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Abstract
Metagenomic sequencing provides a unique opportunity to explore earth’s limitless environments harboring scores
of yet unknown and mostly unculturable microbes and other organisms. Functional analysis of the metagenomic
data plays a central role in projects aiming to explore the most essential questions in microbiology, namely ‘In a
given environment, among the microbes present, what are they doing, and how are they doing it?’ Toward this
goal, several large-scale metagenomic projects have recently been conducted or are currently underway.
Functional analysis of metagenomic data mainly suffers from the vast amount of data generated in these projects.
The shear amount of data requires much computational time and storage space. These problems are compounded
by other factors potentially affecting the functional analysis, including, sample preparation, sequencing method and
average genome size of the metagenomic samples. In addition, the read-lengths generated during sequencing
influence sequence assembly, gene prediction and subsequently the functional analysis. The level of confidence for
functional predictions increases with increasing read-length. Usually, the most reliable functional annotations for
metagenomic sequences are achieved using homology-based approaches against publicly available reference sequence
databases. Here, we present an overview of the current state of functional analysis of metagenomic sequence
data, bottlenecks frequently encountered and possible solutions in light of currently available resources and tools.
Finally, we provide some examples of applications from recent metagenomic studies which have been successfully
conducted in spite of the known difficulties.

Keywords: functional annotation; metagenomics; bioinformatics; next-generation sequencing; pathway-mapping;
comparative analysis

INTRODUCTION
The microbial world shows vast diversity, and mi-

crobes inhabit almost every niche on the planet.

Many of them have been shown to be important

members of their given ecosystems and to play crucial

roles in various environmental and host-associated

biological processes. However, due to their general

unculturability (it is believed that only a small percent-

age of bacteria in nature can be cultured [1]), up until

just a few years ago it was practically impossible to

sequence and analyze them in greater detail. As a

result, a large fraction of microbes still remain poorly

characterized and unstudied; and the means by which

they exert beneficial or other effects in different

environments remain largely unknown.

The recent culture independent technology to

study microbes inhabiting different environments,

termed metagenomics [2], has opened new avenues

for answering questions commonly asked in micro-

biology, such as ‘Which species inhabit a given

environment?’ and ‘What are these microbes doing

and how are they doing it?’ The basic steps involved

in a typical metagenomic project to estimate the

number of species and the functional repertoire of
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an environment include DNA or RNA sequencing

using next-generation sequencers (such as Illumina

and Roche 454), sequence assembly, gene predic-

tion, functional and metabolic analysis, taxonomic

binning and comparative analysis of the sequence

data using specialized bioinformatics methods and

tools (Figure 1, Tables 1 and 2). However, each

stage of the analysis suffers heavily due to inherent

problems of the metagenomic data generated,

including incomplete coverage, massive volumes of

raw sequence data produced by the next-generation

sequencers, generally short read-lengths, species

abundance and diversity and so on [3, 4].

These problems also adversely affect the down-

stream functional analysis process. For example, due

to shorter read-length the overall functional compos-

ition is comparatively poor for shorter pyrosequen-

cing- or Illumina-sequencing derived reads than for

longer Sanger reads [35]. Additionally, for very

complex communities, partial or poor assemblies are

Figure 1: Flow chart for the analysis of a metagenome from sequencing to functional annotation. Only the basic
flow of data is shown up to the gene prediction step. For the context-based annotation approach, only the gene
neighborhood method has been implemented thus far on metagenomic data sets; although in principal, other
approaches which have been used for whole genome analysis can also be implemented and tested. *: A list of tools
commonly used for these processes is provided inTable 1.Table 3 provides a list of some of the additional functional
analyses that can be performed on the metagenomic sequences.
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obtained due to incomplete coverage, resulting in

many short contigs and unassembled sequences. This

leads to the prediction of a large number of small,

fragmented genes which may not exhibit any matches

in the reference sequence databases, or match with

very low significance [36]. Although sequence assem-

bly and gene prediction tools specifically developed

for metagenomic data sets offer some advantages over

similar tools developed for more complete genome

sequences, surprisingly, no such ‘metagenome spe-

cific’ tools have yet been developed for functional

analysis. Thus, appropriate tools, from the current

repertoire, and parameters must be used to achieve

comprehensive and biologically meaningful func-

tional analysis of metagenomic data sets. The steps

for sequence assembly and gene prediction of

metagenomic data sets are compared in several

recent comprehensive reviews [3, 4, 37, 38].

The scope of this review is to comprehensively

discuss the prime objectives, methods and problems

for functional and metabolic analysis of metagenomic

sequence data, and to propose some solutions for the

latter. Toward this, we first try to familiarize the

reader with the aims of functional metagenomic ana-

lysis and the most commonly adopted publicly avail-

able tools and resources to achieve them. Next, we

discuss how the problems arising from metagenomic

sequencing affect this process, and we suggest various

strategies for addressing some of these issues under

the present scenario. Lastly, we demonstrate that,

despite these issues, metagenomic functional analysis

can still be reliably used to address globally important

environmental and biological questions.

OBJECTIVES OF FUNCTIONAL
METAGENOMICANALYSIS
STUDIES
Interestingly, the same microbial communities

sampled at different times or from different hosts

can vary significantly. For example, the gut micro-

biomes of 13 healthy Japanese individuals were quite

different, yet they still shared many microbes [39].

Also, the community members for any given

environment commonly play different roles. For ex-

ample, in the human gut microbiome, segmented

filamentous bacteria are known to play important

roles in maintaining intestinal immunity [40, 41],

whereas bifidobacteria are known to utilize complex

carbohydrates and thereby exert beneficial effects on

human health [42]. Thus, there are mainly two broad

objectives of the functional analysis for metagenomic

studies: the first is to determine what are the

functional and metabolic repertoires of the different

community members that enable them to exert

different effects, and the second is to identify the

variations, if any, within the functional compositions

of the different communities, e.g. those found

between healthy and diseased individuals that may

be related to the cause of the disease. To determine

the functional content of the member species of a

microbiome, the coding and functional capacity for

all (or at least the dominant) members should be

comprehensively analyzed. Alternatively, if the goal

of the study is to analyze and contrast the functional

and metabolic capacities of different communities,

then the functional and metabolic pathway profiles

for the communities need to be generated and

compared.

Table 1: List of commonly used tools for sequence
assembly, protein coding gene prediction, RNA gene
prediction and phylogenetic classification steps of
metagenomic data analysis

Process Tools URL/
References

Sequence
assembly

Phrap http://www.phrap.org/
Forge http://combiol.org/forge/
Arachne [5]
JAZZ [6]
Celera [7]
Velvet [8]
Newbler 454 Life Sciences
SOAPdenovo [9]
EULER [10]
ORFome assembly [11]
IDBA-UD [12]

Gene
prediction

Metagene [13]
GeneMark [14]
ORF-Finder http://www.ncbi.nlm.nih.gov/

projects/gorf/
FragGeneScan [15]
fgenesB http://www.softberry.com
GLIMMER [16]
BLAST [17]

RNA gene
prediction

tRNAscan-SE [18]
Similarity-based
searches for rRNA
in reference databases

^

Taxonomic
binning

MetaBin [19]
MEGAN [20]
WebCARMA [21]
PhyloPythia [22]
TETRA [23]
NBC [24]
TACOA [25]
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PUBLICLYAVAILABLE RESOURCES
ANDTOOLS FOR FUNCTIONAL
ANNOTATIONOF
METAGENOMIC DATA
Dedicated tools for functional annotation and

analysis of metagenomic data sets lag far behind the

rate at which the data is being generated. Recently,

some web-based, as well as local-use based, pipelines

have been developed for the analysis of metagenomic

data sets. Table 2 provides a list of a few well-known

representative pipelines and compares the functional

analysis capacity of each. Almost all of these pipelines

provide integrated platforms for the functional pre-

diction of metagenomic sequences using multiple

tools and databases, which are also commonly used

for the analysis of whole genome sequences. Most of

the pipelines offer sufficient resources for the func-

tional analysis of user data. However, to account for

the inherent problems associated with the metage-

nomic data sets, it is highly recommended to evalu-

ate the computational workflow and parameters for

any given project. This can be achieved by using

simulated sequencing reads generated by MetaSim

[43], to assess and compare different tools before

actually using them on full data sets. The analysis

time of any pipeline typically depends on the size

of the data sets and, in the case of web-based servers,

the load of requests that are already in progress sub-

mitted by other users. Web-based servers such as

CAMERA [28], MG-RAST [30] and IMG/M [26]

host pre-computed results for most published meta-

genomes that enable users to perform comparative

analysis with their own data sets. In most cases, the

computed data can be visualized in the form of

simple plots. However, KEGG [44] pathway maps

and abundance profiles can also be obtained using

the IMG/M and MG-RAST servers.

STRATEGIES COMMONLY
ADOPTEDBY THE PIPELINES FOR
THE FUNCTIONALANALYSIS OF
METAGENOMIC DATA
Protein function is a very broad term, as function can

be predicted at several different levels. For example,

the Gene Ontology database [45] adopts three broad

domains for classifying gene products viz., the cellu-

lar location of the protein, the overall biological

process it takes part in and the molecular function

of the protein. On the other hand, the subsystem-

based classification approach adopted by the SEED

database [46] relies mainly on the grouping of func-

tional roles into subsystems by curation experts. The

defined subsystems may be thought of as a general-

ization of the term ‘pathway’. Similarly, the KEGG

database [44] is a resource of pathway maps built

from both genomic and chemical information of

the biological systems. However, such specific func-

tional assignment may be lacking for completely

novel proteins or for those which share very weak

homology with known proteins both of which are

ample in metagenomic data sets. For such proteins,

even minimal information that can be extracted

related to their function can be useful, and may be

the only available clues to their function.

As shown in Figure 1 and Table 2, the basic tools

that are implemented in almost all of the available

pipelines for functional analysis of metagenomic data

are the same as those which are commonly used for

whole genome studies and are well known. However,

their performance in the metagenomic context have

yet to be evaluated and reviewed. Thus, in the current

review, we have divided these tools into four cate-

gories based on their inherent approach. In the fol-

lowing sections, we review each approach in context

to its application to metagenomic data analysis, keep-

ing in mind the associated problems of the data itself.

Homology-based approach
As shown in Table 2, the ‘simplest’ and most common

approach adopted by all of the available pipelines for

functional prediction is by comparison of the

predicted query proteins to existing resources of ref-

erence protein sequences, including NCBI NR [47],

SMART [48] and UniProt/UniRef [49]. The IMG/

M [26] and MG-RAST [30] servers also search the

publicly available metagenomic data sets for homologs

of the query sequences. The databases of clusters of

orthologous groups (COGs) [50], non-supervised

orthologous groups (NOGs) [51], protein families

and domains including Pfam [52] and TIGRFAM

[53], etc. are used by several pipelines to infer func-

tional categories or to identify families and domains

embedded in the query proteins. In some cases,

similarities to genes found in the GO database are

further explored to infer hierarchical annotations.

Pathway and subsystem information for the query

proteins is inferred by searching for homologs in the

KEGG and SEED databases, respectively, by almost

all of the pipelines.

For these searches, different variants of BLAST

[17] are the most preferred algorithms, including

Functional assignment of metagenomic data 715



BLASTX, BLASTP, RPS-BLAST, etc. For less

sensitive, but faster, searches BLAT [54] may also

be used, as in the case of MG-RAST server.

Additionally, more sensitive profile- and pattern-

based search methods are used by almost all of the

pipelines in which sequence profiles generated from

alignments of protein families in Pfam or TIGRfam

databases are searched using the hidden Markov

model-based algorithm, HMMER [55]. For all

these methods, best hits are identified based on

statistical calculations and annotation information is

directly applied to the query proteins.

Homology-based approaches mainly suffer from

the long computation time required to search for

homologs for each of the sequences within the typ-

ically massive metagenomic data sets. Additionally,

BLAST-based functional predictions have been esti-

mated to include 13–15% database propagation

errors [56]. Moreover, to detect a true match, the

reference database being searched needs to contain at

least one homolog of the query sequence. And, the

fragmentary nature of the shotgun-generated meta-

genomic data leading to partial proteins negatively

impacts homology-based function prediction. This

is discussed in more detail below.

The extent to which metagenomic functional

annotation has been achieved using different databases

is demonstrated in Figures 2 and 3. The highest frac-

tion of metagenomic sequences were annotated using

the NCBI RefSeq database, which is a comprehensive

collection of non-redundant well-annotated protein

sequences. On the other hand, only a small fraction of

sequences could be annotated using the Swiss-Prot

database, which harbors manually annotated and

reviewed protein sequences. The number of proteins

annotated using the COGs database was slightly less

than RefSeq. Among the protein family and profile

databases, more predictions were made using Pfam as

compared to the TIGRFAM database. This could

mainly be due to the great number of protein families

Figure 2: Distribution of metagenomic sequence matches in the SwissProt, RefSeq, KEGG and SEED databases at
various E-value cut-offs. Smaller sequences match at lower confidence (higher E-values; lighter colors) or do not
match at all in the databases. More sequences match with higher confidence (lower E-values; darker colors) as the
sequence length used for the analysis increases. Pre-computed data for the metagenomes shown was derived from
the MG-RAST server.
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that are included in the Pfam database (13 672 in

Pfam 26.0 release) than in the TIGRFAM database

(4209 in TIGRFAM 12.0 release). The annotation

using KEGG metabolic pathways is relatively low

mainly due to the inherent problems of the metage-

nomic data sets, as discussed below. The SEED system

of classification performs similar to that of KEGG,

although the number of predictions is slightly lower.

Motif- or pattern-based approach
The partial proteins generated from short contigs and

unassembled sequences which arise due to short

read-lengths or complex environments generally

exhibit very poor similarities using homology-based

approaches (Figure 2). Additionally, some proteins,

despite sharing a common function, are more diverse

at the sequence level. The overall sequence similarity

of such proteins is usually lower than the thresholds

used for homology-based functional prediction; how-

ever, they still share one or more common sequence

or structural patterns or motifs necessary to maintain

their structure and function. Currently, databases like

PROSITE [64] and PRINTS [65] present a reliable

repository of such patterns or motifs against which the

query metagenomic sequences may be searched either

independently or through the integrated InterPro

database [66]. Currently, only the IMG/M server in-

corporates the InterPro database. However, a general

Figure 3: Status of functional prediction of protein-coding genes from different metagenomic data sets and
representatives of completely sequenced genomes. The overall functional prediction bars represent the fraction of
protein-coding genes that map to at least any one of the four databases including cluster of orthologous groups
(COGs), Pfam, TIGRFAM and KEGG pathways. For comparative purposes, the functional annotation status for the
well-studied model microbial genome, E. coli K12-W3310, the smallest microbial genome, M. genitalium, and the
human genome are also shown. The data for this graph was derived from the IMG/M database. It should be noted
that for uniform comparison, the prokaryotic COGs version was also used for Homo sapiens.The number of matches
to eukaryotic COGs (KOG database [57]) may be higher for H. sapiens. The numbers next to the bars represent
the total number of predicted protein-coding genes in each data set using the IMG/M annotation pipeline. For the
Sludge [58] community, data from only the Phrap assembly, a widely used program for DNA sequence assembly,
was used. Except for the Cow RumenViral community [59], which was sequenced using the 454 platform (average
read-length> 300bp), all other metagenomes were sequenced using the Sanger method (average read-length -
1000bp). The following additional data sets were used: Ocean [60], Soil [61], Acid Mine Drainage [62],
Human Gut [63].
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problem with motif-based annotation is that short

sequence matches typically show low statistical signifi-

cance and false-positive rates can be high [67].

Nevertheless, given the amount of novelty inherent

in metagenomic data sets, it is recommended to run

motif-based analysis in parallel with other functional

prediction approaches.

Context-based annotation
Metagenomic data sets contain a large number of novel

sequences which share no homology with known

sequences and thus remain unannotated by the previ-

ous two approaches. To overcome these limitations,

gene context-based approaches may also be used. A

few examples from single genome annotation projects

include genomic neighborhood [68, 69], gene fusion

[70, 71], phylogenetic profiling [72] and gene

co-expression analysis [73]. Among these, only the

genomic neighborhood approach has been imple-

mented in the case of metagenomics. In 2007,

Harrington etal. [74] applied a combination of homol-

ogy-based searches and customized gene neighbor-

hood methods to four metagenomic data sets derived

from a variety of complex environments. Whereas

BLAST-based methods alone annotated 70% of the

sequences, their combined method inferred specific

functions for 76% and non-specific functions for 83%

of the sequences. However, due to the paucity of

complete genomes in metagenomic data sets and the

lack of knowledge about the true species origin of the

sequences, this approach has its limitations. These

problems may be ameliorated by increasing the

sequencing depth and by improving the taxonomic

assignment of the sequences. Additionally, better

assemblies resulting in longer contigs will also improve

the efficiency of context-based annotation methods.

Currently, only IMG/M and SmashCommunity [31]

can be used to view predicted genes in the genomic

neighborhood context.

Other types of functional prediction
Lastly, the putative roles of the metagenomic sequences

can also be inferred by running more specific analyses

using dedicated tools that target prediction of carbohy-

drate active enzymes, glycosyl hydrolases, protein

localizations, lipoproteins, adhesins, secretory proteins,

transporters, CRISPRs (Clustered Regulatory Inter-

spaced Short Palindromic Repeats), insertion

sequences, virulence factors, etc. A list of a few repre-

sentative tools for such analysis is given in Table 3. It

should be noted that the list is not comprehensive, and

that a discussion about all the tools for the above-

mentioned purpose is beyond the scope of this review.

GENE-CENTRICANALYSIS OF
METAGENOMIC DATA SETS
To explore the effect of environment on the functional

and metabolic contents of different communities,

comparative functional analysis may be performed on

the total gene-content of the communities, i.e.

gene-centric analysis. For this purpose, functional

profiles can be compared and contrasted across differ-

ent metagenomic data sets to look for functional

characteristics responsible for community differences.

Normally two levels of comparison are performed,

viz., comparison of abundance of functional families

and pathways, and estimation of statistical parameters

to ensure that the observed differences in abundance

are not merely chance occurrences. Different types of

abundance profiles may be generated and compared

using, for example, COGs functional categories,

Pfam functional families, KEGG metabolic pathways,

or SEEDs subsystems. However, before comparing the

metagenomes, proper normalizations of the data sets

should be performed to account for the data-associated

problems, such as partial genes and effective genome

sizes (discussed later). Heat-maps are commonly used

to visualize the differences in communities with respect

to the above-mentioned functional or metabolic

profiles (for example [60, 61, 76–78]). In addition,

statistical methods, such as principal component ana-

lysis (PCA) and multidimensional scaling (MDS), may

be used to reveal which factors most affect the observed

data (for example [79, 80]). The common approaches

and limitations of the gene-centric analysis are

discussed and reviewed by Kunin et al. [3].

PROBLEMSASSOCIATEDWITH
FUNCTIONALANALYSIS OF
METAGENOMIC DATA
The analysis and annotation of metagenomic data sets

differ from that of whole genome studies mainly

because the former is a complex mixture of sequences

from multiple species. Even draft quality bacterial

whole genome sequences represent most of the

chromosomes, except for a few of the more complex

regions that include repeats, insertion sequences,

tRNAs, rRNAs, etc. When sequence coverage is suf-

ficient, the assemblies obtained usually result in very

long contigs with few gaps. The efficiency of gene
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prediction algorithms on such long contigs is quite high

and most of the full-length coding DNA sequences

(CDSs) can be predicted with high confidence.

Functional prediction analysis can next be applied to

obtain the functional repertoire of the genome. The

functionally annotated CDSs can then be viewed in the

context of metabolic pathways to predict the metabolic

capabilities of the species under study.

A metagenome can be viewed as a collection of

several whole genomes. To fully understand an en-

vironment, in principal, draft quality whole genome

sequences for every member should be achieved by

complete DNA sequencing. However, in spite of the

availability of high throughput second-generation

sequencers, this is still a very expensive and daunting

task. What can be best captured from a metagenomic

sample is a mixture of fragmented sequences from

the community members, and mostly from domin-

ant members of the environment. When the sequen-

cing depth is sufficient, and by the use of sequence

assemblers developed specifically for metagenomic

data (Table 1), draft quality assemblies for some of

the member species may be achieved; e.g. a draft

methanogen genome was recently assembled from

a permafrost microbial community [78]. However,

this still did not suffice for completely understanding

the environment, as the assemblies for many other

members remained poor due to the inherent com-

plexity of the environments and lower sequencing

coverage for these genomes. Thus, for most metage-

nomic studies, we are left with only enormous

volumes of fragmented sequences (comprised of a

mixture of short contigs and singletons) from mul-

tiple species to perform analysis on. In the case of

contigs, gene predictions will be more accurate,

whereas the predicted genes from singletons will

almost always be partial in spite of using gene

prediction tools specifically developed for metage-

nomic data (Table 1), unless very long read-lengths

were obtained during sequencing. This is mainly

because the typical average read-lengths generated

by next-generation sequencers providing deeper

Table 3: List of commonly used available resources for functional analysis (other than homology-, motif- and
context-based) that can be performed on metagenomic data sets

Type of prediction Resource name URL

Carbohydrate-active enzymes CAZy http://www.cazy.org/
Glycosyl hydrolases GAS http://csbl.bmb.uga.edu/�ffzhou/GASdb/
Protein localization PSORT http://psort.hgc.jp/

Cell-PLoc http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc/
CELLO http://cello.life.nctu.edu.tw/
PA-SUB http://webdocs.cs.ualberta.ca/�bioinfo/PA/Sub/index.html

Membrane proteins DAS http://www.sbc.su.se/�miklos/DAS/
HMMTOP http://www.enzim.hu/hmmtop/html/submit.html
HMM-TM http://bioinformatics.biol.uoa.gr/HMM-TM/index.jsp
TMB-Comp http://bmbpcu36.leeds.ac.uk/�andy/betaBarrel/TMB_Hunt_2/TMB_Comp.cgi

Lipoproteins DOLOP http://www.mrc-lmb.cam.ac.uk/genomes/dolop/dolop.htm
LIPO http://services.cbu.uib.no/tools/lipo
SignalP http://www.cbs.dtu.dk/services/SignalP/
LipoP http://www.cbs.dtu.dk/services/LipoP/
PRED-LIPO http://bioinformatics.biol.uoa.gr/PRED-LIPO/input.jsp

Secretory proteins
(signal peptideType I)

Tatfind http://signalfind.org/tatfind.html
TatP http://www.cbs.dtu.dk/services/TatP/
SignalP http://www.cbs.dtu.dk/services/SignalP/
PrediSi http://www.predisi.de/index.html

Adhesins SPAAN Sachdeva et al. 2004 [75]
Transporters TansportTP http://bioinfo3.noble.org/transporter/

TransAAP http://www.membranetransport.org/transaap/TransAAP_login.html
TCDB http://www.tcdb.org/

Insertion sequences ISsaga http://issaga.biotoul.fr/ISsaga/issaga_index.php
CRISPRs PILER http://www.drive5.com/pilercr/

CRISPRfinder http://crispr.u-psud.fr/Server/
Repeats Tandem Repeats Finder http://tandem.bu.edu/trf/trf.html

EMBOSS http://emboss.sourceforge.net/
Virulence factors VFDB http://www.mgc.ac.cn/VFs/

MvirDB http://predictioncenter.llnl.gov/

Functional assignment of metagenomic data 719

http://www.cazy.org/
http://csbl.bmb.uga.edu/ffzhou/GASdb/
http://csbl.bmb.uga.edu/ffzhou/GASdb/
http://psort.hgc.jp/
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc/
http://cello.life.nctu.edu.tw/
http://webdocs.cs.ualberta.ca/bioinfo/PA/Sub/index.html
http://webdocs.cs.ualberta.ca/bioinfo/PA/Sub/index.html
http://www.sbc.su.se/miklos/DAS/
http://www.sbc.su.se/miklos/DAS/
http://www.enzim.hu/hmmtop/html/submit.html
http://bioinformatics.biol.uoa.gr/HMM-TM/index.jsp
http://bmbpcu36.leeds.ac.uk/andy/betaBarrel/TMB_Hunt_2/TMB_Comp.cgi
http://bmbpcu36.leeds.ac.uk/andy/betaBarrel/TMB_Hunt_2/TMB_Comp.cgi
http://www.mrc-lmb.cam.ac.uk/genomes/dolop/dolop.htm
http://services.cbu.uib.no/tools/lipo
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/LipoP/
http://bioinformatics.biol.uoa.gr/PRED-LIPO/input.jsp
http://signalfind.org/tatfind.html
http://www.cbs.dtu.dk/services/TatP/
http://www.cbs.dtu.dk/services/SignalP/
http://www.predisi.de/index.html
http://bioinfo3.noble.org/transporter/
http://www.membranetransport.org/transaap/TransAAP_login.html
http://www.tcdb.org/
http://issaga.biotoul.fr/ISsaga/issaga_index.php
http://www.drive5.com/pilercr/
http://crispr.u-psud.fr/Server/
http://tandem.bu.edu/trf/trf.html
http://emboss.sourceforge.net/
http://www.mgc.ac.cn/VFs/
http://predictioncenter.llnl.gov/


coverage, including Illumina, are still smaller (up to

300 bp for paired-end reads) than the average size of

the typical prokaryotic protein coding gene

(�1000 bp [81]). The 454 pyrosequencing platform

can be an alternative technology due to the longer

average read-lengths it can generate (up to 700 bp for

454 GS FLXþ pyrosequencer, http://454.com/

downloads/GSFLXApplicationFlyer_FINALv2.pdf),

but it is not the preferred choice mainly due to its

lower coverage and higher cost as compared to

Illumina sequencing.

To obtain the most complete information of the

functional repertoire for any metagenome it is recom-

mended to use the genes predicted from both the

contigs and the singletons, even though many of the

predicted CDSs are partial. In general, short query

lengths negatively impact homology-based functional

prediction as they may decrease the significance of

pairwise similarities due to added noise. This is clearly

evident from Figure 2, which shows that there are no

matches for sequences of length �100 bp for the

‘Cow Rumen’ metagenome [79] in the lower and

more significant E-value bins (E-value < 1e� 10).

On the other hand, as sequence length increases, the

E-value bins with lower values become more popu-

lated, as in the case of the ‘Human Gut Japanese’ [39]

data set. Additionally, for short sequence lengths,

homology-based approaches have limited sensitivity.

For example, only �25% of the ‘Cow Rumen’ se-

quences could be annotated using GenBank, whereas

>75% of the ‘Human Gut Japanese’ sequences could

be annotated using the same database with the same

parameters (Figure 2). These problems may be ame-

liorated to some extent by increasing sequencing

depth or read-length so that better assemblies and

gene predictions can be obtained.

Another problem in metagenomic functional ana-

lysis stems from the lack of knowledge of the species of

origin of the sequences. Although phylogenetic clas-

sification and binning methods specific to metage-

nomic sequences may be able to classify 40–93% of

the reads [19] at the genus level, depending on the

novelty of the data set, at the species level this per-

centage is expected to decrease. This indicates that at

least 7–60% of the sequences still remain unclassified

due to the limitations of the available tools and the

paucity of reference genomes in the public databases.

Thus, in spite of gaining some functional information,

due to the absence of specific species information, it is

extremely difficult to put together many functionally

annotated metagenomic sequences in context of their

actual metabolic pathways. Additionally, because

most of the metagenomic sequences will be derived

from the dominant species, the complete functional

and metabolic repertoire of the less abundant

members cannot be obtained. Other techniques com-

plimentary to metagenomics, such as single cell gen-

omics [82], may help in overcoming this problem by

providing access to the genomic DNA from uncultur-

able microbes. However, even single cell genomics

has many challenges remaining [82]. Nevertheless, if

the objective of the metagenomic study is to only

analyze the overall metabolic capacity of the entire

community, then putting the sequences in context

of their individual genomes of origin may not pose a

serious problem.

Given that metagenomic studies are aimed at

exploring complex environments harboring many

yet uncultured and unknown microbes, the data sets

are expected to possess a large number of novel se-

quences. As shown in Figure 3, the overall functional

annotation achieved in the case of some example bac-

terial metagenomes is 50–75%, with the remaining

sequences being unannotated. Even for ‘complete’

genomes, functional annotation is not complete. In

the most studied model organism, Escherichia coli
K12-W3110, and the smallest studied genome,

Mycoplasma genitalium, both of which are considered

‘simpler’ systems, the overall functional annotation

remains �90%. And, in a more complex system viz.,

the human genome, only �82% of the predicted

proteins are currently annotated. For the even more

complex human gut metagenome, this number

decreases to �75%. Interestingly, while ocean and

soil are also considered as ‘complex metagenomes’

on the scale of the human gut microbiome, only

�50–55% of the sequences in these communities

can be annotated. This difference in level of annota-

tion could be due to a bias in the number of

human-associated microbial genomes that have thus

far been sequenced and are included in the reference

sequence databases. To deal with the novelty of meta-

genomic data, reference genome sequencing efforts

should be initiated for other environments as has

been done under the Human Microbiome Project

[83], which plans to sequence a large number of

reference genomes from different body sites for the

human microbiome.

While the functional annotation of bacterial

metagenomes is at a reasonable level and is gradually

improving, the situation for viral metagenomes, or

viromes, lags far behind. The extent of virome
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annotation for cow rumen [59] and human lung [80]

drops to as low as 13–15% (Figure 4) in comparison to

bacterial annotation (cow rumen: 32%) for similar

environments. The average metagenomic read-length

used for the human lung virome was only 84 bp. One

might argue that this reduction in the percentage of

functional annotation may be due to the short

read-length, which is known to affect the extent

and confidence level of the functional prediction

process, as discussed earlier. But, surprisingly, the per-

centage of functional annotation for the cow rumen

virome is also low (15%), despite using a longer

read-length (>300 bp). Thus, this reduction in the

extent of functional prediction for viromes could be

mainly due to the limited number of completely

sequenced viral species in the reference databases.

The genome sizes of the individual microbial

members of a community can vary greatly. It is

known that larger genomes harbor a smaller relative

fraction of universal and housekeeping genes, and thus

contain a large number of novel genes [84, 85].

Indeed, a weakly significant positive correlation was

found between the effective genome size and the

potential for carrying novel genes [86]. Therefore,

the average genome size in an environmental sample

could also affect the comparative functional analysis of

the metagenome. Recently, Beszteri etal. [87] demon-

strated how, among metagenomic samples, the

differences in relative gene abundance, which are

often used to interpret habitat-specific adaptations,

are biased by the average genome size of the commu-

nities sampled. Thus, before arriving at biological

conclusions from functional analysis of metagenomic

data sets, the latter should be normalized to account

for their different average genome sizes.

Apart from the aforementioned problems, the ana-

lysis of metagenomic data sets can also be influenced by

the sequencing technology used. For example, 454 pyr-

osequencing technology produces between 11–35%

artificial replicates, both identical reads (duplicates) and

reads that begin at the same position but vary in length

or contain sequencing discrepancies, which lead to

biased functional annotations [88]. Replicates were

also observed in an Illumina sequenced permafrost

microbial community analysis [78]. Thus, the metage-

nomic reads should be de-replicated before in-depth

functional analysis is performed. Both 454 pyrosequen-

cing and the more recent Ion Torrent sequencing

technologies are known to introduce frameshift errors

in the reads, mostly due to homopolymer runs. Almost

none of the available bioinformatics tools for functional

annotation of metagenomic sequences are capable of

handling such errors; although several specialized tools

for frameshift detection are currently available [89–93]

in the public domain and should be used for more

in-depth functional analysis. In some cases, the proto-

cols used for sample preparation, particularly the use of

filters or other sample selection methods, can also lead to

inappropriate biological interpretations. For example, in

the first Sargasso Sea data set [94], some nitrogen-fixing

genes were found to be lacking [95]. However, the lack

of these genes was later attributed to the absence of their

main contributors, cyanobacteria, which were likely

removed during the filtration step [96].

APPLICATIONSOFMETAGENOMIC
FUNCTIONALANALYSIS
Despite the challenges for metagenomic functional

analysis, many studies exploring different environments

Figure 4: Status of functional prediction for viral
metagenomes.The bars for the Cow Rumen viral meta-
genome data set represent the percentage of genes
predicted from assembled contigs, while those for the
Human Lung viral metagenome data set [80] represent
the percentage of raw reads.
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are being conducted with varying degrees of success.

The applications of metagenomic functional analysis is

an extremely important and versatile subject; and,

given the scope of the current review, it is impossible

to comprehensively discuss it here. Therefore, to ex-

emplify the successful implementation of metagenomic

functional analysis to answer some biologically and en-

vironmentally important issues, a few recent example

studies are presented in the following sections. For a

discussion of other studies of major interest, we recom-

mend the comprehensive review by Wooley et al. [4].

Comparative metagenomic-based
studies
Recently, in a large-scale metagenomic analysis of

124 European individuals, a catalogue of over 3.3

million human gut microbial genes was created [97].

This led to the identification of bacterial functions

that are necessary for a bacterium to thrive in the

gut context, and to those functions involved in

homeostasis of the entire ecosystem. This catalogue

not only provides a good resource for annotating new

human gut-related metagenomes and for comparative

analysis, it also enables future studies to discover asso-

ciations between the microbial genes and human

phenotypes. In another study, the gut metagenomes

of four healthy individuals were compared to those of

individuals with autoimmune disorders, including

type I diabetes [98]. This analysis suggested that

increased adhesion and flagella synthesis in diseased

individuals may be involved in triggering type I dia-

betes associated autoimmune response. Recently, a

comparison between the human gut environment

and the oral cavity was made by comparing the two

metagenomes, and clear distinctions in the functional

capacities of the two niches were observed [99]. In

the same study, another comparison between oral

metagenomes from supragingival dental plaque and

cavities of healthy and diseased individuals, respect-

ively, suggested that the dental plaque of healthy in-

dividuals (those who have never suffered from caries)

may be a genetic reservoir for novel anticaries com-

pounds and probiotics, which are live microorganisms

thought to be beneficial to the host organism.

Metagenomics studies to date have not only aimed

at exploring human health-related issues, but have also

attempted to address various environmental issues.

Global warming resulting from the emission of green-

house gases is a major concern worldwide. Rising

global temperatures cause permafrost, a vast reservoir

of natural carbon, to thaw, resulting in microbial

degradation of organic matter and emission of more

greenhouse gases. Comparative metagenomics of

permafrost was recently applied to both the frozen

and thawed states to analyze the shifts in microbial

and functional composition [78]. Multiple genes

involved in carbon and nitrogen cycling were found

to shift rapidly during thaw. From this study, important

insights about the microbial species and functional

components involved in greenhouse gas emissions

may be obtained.

Metagenomic data-mining-based studies
The natural diversity and affluence of metagenomic

data is enormous. Over 300 independent metagenomic

projects have already been completed or are underway.

These facts provide a great opportunity for in-depth

mining of metagenomic data and exploration of

novel gene candidates useful under a variety of different

scenarios. For example, the metagenomic data sets from

10 diverse sources were used to identify several novel

candidates for commercially useful enzymes (CUEs)

[100]. A catalogue of 510 CUEs was prepared using

literature search followed by manual curation, and then

the catalogue was used to find homologues in the

metagenomic data sets. High-throughput functional

metagenomic screening may be used to look for the

presence of CUEs and other specific enzymes of inter-

est in the metagenomes [101]. In another study, the

recruitment of genomes from pathogens against the

metagenomes of healthy individuals containing

commensal strains of the same species was used to iden-

tify the genomic regions of individual bacterial isolates

missing in the metagenomes [102]. These regions are

referred to as metagenomic islands and are found to

harbor several virulence-related genes specific to the

pathogenic strain.

CONCLUSIONS
Metagenomic sequencing provides a unique oppor-

tunity to explore yet unknown environments in

great detail. Functional analysis of the metagenomic

data plays a central role in such studies by providing

important clues about functional and metabolic

diversity, as well as variation. While metagenomic

studies continue to suffer from certain caveats that

make the downstream data analysis a challenging task

for bioinformaticians, the gradual improvement in

metagenomic technologies and development of

tools and resources that account for the known prob-

lems will relieve some of the burdens. For example,
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the use of next-generation sequencers producing

longer read-lengths (>300 bp) will usually lead to

better sequence coverage. This can then be followed

by the use of sequence assembly and gene prediction

tools and parameters specifically developed for meta-

genomic sequences which will further help in im-

proving assembly and gene prediction efficiency,

respectively, and will result in a greater number of

complete predicted proteins. Better functional as-

signments for metagenomic data sets can be obtained

by using more complete proteins. However, while

comparing the abundance profiles of functions be-

tween communities, the frequencies of the functions

should not be masked by the assembly, and the read

depths of the contigs should be accounted for.

Another common problem that is usually encoun-

tered in metagenomic data functional analysis is the

long computational time that is required for

BLAST-based homology searches for orthologs.

The use of alternative search algorithms, such as

BLAT, can provide analysis results in shorter times;

however, the loss of sensitivity by BLAT-based

searches should be taken into account when analyz-

ing the results. Alternatively, profile-based search

methods using the HMMER algorithm may also

be used whenever pre-computed sequence profiles

are available. Certain issues, including large volumes

of metagenomic sequence data, large storage require-

ments for the analyzed data, and the typically large

number of unknown sequences in the metagenomic

data still pose serious challenges for its analysis.

Therefore, there is great need for the development

of new, faster, more sensitive tools and more thor-

ough resources dedicated to the functional analysis of

metagenomic data sets. Also, it is strongly advised

that when analyzing the data, one must be aware

of any additional factors that can influence the func-

tional analysis, including sample preparation, sequen-

cing method, diversity of the environments, etc.

Proper calibrations, normalizations and statistical

tests for significance should always be performed in

order to arrive at the most reliable conclusions.

DNA sequence-based metagenomic functional ana-

lysis is limited in that it only provides information about

the functional content of an environment. Thus, it may

be complemented by other independent approaches

that help to gain further insights about the more dy-

namic aspects of a given community. For example, a

few metatranscriptomic projects have been undertaken

to address which genes are actually being expressed in

different environments and to what extent [103, 104].

Given that proteins are much more stable than

mRNAs [105], a proteome-based analysis is expected

to provide a more accurate view of the functionality of

a given environment. Toward this, a few metaproteo-

mic studies have been conducted to explore which

protein products are formed and how are they involved

in the cross-talk within the environment under differ-

ent conditions [106–109]. The metabolome, which

represents the complete set of small molecules in an

organism, can influence gene expression and protein

function. Therefore, metabolomics also plays a key role

in understanding cellular systems and decoding the

functions of genes [110, 111]. A few metabolomic

analyses have been conducted to determine which

metabolites are produced as a result of the underlying

metabolic pathways that are being exerted in a given

community and to study host-microbe interactions

[112–117]. Another alternative to the DNA-based

studies used for determining microbial community

composition, metalipidomics, is being implemented

mainly to identify the living microbial cells in an

environment [118]. Intact polar lipids (IPLs), which

are the basic building blocks of biomembranes, are

ubiquitous in nature and have several characteristics

that make them useful as proxies for living microbial

cells. To date, metabolomic studies have not been

directly used for the functional analysis of environ-

ments. However, studies seeking to identify microbes

of specific functional interest may be conducted, as has

been done for ammonia-oxidizing microbes from

marine and estuarine sediments [119]. The functional

component of the environment may then be exten-

sively analyzed using different approaches to gain more

insights about the cross-talk taking place in that

environment. Thus, the application of metalipidomics

to study host-associated microbial composition and

functional analysis, while not yet explored, appears

promising.

KEYPOINTS
� Read-lengths generated during metagenomic sequencing

influence assembly, gene prediction and eventually functional
analysis.The enormous volume of sequence data, which leads to
long computational times and massive storage requirements,
also impedesmetagenomic functional prediction.

� Factors that potentially influence functional analysis of metage-
nomic data, including sample preparation, sequencing method,
average genome size, etc. should be consideredprior to analysis.

� A higher fraction of metagenomic sequences are annotated
using BLAST against data-rich reference sequence databases
such as NCBINR as compared to SwissProt,COGs,KEGG, etc.

� Integratedmethods usingmore than one approach can improve
the efficiency and reliability of functional predictions.
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� DNA-sequence-based metagenomic functional analysis should
be complementedwith other types of approaches, such asmeta-
transcriptomics, metaproteomics, metabolomics and metalipi-
domics, to gain better insights of the dynamics of a community.
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