serve as ligands for
PARs that mediate activation of airway epithelial cells and
lead to the release of TNF, IL-8, and IL-6 [14, 15]. PAR-2,
a major member in a family of proteolytically activated G-
coupled receptors, has been associated with allergic diseases
[16, 17]. Recent studies found that proteases from A.
alternata act through PAR-2 to induce rapid increases in
human airway epithelial [Ca2+]i in vitro and cell recruitment
in vivo, suggesting critical early steps in the development
of allergic asthma [39]. In addition, activation of PAR-2
was shown to increase the expression of thymic stromal
lymphopoietin (TSLP), which activates DCs to polarize naive
T-cells to Th2 cells [40]. Further studies on PAR-2 deficient
mice have demonstrated that PAR-2 mediates allergen-
derived proteases in cockroach frass-induced airway allergic
inflammation, including increased airway hyperresponsive-
ness, Th2/Th17 cytokine release, serum IgE levels, cellular
infiltration, and mucin production, but the effect was
only observed when allergen was administered through the
mucosa [18]. Collectively, these data suggest that proteases
may link the innate and adaptive immune responses via

PAR-2. In contrast, proteases may also serve as ligands for
pattern recognition receptor (PPR). It was evident that Ger-
man cockroach frass contains a TLR2 ligand, which actives
neutrophils [19] and leads to release of MMP-9 and de-
creased allergic responses to cockroach frass [20]. However,
it still remains uncertain about the presence and activities
of proteases in cockroach extract, because neither serine
protease inhibitor nor cysteine protease inhibitor can inhibit
PAR-2 cleavage by cockroach extracts [41]. This was con-
sistent with the studies on one of the purified cockroach
allergens, Bla g2. Bla g2 has been shown to be a major antigen
according to the investigation of IgE-mediated response
(60%). Although Bla g2 shares sequence homology with the
aspartic proteinase family of proteolytic enzymes, it lacks
proteolytic activity in a standard milk-clotting assay using
casein as a substrate [42].These findings suggest that it
may be enzymatically inactive factors, other than enzymatic
activity, which play a role in cockroach-induced immunolog-
ical response.

4. The Immunological Role of Dendritic Cells
(DCs) in Shaping the Immune Response

DCs are the most powerful antigen-presenting cells (APCs)
that process cockroach antigen and play a critical role in the
initiation of the immune response and T-cell polarization
[43–45]. Animal models have suggested that DCs are vital for
both initiation and maintenance of allergic airway inflamma-
tion in asthma [46]. There are two major subsets of immature
DCs that circulate in blood, namely, the CD11c+, CD123low

myeloid DCs (mDCs), and CD11c−, CD123high plasmacytoid
DC (pDCs). There is accumulating evidence from animal
models that mDCs have a crucial role in the development
of allergic asthma [47, 48]. In particular, Mo et al. found
an increased airway hyperresponsiveness, eosinophil counts,
and Th2 cytokines in BAL after intratracheal administration
of OVA-pulsed mDCs [49]. In contrast, pDCs have been
reported to inhibit allergic airway inflammation and Th2-
type cytokine production in a mouse model of asthma [19],
or play a limited role in priming T-cells in the mouse model
of asthma [49]. It seemed that the interaction between pDCs
and mDCs might control Th1/Th2 balance with a proallergic
role for mDCs and antiallergic properties of pDCs. However,
human pDCs can also stimulate allergen-dependent T-cell
proliferation and Th2-type cytokine production as efficiently
as mDCs [50]. In patients with atopic rhinitis, dermatitis,
and asthma, there is a strong local increase in pDCs after
allergen challenge [51–54]. It is possible that both pDCs and
mDCs triggering either Th1-type or a Th2-type immune
response may depend on the local microenvironment and
stimulus. This was supported by our recent studies demon-
strating that cocultured pDCs and CD4+ T cells produce
significantly elevated levels of IL-13, IL-10, and TNF-α, but
undetectable levels of IL-12p70, upon exposure to cockroach
extract [27]. Furthermore, the increased levels of IL-13 were
found in cells from cockroach allergic subjects when com-
pared with cockroach nonallergic individuals. To identify the
major players in the DC-mediated initiation of the immune
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Figure 2: TLR gene expression in cocultured pDCs and CD4+ T cells and human THP-1 cells. (a) Microarray analysis of TLR transcripts
expressed in cockroach allergen (CR) and Bermuda grass allergens treated cocultured pDCs and CD4+ T cells from cockroach-sensitized and
-nonsensitized subjects. Upregulated genes are represented in red and downregulated genes in green. (b) TLR expression in THP-1 cells was
detected at the protein levels by FACS (red, medium; orange: nBla g2; green: CRE, 100 ug/mL; blue: Poly-IC, 50 ug/mL).

response and T-cell polarization allergic disease, we per-
formed gene array analyses (24000 transcripts and variants)
in cocultured pDCs and CD4+ T cells aimed at identifying
the “transcript signature” responsible for the initiation of the
immune response and T-cell polarization. We found more
than 50 genes uniquely expressed in cockroach treated cells,
including CD14, S100A8, CCL8, IRF7, and IFI44L. Among
these, CD14 is one of the most replicated genes associated
with asthma and associated traits [55]. A functional poly-
morphism in the promoter of CD14 has been shown to
modulate specific responses to environmental aeroallergens,
at least among individuals predisposed to atopy [56]. Most
importantly, pathway analysis suggested that both IFN
and TLR signaling pathways are two major pathways in
cockroach allergen-induced immunological responses. It is
well known that TLRs, transmembrane proteins, highly
expressed in DCs, play an important role in mediating
allergen-induced innate and adaptive immune response
[53]. Exogenous antigen presentation by DCs in the absence
of direct TLR stimulation generally leads to tolerance [57].
Moreover, efficient generation of effector T-cell responses
by DCs is dependent on the presence of TLR ligands
in the phagosome containing the antigen being presented
[58], suggesting that TLR signaling is critical in mediating

antigen-induced adaptive immune response. It is likely that
cockroach allergens interact with DCs via TLRs and lead
to DC maturation, cytokine production, and APC function
in T-cell polarization. Among all the TLR genes in our
initial gene array analysis, TLR2, TLR3, TLR7, and TLR8
were upregulated in the cockroach allergic group compared
with cockroach nonallergic group (Figure 2(a)). Of these,
increased TLR2 and TLR8 were also validated at the protein
levels (Figure 2(b)), suggesting that TLR2 and TLR8 may be
important TLRs for cockroach sensitization. Indeed, recent
report has provided strong evidence that TLR2 and TLR8
may confer susceptibility to asthma and related atopic
disorders [19, 59]. In particular, German cockroach contains
a TLR2 agonist and directly activates cells of the innate
immune system, which may be critical in linking innate
and adaptive immunity [19]. Genetic variation in TLR2
(rs4696480) has been identified as a major determinant
of the susceptibility to asthma and allergies in children of
farmers.

C-type lectin receptors (CLRs), on the other hand, are
crucial in recognition of complex glycan structures on vari-
ous pathogens and have evolved to facilitate the endocytosis
and presentation of pathogens [21–23]. In fact, signaling
through CLRs has been shown to be able to induce T-cell
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activation and tolerance and modify the cellular response
via cross-regulation of the TLR-mediated effect [23]. These
regulatory functions have been clearly exemplified by three
members of the CLRs, DC-SIGN (dendritic cell-specific,
CD209), L-SIGN (CD299), and MR [60, 61]. Thus, distinct
DC subsets with different sets of CLRs may recognize distinct
classes of antigens to induce tolerance or activate immunity,
wherein complex glycan structures on antigens may play
a key role. While the direct interaction between allergens
and CLRs has not been demonstrated, the mere fact that
most allergens contain complex glycan structures raises the
possibility that allergen-CLR signaling may modulate DCs
and subsequent immune response. Indeed, MR has been
shown to mediate the uptake of diverse native allergens
by DCs and determines allergen-induced T-cell polarization
through modulation of indoleamine 2,3 dioxygenase (IDO)
activity [24]. In addition, Emara et al. showed that Fel d
1 interacts with immune cells by MR, and found that MR
probably plays a pivotal role in allergic response to Fel d 1
[25]. Study on peanut allergens has provided a suggestive
evidence that one of the major allergens, Ara h1, is able
to polarize Th2 response via its likely interaction with DC-
SIGN on monocyte-derived DCs [62]. We also found that
mDCs produced a large amount of IL-10 after treatment with
German cockroach extract, and that the increased expression
was blocked by anti-DC-SIGN (Figure 3), suggesting that
DC-SIGN in mDCs mediates cockroach allergen-induced
allergic response. Hsu et al. demonstrated significant binding
of allergens and allergen extracts with variable binding
activities to DC-SIGN and its receptor, L-SIGN [26]. These
allergens include bovine serum albumin (BSA) coupled
with a common glyco-form of allergens and a panel of
purified allergens (BG60 from Bermuda grass pollen, Der
p2 from house dust mite). Interaction between BG60 and
DC-SIGN-activated Raf-1 and ERK kinases and led to the
induction of TNF-α expression. These studies identified an
important signaling pathway for allergen-induced immunity,
and, importantly, they suggested that there may be a cross-
regulation between CLRs, TLRs, and PAR2.

5. Genetic Basis for Cockroach Sensitization

While there appears to be a rather clear relationship
between allergen exposure and allergen sensitization, the
dose-response relationship is most relevant for “susceptible”
individuals [1, 8]. Conversely, the majority of individuals,
when exposed to very high concentrations of allergen,
never become sensitized [9]. Indeed, one of our previous
studies has implied a role for genetic susceptibility wherein
cockroach sensitization was found to be more prevalent
among African Americans compared with European Amer-
icans living in the Baltimore-Washington, DC, metropolitan
area, even after controlling for socioeconomic status [63]
These findings suggest that cockroach sensitization is not
a function of cockroach allergen exposure alone, and that
genetic susceptibility may be important. Indeed, significant
familial aggregation of allergic sensitization to cockroach
allergen has been observed in the Chinese population [64]. In
a genome-wide linkage study of asthma-related phenotypes
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Figure 3: Cockroach allergen induced-IL-10 secretion in mDCs. IL-
10 production was detected in the cockroach-extract- (CR-) treated
alone (100 ug/mL) or together with anti-DC-SIGN mDCs. IL-10
levels were measured by ELISA.

on 2,551 individuals from 533 families, Xu et al. provided
suggestive evidence of linkage at D4S1647 for skin reactivity
to cockroach defined by skin prick tests (SPTs) (pointwise
P = 0.0003) [65]. Hunninghake et al. recently reported
significant evidence of linkage to cockroach-specific IgE
on chromosome 5q23 (peak LOD, 4.14 at 127 cM) [66].
Within this genomic region, there is a compelling candidate
gene with experimental evidence of female-specific effects
on lung disease, thymic stromal lymphopoietin (TSLP). In
a sex-stratified analysis, the T allele of single-nucleotide
polymorphism (SNP) rs2289276 in the 5’untranslated region
of TSLP was associated with reductions in IgE concentrations
to cockroach. Interestingly, the same TSLP SNP rs2289276
also showed significant association with lower levels of total
IgE (tIgE,P = 6.24 × 10−6) in our initial analyses of
GWAS for tigE among cockroach allergic individuals. In
a study on HLA-D associations and cockroach sensitiza-
tion, Donfack et al. [67] observed associations with alleles
of the HLA-DR molecule, DRB1∗0101 in Hutterites and
DRB1∗0102 in African Americans, and hypothesized that the
DRB1∗0102 allele may have a higher affinity for cockroach
allergens and elicit a stronger response to bind antigens than
DRB1∗0101 allele. Leung et al. observed that polymorphisms
in the Mannose-binding lectin (MBL) gene may protect
against cockroach sensitization in Chinese children [68], and
Pistiner et al. demonstrated that polymorphisms in IL12A
were associated with cockroach sensitization among children
with asthma in both Costa Rica and European-ancestry
children with asthma in the Childhood Asthma Management
Program (CAMP) [69]. We performed a genome-wide
association analysis for cockroach sensitization in the African
American population. A summary of the results is shown for
a trend in the association between cockroach sensitization
and each SNP measured in the GWAS (Figure 4). Overall,
there were 7,768 SNPs in 4,018 genes with P value < 0.01.
When specifically limiting the SNPs to those at P < 0.001, we
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Figure 4: Overview of genome-wide association study of cockroach
sensitization in the African American population. Manhattan plot
showing the association of 644,709 SNPs by chromosome for
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found at least 12 genes that had differentially gene expression
in our gene array analysis for cockroach allergen exposure
(IFI44, CTLA4, LYN, BCL6, CCL1, MERCK, HERC6, TRIB1,
DNAPTP6, SAMSN1, RAFTLIN, and GMZB). Among those,
CTLA4 [70], BCL6 [71], GZMB [72], and CCL1 [73]
have been associated with allergy and asthma and related
phenotypes. The results suggested that integrating GWAS
with gene expression profiling studies will be useful approach
to identify candidate for cockroach allergic sensitization.

6. Conclusion

Asthma is a major public health concern. Cockroach aller-
gen exposure and cockroach allergic sensitization could
contribute to the higher prevalence of asthma. Although
studies on the causal relationship between cockroach allergen
exposure, sensitization, and asthma are very limited, several
receptors (PAR-2, TLRs, CLRs) and their pathways have
been seen to be important in mediating antigen uptake
from the environment and inducing allergies by signaling
T-cells to activate an inappropriate immune response. In
particular, cockroach-derived protease can disturb airway
epithelial integrity via PAR-2 and leads to an increased
penetration of cockroach allergen, resulting in activation
of innate immune cells (e.g., DCs) via binding to either
TLRs or CLRs. The activated DCs can direct cells of the
adaptive immune system to facilitate promotion of Th2
cell response and subsequently increase risk of sensitization.
However, it remains largely unknown whether different cell
types expressing different sets of receptors may recognize
distinct classes of cockroach allergens to induce different
immune responses, and whether these receptors have a cross-
regulation. On the other hand, genetic factors, particularly
genetic variants in TSLP, MBL2, CD14, and IL-12A have
been associated with cockroach sensitization and related
phenotypes. It would be of interest to study whether these
genes in interaction with cockroach exposure confer an
increased susceptibility to the risk of cockroach sensitization
when compared with these genes analyzed alone. Continuous
studies, we believe, on cockroach allergen-induced innate
immunity and gene-environment interaction will add value
to the existing research investment in these studies and offer

novel insight into the molecular mechanisms that cause
cockroach sensitization and subsequently asthma.
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