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)e reptile search algorithm (RSA) is a swarm-based metaheuristic algorithm inspired by the encirclement and hunt mechanisms
of crocodiles. Compared with other algorithms, RSA is competitive but still suffers from low population diversity, unbalanced
exploitation and exploration, and the tendency to fall into local optima. To overcome these shortcomings, a modified variant of
RSA, named MRSA, is proposed in this paper. First, an adaptive chaotic reverse learning strategy is employed to enhance the
population diversity. Second, an elite alternative pooling strategy is proposed to balance exploitation and exploration. Finally, a
shifted distribution estimation strategy is used to correct the evolutionary direction and improve the algorithm performance.
Subsequently, the superiority of MRSA is verified using 23 benchmark functions, IEEE CEC2017 benchmark functions, and robot
path planning problems.)e Friedman test, the Wilcoxon signed-rank test, and simulation results show that the proposed MRSA
outperforms other comparative algorithms in terms of convergence accuracy, convergence speed, and stability.

1. Introduction

)e rapid advancement of technology has generated a large
number of optimization problems that require solving. )ese
optimization problems arise in various fields, such as finance,
chemicals, electronics, machinery, and materials. Real-world
optimization problems are often mixed with various un-
known factors and have very complex solution spaces. )ese
problems frequently have substantial computational efforts,
complex nonlinear constraints, and large numbers of vari-
ables and constraints [1–6]. Traditional optimization methods
have difficulty solving these nonproductivity discontinuity
problems effectively because they cannot strike a balance
between accuracy and time cost [7]. Metaheuristic optimi-
zation algorithms have demonstrated better performance in
balancing the solution quality and time cost [8]. Due to a
simple structure and no requirement for a problem to be
continuously derivable, metaheuristic optimization algo-
rithms have been widely used to solve complex optimization
problems in natural and engineering fields [9–13].

In recent decades, metaheuristic algorithms have made
great progress in memetic computing manner, balance of
exploitation and exploration, self-adaption of hyper-
parameters, population structure evolution, and theoretical
analysis of the search dynamics [14]. Memetic computing
manner improves algorithm performance through meta-
heuristic algorithms incorporated with local search operator.
Charin et al. used particle swarm optimization (PSO)
combined with levy flight optimization (LFO) to track the
maximum power point of a photovoltaic system [15]. Yu
et al. showed that the combination of chaotic local search
(CLS) and brain storm optimization (BSO) can significantly
improve the performance of BSO [16]. How to balance the
exploration and exploitation of the algorithm to improve the
performance is a research hotspot of the metaheuristic al-
gorithms. Many researchers use various operators or change
the algorithm parameters to balance [17]. Cai et al. proposed
an alternate search pattern strategy to balance the explo-
ration and exploitation of BSO [18]. In the optimization
process, the search performance of some metaheuristic
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algorithms is greatly affected by adjustable parameters such
as crossover rate, mutation rate, and population size. In
order to solve the problem of parameter value control at
different stages in the optimization process, adaptive pa-
rameter control has been extensively studied by researchers
[19]. Lei et al. proposed a variant of gravitational search
algorithm (GSA) with a self-adaptive gravitational constant
called ALGSA, which greatly improved the search perfor-
mance of GSA [20]. Population structure evolution has great
influence on the search performance of the metaheuristic
algorithms. Zhong et al. proposed a variant to improve the
performance of differential evolution (DE) algorithm called
EHDE by incorporating elite elements into the hierarchical
population structure [21]. Inspired by the two-layered
structure GSA, Wang et al. proposed a four-layered GSA
variant with stronger search capability called MLGSA [22].
In addition to the above factors, theoretical analysis of the
search dynamics has recently attracted a great deal of at-
tention from researchers [23].

In general, metaheuristic optimization algorithms can be
classified into three categories [24]: evolutionary-based al-
gorithms, physical-based algorithms, and swarm-based
algorithms.

Evolutionary-based algorithms are inspired by the laws
of natural evolution. Genetic algorithms are a typical ex-
ample and their proposal was inspired by Darwinian evo-
lutionary theory [25]. Genetic algorithms provide solutions
through the concept of crossover and mutation of species in
nature. In addition, other evolutionary-based algorithms
have been proposed, including DE [26], evolutionary pro-
gramming [27], and evolutionary strategies [28]. )e second
category is physics-based algorithms, which originate from
natural physics laws. Simulated annealing [29] and GSA [30]
are two common physics-based algorithms. )ey utilize the
laws of thermodynamics and gravity for optimization. In
addition, researchers have proposed other physics-based
algorithms. Wei et al. proposed a nuclear reaction optimizer
using the phenomenon of atomic nuclear reactions [31].
Inspired by the sine and cosine laws of mathematics, Mir-
jalili proposed the sine cosine algorithm [32]. Eskandar et al.
proposed a water cycle algorithm based on the natural water
cycle phenomena [33]. )e third category is swarm-based
algorithms, which build optimization models by emulating
the social behavior of animal groups. PSO [34] and the ant
colony algorithm [35] are two of the most common swarm-
based algorithms. )ey provide solutions by sharing in-
formation about all individuals in the optimization process.
Others include the grey wolf optimizer (GWO) [36], the
whale optimization algorithm (WOA) [37], the butterfly
optimization algorithm (BOA) [38], the firefly algorithm
(FA) [39], the artificial bee colony (ABC) algorithm [40], the
reptile search algorithm (RSA) [41], the Harris hawks op-
timizer (HHO) [42], the equilibrium optimizer (EO) [43],
the tunicate swarm algorithm (TSA) [44], the salp swarm
algorithm (SSA) [45], the Tasmanian devil optimization
(TDO) [46], the arithmetic optimization algorithm (AOA)
[47], and the pathfinder algorithm (PFA) [48].

)e reptile search algorithm (RSA) is a novel swarm-
based algorithm proposed by Abualigah. RSA is inspired by

the encircling mechanism, hunting mechanism, and social
behavior of crocodiles [41]. RSA has good performance but
also has disadvantages such as diminished population di-
versity and unbalanced exploitation and exploration capa-
bilities. To improve the performance of RSA and enhance the
search capability, this paper proposes a modified variant of
RSA, namedMRSA. To improve the population diversity, an
adaptive chaotic reverse learning strategy is proposed to
optimize from the initialization and in each iteration update.
To balance exploitation and exploration, an elite alternative
pool strategy was developed. A shifted distribution esti-
mation strategy was used to modify all the individuals and
guide the evolutionary direction. To fully validate the per-
formance of MRSA, 23 benchmark functions, IEEE
CEC2017 benchmark functions, and robot path planning
problems are used for testing. )e superiority of the pro-
posed algorithm is demonstrated by a convergence analysis,
stability analysis, and statistical tests.

)e rest of this paper is organized as follows. Section 2
provides a review of the basic RSA. )e proposed MRSA is
described in detail in Section 3. In Section 4, the effectiveness
of the proposed improved strategy and the superiority of the
modified algorithm are verified using classical test functions,
IEEE CEC2017 benchmark functions, and robot path
planning problems. Finally, Section 5 provides the con-
clusion and discusses future work.

2. Reptile Search Algorithm

In this section, the basic procedures of RSA are presented.
RSA is a swarm-based metaheuristic algorithm inspired by
the enveloping mechanism, hunting mechanism, and social
behavior of crocodiles.

2.1. Initialization Phase. RSA is similar to other meta-
heuristics in that the initial solution is generated randomly
in the solution space. )e initialization formula is as follows:

X
1
i � LB + rand · (UB − LB), (1)

where X1
i is the i

th initial individual and LB and UB are the
upper and lower boundaries of the search space, respectively.

2.2. Encircling Phase (Exploration). Crocodiles perform high
and sprawl walks during the global search phase. In RSA, the
search strategy is determined by the number of current
iterations.When t≤ 0.25T, RSA performs a high walk.When
t≤ 0.5T and t> 0.25T, the RSA performs a sprawl walk. )e
specific mathematical models of the mechanism are de-
scribed as follows:

X
t+1
i �

X
t
best − ηi × β − R

t
i × rand, t≤

T

4
,

X
t
best × X

t
ran d × ES × rand, t≤

T

2
and t>

T

4
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

ηi � X
t
best × Pi, (3)
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Ri �
X

t
best − X

t
i

X
t
best + ε

, (4)

ES � 2 × r1 × 1 −
1
T

 , (5)

Pi � α +
X

t
i − M X

t
i 

X
t
best ×(UB − LB) + ε

, (6)

where Xt
best is the current best solution, t is the current

number of iterations, T is the maximum number of itera-
tions, β is a constant taking the value of 0.1 to control the

speed of exploration, Xt
ran d is a randomly chosen individual,

ES is a random value decreasing in the interval [− 2, 2], ε is a
minimal value to ensure that the denominator is not equal to
0, r1 is a random number in the interval [− 1, 1], α is a
constant taking the value of 0.1, and rand is a random
number with values from 0 to 1.

2.3. Hunting Phase (Exploitation). In RSA, crocodiles use
two strategies for foraging: hunting coordination and co-
operation. When t< 0.75T and t≥ 0.5T, the RSA performs
hunting coordination. When t<T and t≥ 0.75T, a hunting
cooperation strategy is employed by the RSA. )e formula
for position updating in the hunting phase is as follows:

(1) Initialize RSA parameters and generate initial population randomly
(2) While t<T
(3) Calculate the Fitness of each solution
(4) Find the Best solution so far
(5) Update the ES using equation (5)
(6) For each crocodile Xi do
(7) Update the η, R, and values using equations (3), (4), and (6), respectively
(8) If t< 0.25T
(9) Calculate the new position Xi using equation (2)
(10) Else if t≤ 0.5T and t> 0.25T
(11) Calculate the new position Xi using equation (2)
(12) Else if t≤ 0.75T and t> 0.5T
(13) Calculate the new position Xi using equation (7)
(14) Else
(15) Calculate the new position Xi using equation (7)
(16) End if
(17) Calculate the fitness and select the better one
(18) End for
(19) t� t+ 1
(20) End while
(21) Return the best position and fitness

ALGORITHM 1: Pseudocode of the reptile search algorithm (RSA).

Table 1: Set of chaotic functions.

ID Type Function
1 Chebyshev map xi+1 � cos (i cos− 1(xi))

2 Circle map xi+1 � mod( xi + b − (a/2π) sin(2πxi)), 1), a � 0.5 and b � 0.2

3 Gauss map xi+1 �
1 xi � 0

1/mod (xi, 1) otherwise

4 Iterative map xi+1 � sin (aπ/xi), a � 0.7

5 Logistic map xi+1 � axi(1 − xi), a � 4

6 Pricewise map xi+1 �

xi/p 0≤ xi < p
(xi − p)/(0.5 − p) p≤ xi < 0.5
(1 − xi − p)/(0.5 − p) 0.5≤ xi < 1 − p
(1 − xi)/(p) 1 − p≤ xi < 1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

7 Sine map xi+1 � a/4 · sin (πxi), a � 4
8 Singer map xi+1 � μ(7.86xi − 23.32x2

i + 28.75x3
i − 13.301875x4

i ), μ � 1.07

9 Sinusoidal map xi+1 � ax2
i sin (πxi), a � 2.3

10 Tent map xi+1 �
xi/0.7 xi < 0.7
10/3 × (1 − xi) xi ≥ 0.7
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X
t+1
i �

X
t
best × Pi × rand, t≤

3T

4
and t>

T

2
,

X
t
best − ηi × ε − R

t
i × rand, t≤T and t>

3T

4
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

RSA generates the initial population randomly in the
search space first and then chooses different search strategies
depending on the number of iterations. )e pseudocode for
the RSA is shown in Algorithm 1.

Start
Initialize the MRSA

parameters α, β 
Initialize the

candidate solutions 

While
t<T

Return the best
solution 

End

NoCalculate the Fitness values, construct the elite
alternative search pool

Determine the best solutionUpdata ES

Update the η, R, P 

Yes

Calculate mean and Cov

IF
rand<1/2

IF
t<=T/4

Yes

Yes
IF

t<=2*T/4
&

t>T/4

No
IF

t<=3*T/4
&

t>2*T/4

No Yes NoYes

Update the Pop using Eq. (10) 
Calculate the new position Xi using Eq. (9)

Calculate the new position
Xi using Eq. (2-α)

Calculate the new position
Xi using Eq. (7-α)

Calculate the new position
Xi using Eq. (2-b)

Calculate the new position
Xi using Eq. (7-b)

Calculate the new position
Xi using Eq. (13)

t=t+1

No

Figure 1: Flow chart of MRSA.

(1) Initialize RSA parameters and generate initial population randomly
(2) While t<T
(3) Calculate the Fitness of each solution, construct the elite alternative search pool based on equation (12)
(4) Find the Best solution so far
(5) Update the ES using equation (5)
(6) Calculate mean and Cov based on equation (13)
(7) For each crocodile Xi do
(8) Update the η, R, and values using equations (3), (4), and (6), respectively
(9) If rand< 0.5
(10) If t≤ 0.25T
(11) Calculate the new position Xi using equation (2)
(12) Else if t≤ 0.5T and t> 0.25T
(13) Calculate the new position Xi using equation (2)
(14) Else if t≤ 0.75T and t> 0.5T
(15) Calculate the new position Xi using equation (7)
(16) Else
(17) Calculate the new position Xi using equation (7)
(18) End if
(19) Else
(20) Calculate the new position Xi using equations (13)
(21) End if
(22) Calculate the fitness and select the better one
(23) Update the Pop using equation (10)
(24) Calculate the new position Xi using equation (9)
(25) Calculate the fitness and select the better one
(26) t� t+ 1
(27) End while
(28) Return the best position and fitness

ALGORITHM 2: Pseudocode of the MRSA.
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3. The Proposed RSA Variant

To enhance the performance of the basic RSA, three im-
provement strategies are proposed in this paper. An adaptive
chaotic reverse learning strategy is first introduced to en-
hance the population diversity of RSA using the charac-
teristics of chaotic mapping and reverse learning. Second, an
elite alternative pooling strategy is used to balance the de-
velopment and exploration of RSA. In addition, a distri-
bution estimation strategy is used tomodify the evolutionary
direction. By sampling the dominant population informa-
tion, the population direction is better guided, thus im-
proving the algorithm’s convergence efficiency. )e three

improvement strategies are described in detail in the
following.

3.1. Adaptive Chaotic Reverse Learning Strategy. One of the
shortcomings of the metaheuristic algorithm is that the
diversity of the algorithmic population continues to di-
minish as the optimization proceeds. To enhance the di-
versity of the algorithms, the researchers employ different
approaches. )e reverse learning strategy is a new technique
that is widely used to improve population diversity. )e
reason for the popularity of reverse learning is that extensive
literature shows that the probability of a reverse solution

Table 2: )e classic benchmark functions (M: multimodal, U: unimodal, S: separable, N: nonseparable, Dim: dimension, Range: limits of
search space, Optimum: global optimal value) [55].

Test function Name Type Dim Range Optimum

f01(x) � 
D
i�1 x2

i Sphere US 30 [− 100, 100] 0
f02(x) � 

D
i�1 |xi| + 

D
i− 1 |xi| Schwefel 2.22 UN 30 [− 10, 10] 0

f03(x) � 
D
i�1(

D
j− 1 xi)

2 Schwefel 1.2 UN 30 [− 100, 100] 0
f04(x) � maxi |xi|, 1≤ i≤D  Schwefel 2.21 US 30 [− 100, 100] 0
f05(x) � 

D
i�1 100(x2

i+1 − x2
i )2 + (xi − 1)2 Rosenbrock UN 30 [− 30, 30] 0

f06(x) � 
D
i�1 (xi + 0.5

2 Step US 30 [− 100, 100] 0
f07(x) � 

D
i�1 ix4

i + random[0, 1) Quartic US 30 [− 1.28,1.28] 0
f08(x) � 

D
i�1 − xi sin(

���
|xi|


) Schwefel 2.26 MS 30 [− 500, 500] -418.9829D

f09(x) � 
D
i�1(x2

i − 10 cos (2πxi) + 10) Rastrigin MS 30 [− 5.12, 5.12] 0

f10(x) � 20 + e − 20 exp (− 0.2
����������

1/D 
D
i�1 x2

i



) − exp (1/D 
D
i�1 cos (2πxi)) Ackley MS 30 [− 32, 32] 8.8818e − 16

f11(x) � 1/4000
D
i�1 (x2

i ) − (
D
i�1 cos (xi/

�
i

√
)) + 1 Griewank MN 30 [− 600, 600] 0

f12(x) � π/D 10 sin (πyi) + 
D− 1

i− 1
(yi − 1)

2
[1 + 10 sin2 (πyi+1)] + (yD − 1)

2⎧⎨

⎩

⎫⎬

⎭

+ 
D

i− 1
u(xi, 10, 100, 4),whereyi � 1 + xi+ u(xi, a, k, m) �

k(xi − a)
m

xi > a

0 − a<xi < a

k(− xi − a)
m

xi < a

⎧⎪⎨

⎪⎩

Penalized MN 30 [− 50, 50] 0

f13(x) � 0.1 (sin2 (3πxi) + 
D

i�1(xi − 1)
2
[1 + sin2 (3πxi)] + (xD − 1)

21+

sin2(2πxD)]} + 
D

i− 1u(xi, 5, 100, 4)

Penalized2 MN 30 [− 50, 50] 0

f14(x) � (1/500 + 
25
j�1 1/j + 

2
i�1 (xi − aij)6)− 1 Foxholes MS 2 [− 65.53,65.53] 0.998004

f15(x) � 
11
i�1 (ai − x1(b2i + bix2)/(b2i + bix3 + x4))

− 1 Kowalik MS 4 [− 5, 5] 0.0003075

f16(x) � 4x2
1 − 2.1x4

1 + 1/3x6
1 + x1x2 − 4x2

2 + x4
2 Six-hump camel back MN 2 [− 5, 5] − 1.03163

f17(x) � (x2 − 5.1/4π2 ∗x2
1 + 5/π ∗x1 − 6)2 + 10(1 − 1/8π)cosx1 + 10 Branin MS 2 [− 5, 10]×

[0, 15] 0.398

f18(x) � [1 + (x1 + x2 + 1)
2
(19 − 14x1 + 3x

2
1 − 14x2 + 6x1x2 + 3x

2
2)]

×[30 + (2x1 − 3x2)
2
(18 − 32x1 + 12x

2
1 + 48x2 − 36x1x2 + 27x

2
2)]

Goldstein-Price MN 2 [− 5, 5] 3

f19(x) � − 
4
i�1(ci exp − (

3
j− 1 aij(xj − pij

2)) Hartman 3 MN 3 [0, 1] − 3.8628

f20(x) � − 
4
i�1(ci exp − (

6
j− 1 aij(xj − pij

2)) Hartman 6 MN 6 [0, 1] − 3.32

f21(x) � − 
5
i�1 [(X − ai)(X − ai)

T + ci]
− 1 Langermann 5 MN 4 [0, 10] − 10.1532

f22(x) � − 
7
i�1 [(X − ai)(X − ai)

T + ci]
− 1 Langermann 7 MN 4 [0, 10] − 10.4029

f23(x) � − 
10
i�1 [(X − ai)(X − ai)

T + ci]
− 1 Langermann 10 MN 4 [0, 10] − 10.5364
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approximating the global optimum is approximately fifty
percent higher than the current original solution, and re-
verse learning strategies have been used to improve other
algorithms with success [49–51]. )e mathematical model of
the reverse learning strategy is described as follows:

X
o
i � LB + UB − X

t
i , (8)

where Xo
i is the inverse solution corresponding to Xt

i . )e
population diversity is related to the distribution of indi-
viduals in the search space. )e more uniform the distri-
bution of the individuals, the better the diversity. Chaotic
mappings are characterized by random selection and er-
godicity, which can help RSA generate new solutions and
avoid premature convergence, and chaotic mappings have
been successfully used to improve other algorithms [52].
)erefore, this paper combines a reverse learning strategy
with chaotic mappings, called the chaotic reverse learning
strategy, and it is given as follows:

X
co
i � LB + UB − λiX

t
i , (9)

whereXco
i denotes the solution generated by the chaotic reverse

learning mechanism corresponding to the ith individual in the
population. λi is the corresponding chaotic mapping value.
)ere are ten common chaotic mappings, with the formulas
and numerical distributions shown in Table 1.

For swarm-based algorithms, the quality of the initial
population has a significant impact on the algorithm’s
performance. )erefore, the initial population is first gen-
erated using COBL to improve the population quality and to
increase the algorithm’s convergence accuracy. Second,
during each iteration, the corresponding reverse population
is generated using COBL and evaluated separately to retain
the dominant individuals in the next generation.

In addition, as the algorithm proceeds, there will be
many useless searches using the chaotic inverse learning
strategy for all the individuals, which increases the com-
putational cost and is not conducive to the convergence of
the algorithm, so this paper proposes using the linear de-
creasing population strategy. As the iteration proceeds, the
number of individuals using the chaotic inverse learning
strategy is gradually reduced, and the specific mathematical
formula is as follows:

Pop � round
popmin − popmax(  · t

T
+ popmax , (10)

where Pop denotes the number of populations using the
chaotic backward learning strategy and popmax and popmin
denote the maximum number and minimum number of
populations, respectively.

3.2. Elite Alternative Pool Strategy. RSA performs position
updates by following the best individual. )is facilitates a
faster convergence of the algorithm but diminishes pop-
ulation diversity and tends to trap local optimums. To
maintain a balance between the exploitation and exploration
of the algorithm, an elite alternative pooling strategy is
proposed in this section. We place the current best three
individuals into a pool as shown in the following equation:

Xeap � Xeap1, Xeap2, Xeap3 , (11)

where Xeap1, Xeap2, and Xeap3 are the three best individuals
in the population thus far. )e food source is chosen ran-
domly from these three individuals each time. By using the
elite alternative pooling strategy, the position of the food
source changes from the best individual to one of the best
three individuals. )is goes some way to avoiding the
premature convergence of the algorithm due to the best
individual falling into a local optimum. To better balance the
development and exploration of the algorithm, we also put
the globally optimal individuals into the elite alternative pool
to ensure that each individual has the opportunity to move
closer to the optimal individual and ensure the convergence
efficiency of the algorithm. )us, the final mathematical
model of the elite alternative pooling strategy is described as
follows:

Xeap � Xeap1,Xeap2,Xeap3,Xbest . (12)

3.3. Shifted Distribution Estimation Strategy. RSA searches
by following the optimal individuals, ignoring valid infor-
mation from other individuals. To make full use of the
position information of the dominant population, some
scholars use a distribution estimation strategy for imple-
mentation [53, 54]. )is strategy uses the current dominant
population to calculate a probability distribution model,
generates a new offspring population based on the sampling
of the probability distribution model, and eventually obtains
the optimal solution through continuous iteration. In ad-
dition to using the dominant population, this paper con-
siders a modification of it by introducing information about
the optimal individual and its own position and proposes a
shifted distribution estimation strategy. )e mathematical
model is as follows:

X
t+1
i � mean + y, y ∼ N(0,Cov),

mean �
X

t
best + X

t
mean + X

t
i 

3
,

Cov(i) �
1

NP/2


NP/2

i�1
X

t+1
i − X

t
mean  × X

t
i − X

t
mean 

T
,

X
t
mean � 

NP/2

i�1
ωi × X

t
i ,

ωi �
ln (0.5NP + 0.5) − ln(i)


NP/2
i�1 (ln(0.5NP + 0.5) − ln i)

(13)

Table 4: Parameter setting for comparison algorithm.

Algorithm Parameters
HHO [42] β � 1.5, E0 ∈ [− 1, 1]

EO [43] a1 � 2, a2 � 1
TSA [44] Pmax � 4, Pmin � 1
GWO [36] a � 2 (linearly decreased over iterations)
SSA [45] c1 � rand, c2 � rand

WOA [37] a1 � 2 (linearly decreased over iterations)
RSA [41] α � 0.1, β � 0.1
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where Xt
mean denotes the weighted position of the dominant

population and ωi denotes the weight coefficient in the
dominant population in descending order of fitness values.
Cov is the weighted covariance matrix of the dominant
populations. )e flow chart of MRSA is shown in Figure 1
and its pseudocode is in Algorithm 2.

3.4. Time Complexity. )e time complexity determines the
operating efficiency of the algorithm. In RSA, the compu-
tational complexity of the initialization process is O(N),
where N is the population size. )e computational com-
plexity of the update process is O(T × N) + O(T × N × D),
where D is the problem’s dimensionality and T is the

Table 5: Test results of different algorithms for F1–F13 (Dim� 30).

30D MRSA HHO [42] EO [43] TSA [44] GWO [36] SSA [45] WOA [37] RSA [41]
F1 0.00E + 00 1.06E − 187 1.68E − 72 6.24E − 27 2.09E − 34 1.14E − 02 2.32E − 166 2.10E − 182
F2 1.29E − 248 4.21E − 100 2.03E − 42 1.12E − 17 6.77E − 21 1.43E+ 01 5.11E − 107 8.28E − 93
F3 0.00E + 00 5.81E − 135 5.43E − 06 7.48E+ 02 7.43E − 01 1.91E+ 04 7.02E+ 05 6.13E − 116
F4 7.53E − 256 3.88E − 96 1.87E − 11 2.95E+ 01 6.86E − 05 2.05E+ 01 7.27E+ 01 4.55E − 109
F5 3.89E − 07 3.67E − 03 9.41E+ 01 9.80E+ 01 9.72E+ 01 6.74E+ 02 9.73E+ 01 4.69E − 05
F6 4.26E − 10 3.74E − 05 9.21E − 02 1.36E+ 01 7.86E+ 00 1.64E − 02 5.45E − 01 4.76E − 08
F7 6.11E − 05 4.18E− 05 7.93E − 04 1.32E − 02 1.76E − 03 8.03E − 01 8.11E − 04 2.38E − 04
F8 − 3.60E+ 04 −4.19E+ 04 − 2.92E+ 04 − 1.42E+ 04 − 1.61E+ 04 − 2.38E+ 04 − 4.01E+ 04 − 2.47E+ 04
F9 0.00E + 00 0.00E + 00 0.00E + 00 9.12E+ 02 2.23E − 01 1.34E+ 02 3.79E − 15 0.00E + 00
F10 8.88E − 16 8.88E − 16 7.99E − 15 4.96E − 14 6.97E − 14 5.14E+ 00 4.91E − 15 8.88E − 16
F11 0.00E + 00 0.00E + 00 0.00E + 00 2.04E − 03 2.57E − 03 1.01E − 01 0.00E + 00 0.00E + 00
F12 9.70E − 12 3.36E − 07 4.13E − 04 1.01E+ 01 1.83E − 01 1.15E+ 01 5.96E − 03 3.51E − 10
F13 3.42E − 10 1.51E − 05 2.30E+ 00 1.17E+ 01 5.60E+ 00 1.61E+ 02 7.29E − 01 2.92E − 08

Table 7: Test results of different algorithms for F1–F13 (Dim� 500).

500D MRSA HHO [42] EO [43] TSA [44] GWO [36] SSA [45] WOA [37] RSA [41]
F1 0.00E + 00 2.61E − 195 1.13E − 72 7.72E − 28 1.82E − 34 6.70E − 03 1.27E − 165 7.20E − 175
F2 1.13E− 250 3.07E − 99 2.64E − 42 9.40E − 18 7.22E − 21 1.31E+ 01 1.54E − 108 7.77E − 103
F3 0.00E + 00 3.88E − 121 3.93E − 05 5.72E+ 02 3.37E − 01 1.67E+ 04 7.11E+ 05 5.41E − 136
F4 1.47E − 259 3.18E − 98 9.92E − 03 3.19E+ 01 6.68E − 05 2.01E+ 01 8.02E+ 01 2.27E − 105
F5 4.99E − 07 3.65E − 03 9.40E+ 01 9.83E+ 01 9.71E+ 01 5.06E+ 02 9.72E+ 01 3.68E − 05
F6 8.10E− 11 6.80E − 05 1.33E − 01 1.36E+ 01 7.81E+ 00 7.64E − 03 5.83E − 01 5.17E − 08
F7 7.12E − 05 5.01E− 05 7.65E − 04 1.54E − 02 1.62E − 03 7.27E − 01 1.79E − 03 2.23E − 04
F8 − 3.40E+ 04 −4.19E + 04 − 2.90E+ 04 − 1.44E+ 04 − 1.63E+ 04 − 2.45E+ 04 − 3.99E+ 04 − 2.46E+ 04
F9 0.00E + 00 0.00E+ 00 0.00E + 00 8.69E+ 02 7.10E − 02 1.37E+ 02 0.00E+ 00 0.00E + 00
F10 8.88E − 16 8.88E− 16 7.99E − 15 1.78E − 01 6.98E − 14 4.97E+ 00 3.85E − 15 8.88E − 16
F11 0.00E + 00 0.00E+ 00 0.00E + 00 3.16E − 03 3.28E − 04 1.10E − 01 0.00E+ 00 0.00E + 00
F12 6.72E − 12 3.29E − 07 9.68E − 04 1.03E+ 01 1.85E − 01 1.15E+ 01 5.97E − 03 2.03E − 10
F13 9.35 E − 11 8.81E − 06 2.23E+ 00 1.17E+ 01 5.63E+ 00 1.55E+ 02 6.80E − 01 3.90E − 08

Table 6: Test results of different algorithms for F1–F13 (Dim� 100).

100D MRSA HHO [42] EO [43] TSA [44] GWO [36] SSA [45] WOA [37] RSA [41]
F1 0.00E + 00 3.63E − 193 7.51E − 73 1.25E − 27 3.22E − 34 1.03E − 02 4.14E − 166 9.57E − 183
F2 3.08E − 251 4.29E − 100 2.29E − 42 1.10E − 17 7.27E − 21 1.23E+ 01 3.27E − 106 2.05E − 101
F3 0.00E + 00 1.47E − 142 2.51E − 06 1.03E+ 03 9.92E − 01 2.04E+ 04 6.76E+ 05 1.78E − 122
F4 1.01E− 254 4.63E − 93 2.04E − 11 2.98E+ 01 4.34E − 04 2.07E+ 01 7.47E+ 01 8.33E − 93
F5 1.86E − 07 4.44E − 03 9.39E+ 01 9.81E+ 01 9.72E+ 01 5.52E+ 02 9.72E+ 01 3.67E − 05
F6 2.52E − 11 2.76E − 05 1.56E − 01 1.38E+ 01 7.65E+ 00 6.61E − 03 5.85E − 01 4.85E − 08
F7 7.56E − 05 3.24E− 05 8.65E − 04 1.63E − 02 1.75E − 03 7.38E − 01 1.66E − 03 2.54E − 04
F8 − 3.36E+ 04 −4.19E + 04 − 2.92E+ 04 − 1.45E+ 04 − 1.62E+ 04 − 2.38E+ 04 − 3.72E+ 04 − 2.50E+ 04
F9 0.00E + 00 0.00E+ 00 0.00E + 00 9.28E+ 02 4.94E − 01 1.29E+ 02 3.79E − 15 0.00E + 00
F10 8.88E − 16 8.88E− 16 7.88E − 15 8.02E − 02 6.93E − 14 5.04E+ 00 4.56E − 15 8.88E − 16
F11 0.00E + 00 0.00E+ 00 0.00E + 00 2.25E − 03 1.61E − 03 1.07E − 01 2.41E − 03 0.00E + 00
F12 9.43E − 13 2.55E − 07 2.02E − 04 9.78E+ 00 1.80E − 01 1.13E+ 01 5.40E − 03 7.39E − 10
F13 2.25E − 10 1.12E − 05 2.07E+ 00 1.19E+ 01 5.72E+ 00 1.57E+ 02 6.03E − 01 1.13E − 08
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maximum number of iterations, so the computational
complexity of RSA is O(N × (T × D + T + 1)).

)e computational complexity of MRSA is determined
by six main factors (initialization process, solution update,
number of fitness evaluations, chaotic reverse learning
strategy, elite alternative pooling strategy, and shifted dis-
tribution estimation strategy). )e computational com-
plexity of the MRSA initialization process is O(N). )e
computational complexity of the update process is
O(T × N) + O(2 × T × N × D). )erefore, the computa-
tional complexity of MRSA is O(N × (2 × T × D + T + 1)).
)e introduction of three improved strategies causes the
computational complexity of MRSA to increase slightly
compared to RSA. RSA andMRSA can be considered to have
similar levels of operating efficiency.

4. Experimental Results and Discussion

In this section, we first evaluate various chaotic mapping
combination algorithms using benchmark test functions and
then determine which chaotic mapping sequence to use in
combination with the adaptive reverse learning strategy. )e
performance of MRSA is then evaluated, and 23 benchmark
functions, IEEE CEC2017 benchmark functions, and robot
path planning problems are compared with other state-of-
the-art algorithms.

4.1. Benchmark Test Functions. )is section uses 23
benchmark test functions that are commonly found in the
literature. )ese benchmark test functions include seven
unimodal functions, six multimodal functions, and ten fixed
dimensional functions [55]. Unimodal functions F1–F7 have
only one global optimum and are primarily used to test the
local exploitation capabilities of the algorithms. )e mul-
timodal functions have multiple local minimums and can be
used to check the global exploration capability and local
optimum avoidance capability of the algorithm. Details of
the benchmark test functions are shown in Table 2.

4.2. Chaos Mapping Selection Test. )e adaptive chaotic
reverse learning strategy proposed in this paper combines a
chaotic mapping and a reverse learning mechanism. To
verify which chaotic mapping is employed, each of the 10
chaotic mappings is combined with a reverse learning
mechanism.)eMRSA using the chaotic mapping with ID 1
is called MRSA-C1. )e rest of the MRSA algorithms using
chaotic mappings are named similarly. For a fair compar-
ison, the number of populations was set to 50, and the
maximum number of iterations was set to 300 on the same
experimental platform. All the algorithms were programmed
using MATLAB R2016b, the computer operating system was
Windows 10, and the processor was AMD R5 3600×16GB.
Table 3 shows the statistical results of each algorithm run

Table 8: Test results of different algorithms for F1–F13 (Dim� 1000).

1000D MRSA HHO [42] EO [43] TSA [44] GWO [36] SSA [45] WOA [37] RSA [41]
F1 0.00E+ 00 7.31E − 188 6.27E − 56 3.27E − 08 5.24E − 10 1.19E+ 05 8.86E − 163 1.80E − 186
F2 2.83E − 236 6.65E − 99 2.70E − 33 3.03E − 07 2.64E − 05 8.48E+ 02 2.51E − 105 1.52E − 86
F3 0.00E+ 00 6.88E − 83 2.98E+ 04 3.99E+ 06 5.80E+ 05 2.34E+ 06 1.03E+ 08 1.38E − 157
F4 4.64E − 266 1.59E − 94 8.56E+ 01 9.95E+ 01 7.27E+ 01 3.63E+ 01 8.08E+ 01 1.09E − 97
F5 5.37E− 05 3.62E − 02 9.96E+ 02 9.91E+ 03 9.97E+ 02 3.03E+ 07 9.91E+ 02 4.88E − 04
F6 4.95E− 07 3.61E − 04 1.69E+ 02 2.06E+ 02 2.02E+ 02 1.18E+ 05 2.32E+ 01 5.34E − 06
F7 7.24E − 05 5.54E− 05 1.59E − 03 1.92E+ 00 1.30E − 02 4.38E+ 02 1.67E − 03 3.87E − 04
F8 − 3.82E+ 05 −4.19E + 05 − 1.57E+ 05 − 4.98E+ 04 − 1.08E+ 05 − 1.30E+ 05 − 4.04E+ 05 − 1.60E+ 05
F9 0.00E+ 00 0.00E+ 00 0.00E+ 00 1.10E+ 04 1.09E+ 01 5.61E+ 03 1.21E − 13 0.00E + 00
F10 8.88E− 16 8.88E− 16 1.07E − 14 7.83E − 06 7.54E − 07 1.29E+ 01 3.97E − 15 8.88E − 16
F11 0.00E+ 00 0.00E+ 00 8.88E − 17 1.77E − 02 3.16E − 03 1.08E+ 03 3.70E − 18 0.00E + 00
F12 1.75E− 10 1.50E − 07 5.43E − 01 3.82E+ 06 8.37E − 01 6.96E+ 04 1.89E − 02 1.82E − 09
F13 8.09E− 08 4.45E − 05 9.90E+ 01 4.51E+ 05 9.50E+ 01 1.41E+ 07 1.04E+ 01 7.07E − 07

Table 9: Test results of different algorithms for F14–F23.

MRSA HHO [42] EO [43] TSA [44] GWO [36] SSA [45] WOA [37] RSA [41]
F14 1.13E+ 00 1.06E+ 00 9.98E− 01 8.28E+ 00 3.00E+ 00 9.98E − 01 1.78E+ 00 5.34E+ 00
F15 3.07E− 04 3.46E − 04 3.68E − 03 5.17E − 03 3.04E − 03 7.66E − 04 6.61E − 04 3.21E − 04
F16 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E+ 00
F17 3.98E− 01 3.98E− 01 3.98E− 01 3.98E − 01 3.98E − 01 3.98E − 01 3.98E − 01 3.98E − 01
F18 3.00E+ 00 3.00E+ 00 3.00E+ 00 8.40E+ 00 3.00E + 00 3.00E + 00 3.00E + 00 5.70E+ 00
F19 −3.86E + 00 −3.86E + 00 −3.86E + 00 −3.86E + 00 −3.86E + 00 −3.86E + 00 −3.86E + 00 −3.86E+ 00
F20 −3.27E + 00 − 3.17E+ 00 − 3.26E+ 00 − 3.24E+ 00 −3.27E + 00 − 3.22E+ 00 − 3.22E+ 00 − 3.26E+ 00
F21 −1.02E + 01 − 5.22E+ 00 − 9.05E+ 00 − 6.23E+ 00 − 9.48E+ 00 − 8.47E+ 00 − 9.56E+ 00 − 9.81E+ 00
F22 −1.04E + 01 − 5.44E+ 00 −1.04E + 01 − 7.62E+ 00 − 1.00E+ 01 − 9.97E+ 00 − 9.08E+ 00 −1.04E + 01
F23 −1.05E + 01 − 5.67E+ 00 − 9.91E+ 00 − 6.05E+ 00 − 1.04E+ 01 − 1.04E+ 01 − 9.64E+ 00 − 1.04E+ 01
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independently 30 times. In presenting the simulation results,
“avg” is the average of the best candidate solutions obtained,
and “std” is the standard deviation of these values.

As shown in Table 3, MRSA-C1 (Chebyshev map) and
MRSA-C9 (Sinusoidal map) outperformed RSA on 10 out of

23 functions. MRSA-C2 (Circle map), MRSA-C3 (Gauss
map), MRSA-C5 (Logistic map), MRSA-C6 (Pricewise
map), and MRSA-C7 (Sine map) outperformed RSA in 9
functions. MRSA-C4 (Iterative map) outperformed RSA in
12 functions. MRSA-C8 (Singer map) performed better than
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Figure 2: Convergence curves for different dimensional functions.

Computational Intelligence and Neuroscience 11



RSA in 11 functions. MRSA-C10 (Tent map) outperformed
RSA on 16 out of 23 functions. Remarkably, all the improved
algorithms perform no worse than RSA in at least 22
functions, indicating that the improved strategies proposed
in this paper effectively improve the algorithm’s perfor-
mance. Furthermore, the best of the ten chaotic mapping
combination algorithms is MRSA-C10. )erefore, the
MRSA-C10 algorithm was used to participate in the tests in
the comparison that followed.

4.3. Performance Comparison Tests of MRSA with Other
Advanced Algorithms on 23 Benchmark Functions. To verify
the performance of the MRSA algorithm, the modified al-
gorithm was compared with the original RSA [41], HHO
[42], EO [43], TSA [44], GWO [36], SSA [45], and WOA

[37]. )e parameters of all the algorithms were set according
to the original paper to ensure the performance of the
comparison algorithms, as shown in Table 4. Given that
F1–F13 are the multidimensional functions used in this
section, the thirteen functions were solved under Dim� 30,
100, 500, and 1000. )e means obtained by these algorithms
are recorded, as shown in Tables 5–8.

)e results in Tables 5–8 show that MRSA achieves
better results in most of the functions. Specifically, MRSA
obtains satisfactory results for the unimodal functions F1–F7
in both the low and high dimensions. MRSA achieves a
stable optimal value of 0 when solving for F1 and F3 and
remains so as the dimensionality increases. For the other
unimodal functions, HHO outperforms MRSA in solving
F7. )e unimodal function results show that MRSA out-
performs RSA in all the functions, and MRSA does not show
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Figure 3: Box plot of different test functions.

Table 10: )e Friedman test results for different algorithms.

Function Type MRSA HHO [42] EO [43] TSA [44] GWO [36] SSA [45] WOA [37] RSA [41]

F1–F13

Dim� 30 1.58 2.42 4.19 7.00 6.08 7.23 4.77 2.73
Dim� 100 1.54 2.38 4.15 7.08 5.85 7.23 5.08 2.69
Dim� 500 1.62 2.62 4.31 7.15 5.77 7.23 4.69 2.62
Dim� 1000 1.50 2.42 4.88 7.23 5.92 7.23 4.31 2.50

F14–F23 Fixed dim 1.75 5.80 3.05 7.10 5.20 4.20 5.50 3.40
All cases 1.59 3.00 4.17 7.11 5.79 6.74 4.84 2.76

12 Computational Intelligence and Neuroscience



a significant decrease in performance as the dimensionality
increases, which indicates that the improvement strategy
proposed in this paper greatly improves the development
capability of RSA. For the variable dimensional multimodal
functions F8–F13, MRSA, RSA, HHO, and EO consistently
achieve their respective optimal solutions in different di-
mensions when solving F9–F11. HHO and WOA outper-
form MRSA in solving F8. MRSA achieves a stable optimal
value of 0 when solving for F9 and F11 and remains so as the
dimensionality increases. MRSA shows the best perfor-
mance in solving F12 and F13, outperforming all the
compared algorithms. It is worth noting that MRSA does not
perform any less than RSA in all the multimodal functions in
the different dimensions and has significant improvements
in three of the six variable dimensional multimodal func-
tions, which indicates that MRSA has a better global search
capability, and the improvement strategy proposed in this
paper is well suited to enhance the population diversity and
to expand the search range of the population, thus im-
proving the exploration capability of the algorithm.

Table 9 presents the test results when different algo-
rithms solve the fixed dimensional multimodal function.)e
comparison shows that HHO, EO, and SSA outperform
MRSA on F14. For F15–F23, MRSA performs best in all the
tested functions. In particular, MRSA provides better so-
lutions in all the test functions compared to RSA. Since
fixed-dimension functions are usually used to test the ability
of an algorithm to maintain a balance between development
and exploration, the above analysis shows that the MRSA
proposed in this paper is able to balance the development
and exploration capabilities effectively and has a strong local
optimum avoidance capability.

)e convergence speed and convergence accuracy are
important indicators of the performance of the algorithm.
Figure 2 shows the mean convergence curves of MRSA and
RSA when solving the test functions in different dimensions.
It can be seen that MRSA has a faster convergence speed and
a better convergence accuracy in different dimensions.
Moreover, the convergence speed and convergence accuracy
of MRSA do not decrease much with increasing

Table 11: )e Wilcoxon signed-rank test results for different algorithms.

Functions type Comparison p value α� 0.05

F1–F13 (Dim� 30)

MRSA versus HHO [42] 0.182338 No
MRSA versus EO [43] 0.001871 Yes
MRSA versus TSA [44] 0.001306 Yes
MRSA versus GWO [36] 0.001306 Yes
MRSA versus SSA [45] 0.001306 Yes
MRSA versus WOA [37] 0.02537 Yes
MRSA versus RSA [41] 0.002873 Yes

F1–F13 (Dim� 100)

MRSA versus HHO [42] 0.209427 No
MRSA versus EO [43] 0.001871 Yes
MRSA versus TSA [44] 0.001306 Yes
MRSA versus GWO [36] 0.001306 Yes
MRSA versus SSA [45] 0.001306 Yes
MRSA versus WOA [37] 0.017496 Yes
MRSA versus RSA [41] 0.002873 Yes

F1–F13 (Dim� 500)

MRSA versus HHO [42] 0.182338 No
MRSA versus EO [43] 0.001871 Yes
MRSA versus TSA [44] 0.001306 Yes
MRSA versus GWO [36] 0.001306 Yes
MRSA versus SSA [45] 0.001306 Yes
MRSA versus WOA [37] 0.02313 Yes
MRSA versus RSA [41] 0.002873 Yes

F1–F13 (Dim� 1000)

MRSA versus HHO [42] 0.157939 No
MRSA versus EO [43] 0.001944 Yes
MRSA versus TSA [44] 0.001306 Yes
MRSA versus GWO [36] 0.001306 Yes
MRSA versus SSA [45] 0.001306 Yes
MRSA versus WOA [37] 0.017496 Yes
MRSA versus RSA [41] 0.002873 Yes

F14–F23

MRSA versus HHO [42] 0.083131 No
MRSA versus EO [43] 0.192518 No
MRSA versus TSA [44] 0.010862 Yes
MRSA versus GWO [36] 0.032969 Yes
MRSA versus SSA [45] 0.126279 No
MRSA versus WOA [37] 0.019059 Yes
MRSA versus RSA [41] 0.019059 Yes
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dimensionality, which indicates that the improvement
strategy proposed in this paper can effectively improve the
convergence ability of RSA and thus obtain better optimi-
zation results.

To analyze the distribution characteristics of each al-
gorithm in the fixed dimensional test function, box plots
were drawn based on the results obtained by solving
F14–F23, as shown in Figure 3. For each algorithm, the
center mark of each box indicates the median of the results
of 30 runs, and the bottom and top edges of each box in-
dicate the trivial and quartiles, respectively. “)e “+” sign
indicates bad values that are not inside the box. As seen from
Figure 3, MRSA has no bad values for F17 and F21–F23,
which indicates that the distribution of the solutions ob-
tained by MRSA is more concentrated and MRSA is more
stable. For the other test functions with some bad values,
MRSA outperforms the comparison algorithm in terms of
maximum, minimum, and median values, and the distri-
bution of the solutions obtained by MRSA is more con-
centrated compared to the comparison algorithm.)erefore,
MRSA solves the test function with better stability compared
to the other comparison algorithms.

Apart from the convergence and stability analysis, to
further analyze the experimental results, the Friedman test
and Wilcoxon’s signed-rank test were used for multiple
comparisons in this paper. Table 10 is the Friedman test
showing the average ranking results of each algorithm. )e
overall ranking value of MRSA is 1.59, which ranks first

among all the algorithms. )e remaining seven algorithms
are ranked as follows: RSA, HHO, EO, WOA, GWO, SSA,
and TSA. In solving F1–F13 in different dimensions, MRSA
is ranked first, and HHO and RSA are ranked second and
third, respectively. For fixed dimensions F14–F23, MRSA,
EO, and RSA ranked in the top three. In either case, MRSA
ranks better than RSA. )e results of Wilcoxon’s signed-
rank test are shown in Table 11. In the case of F1–F13
(Dim� 30, 100, 500, and 1000), MRSA outperformed EO,
TSA, GWO, SSA, WOA, and RSA at the 0.05 significance
level, but there was no significant difference between MRSA
and HHO. In the case of F14–F23, MRSA outperformed
TSA, GWO, WOA, and RSA at the 0.05 significance level,
but there was no significant difference between MRSA and
HHO, EO, or SSA, which statistically proves that the im-
provement strategy proposed in this paper can effectively
help MRSA balance the exploitation and exploration ca-
pabilities and has a better local optimal avoidance ability.

Table 12: Summary of CEC2017 benchmark functions [41].

Type Number Function name fi(x∗)

Unimodal 3 Shifted and rotated Zakharov function 300

Multimodal

4 Shifted and rotated Rosenbrock’s function 400
5 Shifted and rotated Rastrigin’s function 500
6 Shifted and rotated expanded Scaffer’s F6 function 600
7 Shifted and rotated Lunacek bi-Rastrigin function 700
8 Shifted and rotated noncontinuous Rastrigin’s function 800
9 Shifted and rotated Levy function 900
10 Shifted and rotated Schwefel’s function 1000

Hybrid

11 Hybrid function 1 (N� 3) 1100
12 Hybrid function 2 (N� 3) 1200
13 Hybrid function 3 (N� 3) 1300
14 Hybrid function 4 (N� 4) 1400
15 Hybrid function 5 (N� 4) 1500
16 Hybrid function 6 (N� 4) 1600
17 Hybrid function 6 (N� 5) 1700
18 Hybrid function 6 (N� 5) 1800
19 Hybrid function 6 (N� 5) 1900
20 Hybrid function 6 (N� 6) 2000

Composition

21 Composition function 1 (N� 3) 2100
22 Composition function 2 (N� 3) 2200
23 Composition function 3 (N� 4) 2300
24 Composition function 4 (N� 4) 2400
25 Composition function 5 (N� 5) 2500
26 Composition function 6 (N� 5) 2600
27 Composition function 7 (N� 6) 2700
28 Composition function 8 (N� 6) 2800
29 Composition function 9 (N� 3) 2900
30 Composition function 10 (N� 3) 3000

Table 13: Parameters setting.

Algorithm Parameters setting
BOA [38] a � 0.1, c � 0.01, p � 0.6
HHO [42] β � 1.5, E0 ∈ [− 1, 1]

AOA [47] Mopmax � 1, Mopmin � 0.2, C � 1, a � 5, Mu � 0.499
SSA [45] c1 � rand, c2 � rand
PFA [48] u1 � − 1 + 2rand, u2 � − 1 + 2rand
TDO [46] ∼
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Table 14: Statistical results of seven algorithms in the CEC2017 test.

BOA [38] HHO [42] AOA [47] SSA [45] PFA [48] TDO [46] MRSA

F3
Mean 3.82E+ 04 1.68E+ 03 6.91E+ 04 8.40E+ 04 4.66E+ 04 3.77E+ 04 3.01E − 06
Std 6.97E+ 03 7.95E+ 02 1.15E+ 04 6.59E+ 03 1.22E+ 04 3.65E+ 03 5.54E − 07
Rank 4 2 6 7 5 3 1

F4
Mean 9.33E+ 03 1.23E+ 02 7.61E+ 03 1.44E+ 03 9.80E+ 01 4.96E+ 02 7.24E+ 01
Std 1.29E+ 03 3.33E+ 01 2.45E+ 03 1.09E+ 03 1.77E+ 01 2.16E+ 01 2.96E+ 01
Rank 7 3 6 5 2 4 1

F5
Mean 3.49E+ 02 2.05E+ 02 2.95E+ 02 3.50E+ 02 1.14E+ 02 6.19E+ 02 8.24E+ 01
Std 2.16E+ 01 3.62E+ 01 3.20E+ 01 4.40E+ 01 3.11E+ 01 1.56E+ 01 2.43E+ 01
Rank 5 3 4 6 2 7 1

F6
Mean 6.63E+ 01 5.62E+ 01 6.21E+ 01 8.06E+ 01 1.47E+ 01 6.00E+ 02 2.03E+ 01
Std 5.76E+ 00 5.92E+ 00 6.71E+ 00 8.84E+ 00 4.99E+ 00 3.05E − 02 5.92E+ 00
Rank 5 3 4 6 1 7 2

F7
Mean 5.57E+ 02 4.98E+ 02 6.00E+ 02 7.12E+ 02 1.34E+ 02 8.49E+ 02 1.46E+ 02
Std 3.17E+ 01 6.57E+ 01 5.66E+ 01 6.85E+ 01 3.12E+ 01 1.47E+ 01 3.38E+ 01
Rank 4 3 5 6 1 7 2

F8
Mean 2.93E+ 02 1.40E+ 02 2.25E+ 02 2.72E+ 02 9.97E+ 01 9.22E+ 02 7.56E+ 01
Std 1.54E+ 01 2.13E+ 01 2.67E+ 01 4.31E+ 01 2.66E+ 01 1.58E+ 01 2.31E+ 01
Rank 6 3 4 5 2 7 1

F9
Mean 6.82E+ 03 4.69E+ 03 4.50E+ 03 9.35E+ 03 2.28E+ 02 9.01E+ 02 4.00E+ 02
Std 8.69E+ 02 8.28E+ 02 7.24E+ 02 1.85E+ 03 1.83E+ 02 8.01E − 01 2.11E+ 02
Rank 6 5 4 7 1 3 2

F10
Mean 7.33E+ 03 4.35E+ 03 5.51E+ 03 7.05E+ 03 4.98E+ 03 5.15E+ 03 3.90E+ 03
Std 2.85E+ 02 7.25E+ 02 5.83E+ 02 7.45E+ 02 9.01E+ 02 3.62E+ 02 6.06E+ 02
Rank 7 2 5 6 3 4 1

F11
Mean 2.19E+ 03 1.61E+ 02 1.72E+ 03 3.91E+ 03 1.91E+ 02 1.17E+ 03 5.60E+ 01
Std 6.72E+ 02 4.86E+ 01 9.74E+ 02 1.64E+ 03 5.28E+ 01 2.47E+ 01 2.69E+ 01
Rank 6 2 5 7 3 4 1

F12
Mean 2.08E+ 09 7.61E+ 06 6.27E+ 09 4.69E+ 08 1.88E+ 06 1.85E+ 05 8.83E+ 02
Std 7.43E+ 08 4.21E+ 06 2.56E+ 09 3.76E+ 08 1.97E+ 06 9.78E+ 04 7.27E+ 02
Rank 6 4 7 5 3 2 1

F13
Mean 3.15E+ 08 1.51E+ 05 3.80E+ 04 8.55E+ 07 7.54E+ 04 1.21E+ 04 2.24E+ 02
Std 2.10E+ 08 9.05E+ 04 1.71E+ 04 4.66E+ 08 4.12E+ 04 5.52E+ 03 1.60E+ 02
Rank 7 5 3 6 4 2 1

F14
Mean 1.19E+ 05 3.82E+ 04 5.72E+ 04 1.50E+ 06 3.00E+ 04 2.97E+ 03 4.32E+ 01
Std 7.62E+ 04 4.25E+ 04 4.92E+ 04 1.21E+ 06 2.94E+ 04 6.93E+ 02 1.13E+ 01
Rank 6 4 5 7 3 2 1

F15
Mean 1.82E+ 06 6.86E+ 04 2.35E+ 04 1.83E+ 07 3.35E+ 04 2.40E+ 03 2.98E+ 01
Std 1.46E+ 06 4.86E+ 04 1.22E+ 04 2.37E+ 07 1.77E+ 04 5.08E+ 02 1.67E+ 01
Rank 6 5 3 7 4 2 1

F16
Mean 3.18E+ 03 1.55E+ 03 1.98E+ 03 2.74E+ 03 1.00E+ 03 2.40E+ 03 1.07E+ 03
Std 4.12E+ 02 3.56E+ 02 5.09E+ 02 5.38E+ 02 2.63E+ 02 1.34E+ 02 3.20E+ 02
Rank 7 3 4 6 1 5 2

F17
Mean 1.22E+ 03 7.48E+ 02 9.12E+ 02 1.20E+ 03 3.77E+ 02 1.88E+ 03 4.41E+ 02
Std 2.49E+ 02 2.19E+ 02 2.67E+ 02 3.85E+ 02 1.71E+ 02 3.61E+ 01 2.10E+ 02
Rank 6 3 4 5 1 7 2

F18
Mean 9.60E+ 05 6.90E+ 05 1.29E+ 06 1.51E+ 07 2.75E+ 05 6.11E+ 04 3.11E+ 01
Std 6.22E+ 05 8.77E+ 05 1.60E+ 06 1.51E+ 07 2.82E+ 05 2.10E+ 04 5.54E+ 00
Rank 5 4 6 7 3 2 1

F19
Mean 4.61E+ 06 1.46E+ 05 1.08E+ 06 4.23E+ 07 4.45E+ 04 5.14E+ 03 2.29E+ 01
Std 4.06E+ 06 1.42E+ 05 1.39E+ 05 1.23E+ 08 3.91E+ 04 9.69E+ 02 5.65E+ 00
Rank 6 4 5 7 3 2 1

F20
Mean 7.29E+ 02 6.71E+ 02 6.94E+ 02 8.59E+ 02 4.61E+ 02 2.29E+ 03 5.30E+ 02
Std 9.88E+ 01 2.01E+ 02 1.54E+ 02 2.42E+ 02 1.52E+ 02 4.33E+ 01 1.62E+ 02
Rank 5 3 4 6 1 7 2
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4.4. Performance Comparison Tests of MRSA with Other
Advanced Algorithms on CEC2017. To further verify the
superior performance of the MRSA algorithm, the algorithm
was tested using the IEEE CEC2017 [41] single objective test
function defined in Table 12. In this section, six recently
proposed algorithms were evaluated for comparison with
MRSA. )ese state-of-the-art algorithms are BOA [38],
HHO [42], AOA [47], SSA [45], PFA [48], and TDO [46].
For a fair comparison, all the algorithm parameters are set
the same as those used by the authors of the original lit-
erature, as shown in Table 13. )e dimension of the
CEC2017 benchmark functions was set to 30 on the same

experimental platform. Table 14 shows the statistical results
of each algorithm run independently 51 times.

From the analysis in Table 14, we know that, for the
unimodal test function F3, MRSA outperformed all the
comparison algorithms, and although MRSA could not
stably obtain the optimal solution, it performed the best
among all the comparison algorithms, indicating that
MRSA has a stronger exploitation ability. For the multi-
peaked test functions F4–F10, MRSA performs best among
the four test functions (F4, F5, F8, and F10), while PFA
achieves the best results on F6, F7, and F9, with MRSA
ranking second in all cases. )e performance of MRSA on

Table 15: )e Friedman test results for different algorithms.

Algorithm Ranking
MRSA 1.3929
PFA [48] 2.2143
HHO [42] 3.5714
TDO [46] 5.2857
AOA [47] 5.6429
BOA [38] 6
SSA [45] 6.6071

Table 16: )e Wilcoxon signed-rank test results for different
algorithms.

Comparison p value α� 0.05
MRSA versus BOA [38] 0.000004 YES
MRSA versus HHO [42] 0.000004 YES
MRSA versus AOA [47] 0.000004 YES
MRSA versus SSA [45] 0.000004 YES
MRSA versus PFA [48] 0.039321 YES
MRSA versus TDO [46] 0.000004 YES

Table 14: Continued.

BOA [38] HHO [42] AOA [47] SSA [45] PFA [48] TDO [46] MRSA

F21
Mean 1.97E+ 02 4.06E+ 02 4.87E+ 02 5.06E+ 02 2.90E+ 02 2.41E+ 03 2.83E+ 02
Std 3.01E+ 01 3.51E+ 01 5.23E+ 01 5.36E+ 01 2.62E+ 01 9.32E+ 00 2.52E+ 01
Rank 1 4 5 6 3 7 2

F22
Mean 4.71E+ 02 2.39E+ 03 5.13E+ 03 4.18E+ 03 2.08E+ 02 2.30E+ 03 1.02E+ 02
Std 7.76E+ 01 2.37E+ 03 1.21E+ 03 1.88E+ 03 7.61E+ 02 8.09E+ 00 2.05E+ 00
Rank 3 5 7 6 2 4 1

F23
Mean 6.97E+ 02 7.05E+ 02 9.68E+ 02 8.60E+ 02 4.85E+ 02 2.72E+ 03 5.11E+ 02
Std 5.59E+ 01 7.35E+ 01 9.10E+ 01 1.00E+ 02 4.09E+ 01 1.33E+ 01 4.21E+ 01
Rank 3 4 6 5 1 7 2

F24
Mean 1.10E+ 03 8.26E+ 02 1.14E+ 03 8.99E+ 02 5.24E+ 02 2.88E+ 03 5.83E+ 02
Std 1.68E+ 02 7.42E+ 01 1.09E+ 02 1.37E+ 02 3.72E+ 01 1.03E+ 01 5.29E+ 01
Rank 5 3 6 4 1 7 2

F25
Mean 1.75E+ 03 4.11E+ 02 1.67E+ 03 7.84E+ 02 3.97E+ 02 2.89E+ 03 3.93E+ 02
Std 2.01E+ 02 1.87E+ 01 4.55E+ 02 1.30E+ 02 1.72E+ 01 1.09E+ 01 1.35E+ 01
Rank 6 3 5 4 2 7 1

F26
Mean 5.21E+ 03 3.94E+ 03 6.40E+ 03 6.30E+ 03 2.12E+ 03 3.07E+ 03 2.38E+ 03
Std 1.49E+ 03 1.10E+ 03 7.22E+ 02 1.11E+ 03 7.10E+ 02 4.75E+ 02 4.59E+ 02
Rank 5 4 7 6 1 3 2

F27
Mean 8.14E+ 02 6.05E+ 02 1.34E+ 03 9.56E+ 02 5.46E+ 02 3.21E+ 03 5.98E+ 02
Std 9.81E+ 01 4.00E+ 01 2.14E+ 02 1.65E+ 02 2.85E+ 01 6.74E+ 00 3.98E+ 01
Rank 4 3 6 5 1 7 2

F28
Mean 3.28E+ 03 4.62E+ 02 2.95E+ 03 1.06E+ 03 4.31E+ 02 3.23E+ 03 4.09E+ 02
Std 3.99E+ 02 2.60E+ 01 6.15E+ 02 3.22E+ 02 1.90E+ 01 2.10E+ 01 3.06E+ 01
Rank 7 3 5 4 2 6 1

F29
Mean 3.04E+ 03 1.32E+ 03 2.43E+ 03 2.64E+ 03 1.03E+ 03 3.67E+ 03 9.64E+ 02
Std 4.72E+ 02 2.56E+ 02 5.22E+ 02 6.35E+ 02 2.35E+ 02 6.51E+ 01 2.18E+ 02
Rank 6 3 4 5 2 7 1

F30
Mean 3.98E+ 07 1.01E+ 06 1.47E+ 07 4.85E+ 07 4.09E+ 05 6.59E+ 03 2.14E+ 03
Std 2.31E+ 07 6.08E+ 05 1.01E+ 07 3.75E+ 07 4.56E+ 05 3.95E+ 02 1.05E+ 02
Rank 6 4 5 7 3 2 1
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the multipeaked functions indicates that the improved
algorithm can maintain sufficient population diversity to
avoid falling into local optima. For complex and combi-
natorial functions, each algorithm has its advantages and
disadvantages. MRSA obtains optimal solutions on
F11–F15, F18-F19, F22, F25, and F28–F30. PFA achieves
better solutions on F16-F17, F20, F23-F24, and F26-F27.
BOA outperforms the other comparison algorithms on F21.
Overall, MRSA achieves the top two results in both the
complex and combinatorial functions, better demonstrat-
ing the potential of MRSA to solve complex optimization
problems in the real world.

To perform a statistical analysis on the performance of
MRSA and the six competing algorithms, the Friedman test
and Wilcoxon’s signed-rank test were used for multiple
comparisons in this paper. Table 15 is the Friedman test
results showing the average ranking of each algorithm. )e
overall ranking value of MRSA is 1.3929, which ranks first
among all the algorithms. )e remaining six algorithms are
ranked as follows: PFA, HHO, TDO, AOA, BOA, and SSA.
)e results of Wilcoxon’s signed-rank test are shown in

Table 16. MRSA outperformed BOA, AOA, SSA, PFA, and
TDO at the 0.05 significance level, which statistically proves
that the improvement strategy proposed in this paper can
effectively help MRSA balance the exploitation and explo-
ration capabilities and has a better local optimal avoidance
ability.

4.5. Robot Path Planning Based on MRSA. To verify the
performance of the improved strategy, MRSA is applied to
solve the robot path planning in this paper. Each crocodile
represents a possible path. It is assumed that there are N
possible paths, and the dimension D is determined by the
number of connections from the starting point to the
destination point. )e environment is modeled using the
raster method, and the raster values are used to equate to the
obstacles at the location.)e robot’s working environment is
equated to a plane, similar to a lattice effect, and then the
feasible and obstacle zones are determined based on the
raster values. )e grid number 0 is defined as the feasible
area, and 1 is defined as the obstacle area.)e robot can walk

MRSA RSA

HHO EO

(a) (b)

(c) (d)

Figure 4: Path planning diagram: (a) MRSA. (b) RSA. (c) HHO. (d) EO.
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on the grid designated as 0. )e cost function for the ith
crocodile is shown below:

cos ti � 
D− 1

j�1

����������������������

xj+1 + xj 
2

+ yj+1 + yj 
2



, (14)

where j denotes the jth dimension of each crocodile. In robot
path planning, the population size is 100, and the number of
iterations is 20. RSA [41], HHO [42], and EO [43] are used as
competitors. Each algorithm works in a 10×10 model, and
the optimal route is shown in Figure 4. To eliminate chance,
each algorithmwas run 10 times, and the mean, optimal, and
worst values of each algorithm were recorded. )e statistical
results of each algorithm are shown in Table 17.

As shown in Figure 4, MRSA has the shortest route,
followed by HHO, while EO and RSA are clearly trapped in a
local optimum. As seen from Table 17, MRSA is the best
among all the algorithms in terms of best cost, mean cost, and
worst cost. )is indicates that MRSA can consistently provide
excellent solutions. Figure 5 shows the convergence curves of
the four algorithms. MRSA has the fastest convergence speed
and a higher convergence accuracy. )erefore, the intro-
duction of multiple strategies makes the algorithm more
comprehensive in its search, which greatly improves the
search capability of MRSA and plans the least costly route.

5. Conclusion

)is paper proposes a novel variant of the reptile search
algorithm, called MRSA. First, the adaptive chaotic re-
verse learning strategy combines the advantages of the

reverse learning mechanism and chaotic mapping to
enhance the population diversity. Second, the elite al-
ternative pool strategy balances the exploitation and ex-
ploration capabilities by controlling the reference points
followed by the population. Finally, the shifted distri-
bution estimation strategy makes full use of the dominant
population information to guide the direction of indi-
vidual evolution, thus improving the performance of RSA.
)e superiority of MRSA was verified in 23 benchmark
functions, IEEE CEC2017 benchmark functions, and ro-
bot path planning problems. )e experimental results
show that the adaptive chaotic reverse learning strategy
can effectively improve the population diversity, among
which tent mapping is the most effective. )e MRSA
outperforms the comparison algorithm in terms of con-
vergence accuracy, convergence speed, and stability. )e
results of the multimodal functions F8–F23 among the 23
benchmark functions show that the elite alternative pool
strategy balances algorithm exploitation and exploration
effectively and prevents the algorithm from falling into a
local optimum. )e adaptive chaotic reverse learning
strategy enhances the population diversity. )e shifted
distribution estimation strategy enhances the conver-
gence speed and convergence accuracy of the algorithm by
learning information about the dominant populations. In
addition, the test results were analyzed using the Fried-
man test and theWilcoxon signed-rank test. )e statistical
results show that MRSA is significantly more effective
than the comparison algorithm.

In a subsequent study, we plan to examine the following
issues: First, the shifted distribution estimation strategy
increases the computational cost of MRSA. Optimizing the
algorithm structure and performance needs further in-
vestigation and discussion. Second, the capacity and
composition of the elite replacement pool need to be
further analyzed. Additionally, MRSA can be extended to
multiobjective and binary versions. We will consider
solving problems in image processing, industry, neural
networks, text, and data mining as real-world optimization
problems.
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Table 17: Robot root planning results.

Index MRSA RSA [41] HHO [42] EO [43]
Best 12.7279 15.5563 12.7279 15.5563
Mean 14.4250 16.4049 15.2735 17.8191
Worst 15.5563 21.2132 18.3848 21.2132
Std 1.4606 1.9090 1.6055 2.2311
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Figure 5: Convergence curves of four algorithms.
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