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1  |  INTRODUC TION

Anything that is not habitually considered or utilized as food and 
is added to or used in or on foods at any stage might be called an 
addition if it commits to changing food value, smoothness, stabil-
ity, flavor color, alkalinity, or sourness in a positive way. The term 
"processing aids" refers to anything utilized in or added to food at 

any point during the production process, including when the meal 
is being served (Food and Drug Administration (FDA), 2007, Hallas- 
Møller et al., 2020). Additionally, food additives may have a role in 
limiting the spread of bacteria or perhaps preventing it altogether. 
Only a limited number of chemical compounds can be used in food 
and pharmaceutical preservatives to protect against real or prospec-
tive toxicity to end users (Conner, 1993; Hugo & Russell, 1991).
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Abstract
Food additives have been shown to help regulate or prevent the spread of mi-
crobes during food manufacturing. Phloxine B, nisin, and sorbic acid were tested to 
see whether they had a synergistic impact on the inactivation of Bacillus cereus and 
Staphylococcus aureus, respectively. The combination of phloxine B and nisin had a 
synergistic interaction (FICI: 0.25– 0.50) against B. cereus, where it demonstrated an 
additive effect among the three combinations examined (FICI: 0.91). A time- kill test 
was used in both cases to verify that a food additive combination has synergistic an-
tibacterial action against B. cereus and S. aureus. B. cereus had a 50% reduction in 
bacterial colony count after 10 h, whereas S. aureus had a 60% reduction after 6 h of 
their independent impacts after 48 h. Phloxine B, nisin, and sorbic acid demonstrated 
synergistic antibacterial action and might be used as a source of safe and potent anti-
bacterial agents in the pharmaceutical and food industries.
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A bactericidal effect on S. aureus has been observed with the dye 
phloxine B, which is a 4,5,6,7- tetrachlorofluorescein disodium salt. 
However, phloxine B is only effective against gram- positive bacteria, 
and its antimicrobial activity is light- dependent. Phloxine B batches 
certified by the FDA are allowed in the USA for consumption in dye-
ing cosmetics and swallowed drugs with an adequate regular intake 
for humans set by the FDA at 1.25 mg/kg of body weight (European 
Commission Regulation, 2011; Federal Register, 1982). The growth 
of bacteria was completely halted when dye was added at concen-
trations of 50 or 100 µg/ml. However, the widespread use of phlox-
ine B as a color additive in foods, drugs, and cosmetics raises the 
possibility that bacteria will be exposed to small amounts of it over 
time, leading to the development of resistance to its antimicrobial 
activity (Rasooly & Weisz, 2002; Rasooly, 2005).

Food preservative nisin (E 234), a peptide antibiotic created by 
Lactococcus lactis, is widely used and has high antimicrobial activity 
against many different gram- positive bacteria. The FAO/WHO ap-
propriate nisin as a safe food additive in 1969. Since then, it has been 
widely accepted as a safe food additive. Nisin is a natural biopre-
servative approved for use in more than 50 countries and has had a 
significant impact on the food industry (de Arauz et al., 2009). In the 
United States, the Food and Drug Administration (FDA) (2007) ap-
proved nisin in Managing Food Safety, and designated and generally 
recognized it as harmless for consumption in administered cheeses 
(Cotter et al., 2005). Additionally, nisin is effective at preventing the 
spread of spores from the bacteria Clostridium and Bacillus (Rayman 
et al., 1981). In addition to nisin activity against gram- positive or-
ganisms, studies have shown that nisin is also active against gram- 
negative organisms, albeit at a lower concentration and usually 
in conjunction with chelating agents (Abee et al., 1994; Delves- 
Broughton et al., 1996). The nanomolar activity of nisin and its lack 
of human toxicity have made it a widely accepted food additive for 
controlling food spoilage around the world (Thomas et al., 2000). 
Nisin caused cytoplasmic leakage from treated samples, despite the 
fact that it had multiple abnormalities. Nisin inhibits cell wall for-
mation near the partition site, where peptidoglycan construction 
is expedited, as the primary site of cell division. Nisin also disrupts 
the regulation of cell envelope formation, resulting in atypical cell 
growth (Hyde et al., 2006).

Sorbic acid or sorbitol (2,4- hexadienoic acid) is a paraben com-
monly used in the food and pharmaceutical industries. Sorbic acid, 
which was originally derived from rowanberry, can now be found 
in a wide range of plants (Kallscheuer, 2018), but it is still manufac-
tured synthetically for commercial use. It is possible to preserve 
pharmaceutical or food products that contain a lot of water by using 
these compounds because of the chemical or physical interactions 
between them and the water. Potassium sorbate and sorbic acid are 
now widely used in the pharmaceutical industry for antimicrobial 
preservation in concentrations between 0.1 and 0.2 percent (Nemes 
et al., 2020). There is general consensus that they are safe for human 
consumption, despite a paucity of toxicology and biocompatibil-
ity data. Sorbate's antimicrobial action is not fully understood, but 
it is thought to be primarily established on microbes' intracellular 

acidification (Bagar et al., 2009; Plumridge et al., 2004). The weak 
carboxylic acid penetrates the cell membrane and releases a pro-
ton, acidifying the cytosol and disrupting catabolic pathways as a 
result (Mira et al., 2010). Antimicrobial action of sorbates declines 
as extracellular pH rises because only the nonionized form can enter 
cells, according to the research (Wang et al., 2018). Because of this, 
the formation of bacterial biofilms can be reduced with the use of 
sorbates (Sullivan et al., 2020). These prior studies prompted us to 
investigate the antimicrobial synergistic properties of some food 
additives (phloxine B, nisin, and sorbic acid) against two common 
pathogens, B. cereus and S. aureus. In addition, cytotoxic activity on 
B. cereus and S. aureus uses the time- kill method. These previous re-
searches compelled us to study the antibacterial synergistic capabil-
ities of food additives (phloxine B, nisin, and sorbic acid) against two 
prevalent pathogens, B. cereus and S. aureus. Additionally, the time- 
kill approach was used to test for cytotoxic activity against B. cereus 
and S. aureus.

2  |  MATERIAL S AND METHODS

2.1  |  Chemicals

All chemicals and solvents were achieved from Sigma- Aldrich Co. 
Ltd.

2.2  |  Antimicrobial tests

2.2.1  |  Microbial strains

The modified Kirby- Bauer disk diffusion process was used to con-
duct the agar diffusion assay (Selim et al., 2013). 0.9 percent NaCl 
solution contained one loop of each of the test organisms (10 isolates 
of B. cereus and 10 isolates of S. aureus). Microorganism strains from 
Microbiological Laboratory Collection Library, Clinical Laboratory 
Sciences, College of Applied Medical Sciences, Jouf University, were 
utilized in this investigation. A sterile petri dish was filled with nutri-
ent agar for bacterial strains that had been inoculated with the cor-
responding organism's suspension.

2.2.2  |  Disk- diffusion assay

The food additives (phloxine B, nisin, and sorbic acid; Figure 1) were 
produced in dimethyl sulfoxide (DMSO) and sterilized with 0.45- m 
Millipore filters at a final concentration of 50 µg/ml. The disk diffusion 
technique was used to put 108 cfu/ml of bacteria on Mueller- Hinton 
agar (MHA) to test for antimicrobial susceptibility (Selim, 2011). Five 
micrograms/disk was applied to each of the 6- mm disks, which were 
then placed on top of the inoculated agar. DMSO was used to pre-
pare the negative controls. One strain/isolate of each microorgan-
ism tested was compared with positive reference standards such as 
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amoxicillin (30 micrograms/disk), gentamicin (30 micrograms/disk), 
and streptomycin (30 micrograms/disk). For clinical bacterial strains, 
the inoculated plates were incubated for 24 h at 37°C. The zone of 
inhibition against the test organisms was used to assess antimicro-
bial activity.

2.2.3  |  Micro- well dilution assay of MIC

Minimal inhibitory concentration (MIC) values were determined 
using 12- h broth cultures, the bacterial strains' inocula were made, 
and the suspensions were adjusted to 0.5 McFarland turbidity 
standard. The additives were first dissolved in 10% DMSO and 
then diluted to the highest concentration (5 µg/ml) to be tested, 
and then, serial twofold dilutions were made in a concentration 
range from 0.1 to 5 µg/ml in 10- ml sterile test tubes containing 
nutrient broth. The additives' MIC values against microbial strain 
isolates were determined using a micro- well dilution method. As 
an overview, 95 microliters of the growth medium (nutrient broth) 
was added to each well, along with 5 microliters of the inocula. In 
the first wells, 100 L aliquot of the initial 50 µg/ml of stock solu-
tions of the compounds was added to start things off. Next, 100 µl 
of each of their serial dilutions was added to six different wells in 
the plate. This well served as a negative control and contained 195 
microliters of nutrient broth without compound and 5 microliters 
of inocula on each test strip. Each well had a total volume of 200 µl 
at the end of the experiment. A sterile plate sealer was used to 
protect the plate from contamination. Each well's contents were 
mixed for 20 s on a plate shaker at 300 rpm before being incu-
bated for 24 h at the appropriate temperature. Samples from clear 
wells were plated on nutrient agar medium in order to determine 
microbial growth.

2.2.4  |  Time- kill studies

For time- kill studies, an inoculum of 5 × 108 cfu/ml−1 was prepared 
for each isolate by dilution of an actively growing culture in nutrient 

broth with the inoculum used for each isolate verified by a total vi-
able count, as previously described for each isolate. One milliliter 
samples of the initial inoculum were mixed with either additive so-
lution and Tween 80 (for testing purposes) or Tween 80 alone (for 
the control). Samples (100 µl) were taken in triplicate at different 
times, and serial tenfold dilutions were made and plated on nutrient 
agar in McCartney bottles for all isolates that were shaken (100 rpm) 
at 37°C (Oxoid). After an overnight incubation at 37- degree Celsius, 
the total number of viable cells was calculated.

2.3  |  Determination of fractional inhibitory 
concentration index

Through the use of the checkerboard titration method, the inhibitory 
concentration index fraction was calculated. To do this, the com-
bined MICs of active additives were estimated using the microbroth 
dilution method (Clinical & Laboratory Standards Institute, 2005) 
after their separate MICs were obtained. Selective broth media 
supplied to the micro- titer plates, along with 10 μl of the working 
inoculum (5 × 105 cfu/ml). 100 μl of various concentrations of test 
food additives (1:1 v/v) ranging from 1/32 MIC to 4 MIC was ap-
plied to the wells. The growing parameters used to determine the 
individual MIC remained the same. Then, the fractional inhibitory 
concentration (FIC) index was intended for each mixture of food 
additive to estimate synergistic activities (Karthikeyan et al., 2015; 
Meyer et al., 1982; Xia et al., 2010). MICs of the individual food ad-
ditive in each arrangement were converted into FICs as monitored 
by Xia et al. (2010):

Fractional inhibitory concentration index (∑FIC) was calcu-
lated using the standard plan as designated by Xia et al. (2010) and 
Karthikeyan et al. (2015):

FICFoodadditive =
MICFoodadditives inmixtures

MICFoodadditivealone

n
∑

k=1

(FIC)

F I G U R E  1  Chemical structure of selected studied food additives

dicAcibroSnisiNBenixolhP
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Synergistic actions were distinct as ∑FIC ≤0.5, additive was de-
fined as ∑FIC >0.5 to <2, and antagonism was defined as ∑FIC ≥2 
(Leclercq et al., 1991; Xia et al., 2010). The formula used to deter-
mine fractional inhibitory concentration index (FICIs) is as follows:

where AD1 and AD2 are tested two different food additives. All the 
trials were repeated thrice.

2.4  |  Statistical analysis

The data were exposed to one- way analysis of variance for means of 
comparison and significant differences according to Duncan's multi-
ple range test. SPSS (version 11.0) was used to achieve the statistical 
investigation.

3  |  RESULTS AND DISCUSSION

Antimicrobial characteristics have long been identified in food addi-
tives, which can include an extensive range of different ingredients. 
When used alone in vitro, they demonstrate potential antibacterial 
efficacy against a wide range of microorganisms, including food- 
borne pathogens and degeneration. However, the combined anti-
bacterial actions of these drugs appear to be rare. For the most part, 
antimicrobial medication combinations have shown to be a critical 
characteristic since they improve efficacy- using compounds with 
synergistic or additive action, prevent drug resistance, and reduce 
necessary dosages while also decreasing cost and adverse/toxic side 
effects (Bag & Chattopadhyay, 2015).

The food additives (phloxine B, nisin, and sorbic acid) investi-
gated for their inhibitory (antibacterial) effects on two bacterial spe-
cies (B. cereus and S. aureus). To test for antibacterial activity against 
food spoilage bacteria B. cereus and S. aureus, the concentration of 
50 µg/ml produced encouraging results (inhibition zone diameter 
11 mm) (Table 1). The synergistic antibacterial activity of these three 

active food additives was then investigated using an antimicrobial 
combination study. In an antibacterial combination research, only 
the phloxine B and nisin combination exhibited synergistic inter-
action (FICI: 0.25– 0.50) against B. cereus where it showed additive 
impact among the three studied combinations (FICI: 0.91). Various 
other combinations (FICI: 0.55– 1.37) were shown to have an additive 
impact on all of the microorganisms that were examined. There was 
no negative outcome (Table 2). A time- kill test was used to verify 
the synergistic antibacterial activity of a food additive combination. 
When compared to the original bacterial colony count (B. cereus in 
10 h and S. aureus in 6 h) of their separate effects after 48 h, the 
combination of phloxine B + nisin + sorbic acid reduced the bacte-
rial colony count by >2 log10 (Figure 2). These findings corroborated 
the prior experiment's discovery of synergistic antibacterial action 
of phloxine B + nisin + sorbic acid.

Several studies have shown that chemical growth control of 
food deterioration and food- borne pathogens is effective. In order 
to compare the known effects of antimicrobial with the unknown 
effects of food additives, a database based on antibiotic suscepti-
bility on the investigated bacterial species is used. Microorganism 
multiplication can be slowed or stopped using food additives. There 
are a finite number of chemical substances that can be employed 
as preservatives in food and pharmaceuticals (Branen, 1983). The 
usage of food additives has exploded in the last 30 years, reaching a 
total annual volume of over 200,000 tons. For the most part, chem-
ical preservatives have been employed to resist certain bacteria and 
can also improve or contribute to the flavor of acidified or fermented 
foods.

As a food preservative, phloxine B was shown to be the most 
efficient addition against the tested bacterial species. Phloxine B 
had an antibacterial activity against both gram- positive and gram- 
negative bacteria, which was in agreement with that of Rasooly 
(2005) and Federal Register (1982). After adding 50– 100 µg/ml of 
phloxine B to the growing medium, the bacterial growth ceased 
completely (Rasooly & Weisz, 2002). Against gram- positive and 
gram- negative bacteria, nisin has antibacterial action (Abee 
et al., 1994; Delves- Broughton, 1996). Nisin has been shown to 
help reduce spoilage microorganisms in dairy, seafood, juice, and 

FICI =
MICofAD1 incombinationwithAD2

MICofAD1alone
+

MICofAD2 incombinationwithAD1

MICofAD2alone

TA B L E  1  Inhibition zone diameter and MIC of food additives against Bacillus cereus and Staphylococcus aureus using agar well diffusion 
assay

Food additives

B. cereus S. aureus

Inhibition zone 
diametera

MIC (µg/ml)
Inhibition zone 
diametera

MIC (µg/ml)

MIC MIC50 MIC90 MIC MIC50 MIC90

Phloxine B 17 ± 1.20 20 100 200 19 ± 1.05 10 10 50

Nisin 11 ± 1.31 320 160 320 14 ± 1.00 200 250 300

Sorbic acid 13 ± 1.09 20 100 160 15 ± 1.09 320 350 1000

DMSO (negative control) — — — — — — — — 

Note: Concentration of 50 µg/ml of the additives was prepared in dimethyl sulfoxide (DMSO). Results are mean ± SD of triplicate experiments.
aSensitive (inhibition zone diameter ≥11 mm: Bauer et al., 1966).
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vegetables. Foods such as meat, liquids, and baked goods can 
benefit from the use of organic acid to help limit the growth of 
germs and molds. Organic acids are often used throughout a wide 
range of industries, including food production, processing, and 
manufacturing.

4  |  CONCLUSION

Thus, a combination of phloxine B, nisin, and sorbic acid showed 
synergistic antibacterial action and might be utilized as a source of 
nontoxic and powerful antibacterial agents in the pharmaceutical 
and food sectors. By working together, they may be more effec-
tive against bacteria at low concentrations, reducing their unwanted 
side effects and making them more readily used in food preserva-
tion systems. More research on their use in food components and 
mechanisms of action is required to improve their practical applica-
tion in the food system. It is possible that this research will serve as a 
springboard for more in- depth investigations in the future. Food ad-
ditive synergy with antibacterial activity is a relatively new concept, 
and this study is the first to examine it.
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