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Abstract

Background: This paper presents a method for modelling dynamical biochemical networks with intrinsic time
delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional
modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed
in which discrete time series are incorporated into fundamental material balance models. This integration results in
hybrid delay differential equations which can be applied to identify unknown cellular dynamics.

Results: The proposed hybrid modelling methodology was evaluated using two case studies. The first of these
deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the
cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second
case study focused on a simple network with distributed time delays that demonstrated that the discrete time
delay formalism has broad applicability to both discrete and distributed delay problems.

Conclusions: Significantly better prediction qualities of the novel hybrid model were obtained when compared to
dynamical structures without time delays, being the more distinctive the more significant the underlying system
delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by
the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete
delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

Background
Time delays play a very important role in genetic regu-
latory systems. Gene regulation and signal transduction
as a whole involves the synthesis and maturation of
complex proteins. Their synthesis and transport takes a
considerable amount of time, which introduces delays in
the overall regulation chain. At a process level, meta-
bolic time delays can be observed macroscopically by
recognizing a certain time delay between substrate
uptake and the corresponding biomass growth or pro-
duct formation as in cultivations of Saccharomyces cere-
visiae [1] or Pichia pastoris [2]. The nature of time
delays in regulatory networks is twofold [3]. They are
either related to a process that takes an intrinsic time to
be accomplished, i.e. some reactions, such as transla-
tional or transcriptional reactions, take a significant
amount of time to be completed, or as a consequence of

the modelling approach used, i.e. lumping a sequence of
events might lead to an apparent time delay.
The bottom-up systems biology approach for building

dynamic network models can be too cumbersome due
to their complex nature and lack of fundamental knowl-
edge [4-7]. Typical limitations are the involvement of
large scale kinetic models with poorly defined kinetic
parameters, limited generalization capacity and their
cost expansive development. In this paper we propose
the use of mathematical hybrid semi-parametric systems
as a cost effective alternative to model biochemical net-
works with intrinsic time delays, since it is not likely to
know in advance which fundamental mechanisms cause
such delays. Hybrid semi-parametric systems combine
fundamental (parametric) biological constraints with
more empirical data-based (nonparametric) constraints.
Mechanistic and nonparametric models can therein be
arranged in two possible ways: parallel or serial [4,8-12].
In the serial structure, which has been the one applied
in this study, the biological system dynamics are
described by time differentials of classifying variables,
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while the unknown metabolic functions with intrinsic
delays are handled by a nonparametric structure.
A general mathematical representation of delayed

dynamics is given by Retarded Functional Differential
Equations (RFDE) [13]. After applying certain simplifica-
tions, some special concepts arise such as models con-
sidering either discrete time delays, [14-16], distributed
time delays, [1,17,18] or ordinary differential equations
(ODE) of kinetic rates [2]. Although with varying perfor-
mance, these models are shown to be capable of
explaining the stability of biochemical networks
[1,13,18-20].
Similar simplifications of RFDE as reported for para-

metric models can also be applied to hybrid semi-para-
metric models, i.e. either discrete delays or distributed
delays of state variables in the kinetics or differential
equations of the kinetics. The latter is not well suited
for hybrid modelling, because neither kinetic function
nor the kinetic values are known a priori and thus a
solution or estimation of the kinetics is not straightfor-
ward. Distributed delays are also rather unlikely to be
used, because one would have to introduce some func-
tion accounting for the delay, which is generally not
known. Furthermore, some mathematical postulation of
arbitrarily large delays for unknown weighting functions
of the delayed variable would have to be assumed and
this mathematical convenience is in limit biologically
unrealistic (see [13]). Instead, the use of discrete delays
in the inputs to the nonparametric structure is proposed
herein. This is analogous to the application of discrete
time series, namely AutoRegressive (eXogenous), (AR
(X)), models. This presents no limitation for application,
as it is mathematically clear that a weighted discrete
time series is equivalent to the integration of a time
delay weighting function and thus analogous to the
application of the distributed delay framework.
Unfortunately, the theoretically endless number of

time lagged values of one variable would in practice lead
to high computational times and identification problems
of the network structure and parameters (see [21,22]).
In theory, an optimal number of time lagged values
exists given by the ratio between redundancy and addi-
tional gain of information in the inputs. Several methods
for identification of the optimal number of time lagged
values such as autocorrelation, cross-correlation, or par-
tial mutual information, have been proposed [21,22].
However, they either assume that inputs are linearly
correlated or are based on maximum information trans-
fer and thus require known outputs, which unfortu-
nately are not directly available in hybrid models.
Hence these methods cannot be applied here and thus

the number of lagged values is rather chosen by trial
and error, as done by several other authors [23,24].
However, choice by trial and error is not a disadvantage,

when (i) the delay is an important property of the sys-
tem and when (ii) series of delays are systematically stu-
died, since it can be expected that models that account
for time delays perform the best when the studied and
the “true” delays are congruent.
In this paper hybrid delay differential equations with

discrete time series was determined to be a powerful
method to identify delayed dynamics of ill-defined bio-
chemical networks. This technique is described in detail
in the results section. The technique was applied to a
typical gene regulatory system where the transport of
macromolecules between the cytosol and nucleus intro-
duce strong delay dynamic effects. In addition, heterolo-
gous protein expression by recombinant Pichia pastoris
was studied by assuming a hypothetical network with
distributed time delays.

Results & Discussion
Delay Differential Equation Hybrid Model (DDEHM)
Material balances over intracellular metabolites can be
generically stated by the following dynamical equation

dc

dt
K r b Cint

int int int int= + − ⋅·  (1)

where cint is a vector comprising the concentrations of
intracellular metabolites, Kint a m × q stoichiometric
matrix of m metabolites and q metabolic reactions, rint a
vector of q kinetic rates, bint a vector of transport fluxes
across the cellular membrane and μ the specific growth
rate.
If a macroscopic bioreactor model is formulated

accounting only for the unbalanced extracellular meta-
bolites, a similar equation is obtained which accounts
for the volume dilution term (D·cext ) in substitution of
the cell growth dilution term (μ·cint ),

dc

dt
K r D c uext

ext ext ext ext= − ⋅ +⋅ . (2)

Here cext is a vector of concentrations of extracellular
metabolites, Kext a matrix of stoichiometric coefficients,
D is the dilution rate, uext is a vector of volumetric feed-
ing rates, and rext is the kinetic rate vector.
All the results, presented from this point forward, are

derived from eq. (2), which can however be automati-
cally extended to eq. (1).
Delayed reaction kinetics
As suggested by [10], the vector of kinetic rates can be
described either mechanistically, statistically or as a mix-
ture of both types of models depending on the a priori
knowledge about the metabolic network. A general defi-
nition is to state every metabolic flux as the multiplica-
tion of a mechanistic term (ψ) with an unknown

von Stosch et al. BMC Systems Biology 2010, 4:131
http://www.biomedcentral.com/1752-0509/4/131

Page 2 of 13



nonparametric term (r) representing the unknown phe-
nomena that must be identified from data.:

r X w X X w( , ) ( ) ( , ),= ⋅  (3)

with X a vector of input variables and w a vector of
empirical parameters. When no a priori mechanistic
knowledge is available then the ψ term is dropped and
eq. (3) reduces to

r X w X w( , ) ( , ).=  (4)

As stated previously, the intrinsic causes of delays are
the occurrence of several serial reaction steps with slow
kinetics. To mimic this effect, and analogous to AR(X)
models, both the ψ and r kinetic terms are modelled as
a function of X , which includes discrete past values of
metabolite concentrations, c ,(that can be intracellular
or extracellular, depending on the application of eqs. 1
or 2) and/or exogenous inputs:

X
c t c t c t c t N

s t s t s
i i i i i i i i

j j j
=

− − ⋅ − ⋅
−

( ), ( ), ( ), , ( ),

( ), ( ),

  


2 

jj j j j jt s t M( ), , ( )
.

− ⋅ − ⋅
⎡

⎣
⎢

⎤

⎦
⎥2   (5)

Here ci means value i of vector c , τi is the associated
time lag, Ni defines the number of time lags assumed
for each value ci of vector c , sj is the jth exogenous
input, τj the associated time lag and its lag number is
defined by Mj . Note that the time lags and the numbers
of time lags, τi , τj , Ni , and Mj can be chosen indepen-
dently. However, it might be advantageous to model a
time series around rough estimates of the “true” delays.
After considering eq. (2) - (5), it becomes clear that

the model equations are Delay Differential Equations
(DDE) in which the “retarded” or “lagged” phenomena
are accounted by the reaction term, eq. (4).
Several linear or nonlinear regression methods can be

used to formulate the unknown nonparametric kinetic
function r . Here we adopted a three layer back propa-
gation neural network with hyperbolic tangential activa-
tion function for the sake of comparability with other
hybrid modelling studies since this method is the most
reported in the literature [4,8-12]:

( , ) • ( • ) ,X w w g w X b b= + +2 1 1 2 (6)

where w , the parameter vector, comprises the weights
and biases, w1 , w2 , and b1 , b2 , respectively. The
hyperbolic tangential activation function g(·) is,

g y
e y

e y
( ) .= − − ⋅

+ − ⋅
1 2

1 2
(7)

Note that the incorporation of AR into the hybrid
approach results in delay differential equations, which is
why the proposed hybrid model is referred to as the
Delay Differential Equation Hybrid Model.
Nonparametric structure identification
The identification of the best network architecture by
means of a trade-off between residual minimization,
quantity of data and quantity of parameters is a central
question when nonparametric models find application.
This trade-off is due to the fact that more parameters
on one hand will improve the fitting of the model to the
data, but on the other hand might result in parameter
over-fitting, leading to a degradation of model robust-
ness or/and, even worse, in the addition of synthetic
noise to the estimates [21,22].
The architecture of the Artificial Neural Network

(ANN) structure involves the variation of the number of
layers and the number of nodes. This variability is in
this study, prior to application, already reduced by the
selection of three layers, namely input, hidden and out-
put layer. The application of three layers is usually suffi-
cient if nonlinear continuous functions are sought to be
modelled [22]. Remaining in terms of structural variabil-
ity is such the evaluation of the variation of numbers of
nodes for each hybrid model set-up.
Parameter identification
For each nonparametric structure, the respective para-
meters w must be estimated from data. In this paper a
weighted least squares criteria of model residuals in
concentrations is adopted:

min E
P n

cm l i t cl i t w

c ii

n

l

P
=

×
−⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
== ∑∑1 2

11

( , , ( ) , ( , ))

,
,


(8)

where P is the number of samples, n is the number of
state variables, cm, l, i are measured state variables, cl, i(t,
w) are calculated state variables and cs, i are the stan-
dard deviations. The serial hybrid structure, consisting
of an ANN and material balances, was shown to be
trained best by using the sensitivity approach along with
analytical gradients [10]. Here we extended the sensitiv-
ity equations to the DDEHM case. The sensitivities
equations are derived by differentiating eq. (2) with
respect to w while taking into account the time lagged
differential variables, which then reads as follows,

d
dt

c
w

K
c t k

c t k
w

K

k

Ni• ( )
( )

( )∂
∂

= ∂ ⋅ ⋅
∂ − ⋅

⋅ ∂ − ⋅
∂

⎧
⎨
⎩

⎫
⎬
⎭

+ ∂ ⋅ ⋅
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=∑ 0

ww
D I c

wn− ⋅ ⋅ ∂
∂

,

(9)
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where
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With r and ψ depending on the time lagged concen-
trations and where

∂
∂

= ∂
∂

+ ∂
∂

K
w

K
w

K
w

· ·
· · · · ;

     
(11)

For comparison of time-delay gradients for network
training see [4,21].
This least square problem is solved by using the

“lsqnonlin” Matlab function which uses a subspace trust
region method and is based on the interior-reflective
Newton method (Matlab Optimization toolbox) [25].
The sensitivity equations are integrated along with the
delay differential model equations. This can either be
accomplished using the dde23 Matlab algorithm, which
integrates the delay differential equations with the expli-
cit Runge-Kutta (2,3) pair and interpolant, or by using
linear approximation of the differential equations for
integration with storage of the respective delay values,
which results in a time inexpensive algorithm. For the
latter case, unfortunately, some error is introduced
along with this simplification. However if average kinetic
rates are estimated for each time step, the error is sig-
nificantly diminished. Initial state values, c(t0), are pro-
blem dependent (for instance the initial concentration of
biomass or substrate in a bioreactor). The initial values
of the sensitivity equations are however zero

(( / ) , / )∂ ∂ = ∂ ∂( ) =<c w c wt t t0 0
0 0 , because the initial

state values, c(t0), are independent of model parameters
w . The residual gradients are then obtained using the
corresponding sensitivity values. Notice that the lagged
values of both state variables and exogenous inputs are
assumed to be equal to the initial values c(t0) for all t-
Ni·τ <t0 .
Identification is initialized from a random selection of

weight values as usually done for ANNs. The solution
space is spanned by these weights and the identification, i.
e. the objective to reduce the model residual, is a nonlinear
optimization problem. Therefore, one cannot expect to
obtain the global minimum as the result of the model’s
residuals minimum found from one random weight initia-
lization. Instead, several iterations of the same set-up with
random initialization should be carried out. The greater

the number of random initializations, the greater the sta-
tistical confidence of the solution [21,22].
However, parameter identification is an iterative pro-

cess which should be stopped when the model exhibits
the best generalization of the target functions [21,22].
This is usually accomplished using two independent data
sets: one for identification (also called training) which
contains about 2/3 of all data points and another data set
for validation with the remaining data. For these data sets
some error criteria such as the Mean Least Square Error
or the Bayesian Information Criterion (described in detail
below) is calculated for the model residuals. Along the
iterations, the best parameters are the ones where the
selected criterion of the validation data set has its “best”
value. A test data set can be used to additionally exploit
the generalization capabilities.
Model performance criteria
The model residual, also addressed as the goodness of
fit of the model estimates and the data, can be assessed
with the Mean Square Error, MSE. The MSE decreases
the better the fit and is defined as:

MSE
P n

c t c t wm I i I i
iI

=
×

⋅ −( ) ⋅∑∑1 2

, , ,( ) ( , ) (12)

This criterion is directly linked to the least square
error which is used for parameter identification.
Due to the reason mentioned above, the MSE criter-

ion is not addressed when it comes to architecture,
structure, model comparison or selection. Appropriate
criteria are (i) the Akaike Information Criteria, AIC,
which is wildly used or (ii) the Bayesian Information
Criteria, BIC, which is more appropriate for datasets
with more than 46 data points [11,26,27]. Therefore the
BIC is applied for model comparison and selection in
this study. The BIC is defined as:

BIC
n P

c t c t w

n n P

m I i I i
iI

W

= − ⋅ ⋅ ( ) − ( )⎡⎣ ⎤⎦( )⎛
⎝⎜

⎞
⎠⎟

− ⋅
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2

2
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•
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22·

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

(13)

where the term in the first bracket is the logarithmic
maximum likelihood, π is the number “Pi” and nw is the
total number of parameters/weights. In terms of the
BIC, the model to be selected is the one that exhibits
the larger BIC value for the validation set, see [11,26,27].

Case Study I: Transcription Factor A (TF-A) dynamics with
discrete time delay
Genetic regulatory systems are built on signal transduc-
tion pathways through which specific transcription fac-
tors (TF) are phosphorylated. The phosphorylated TFs
are then able to bind to responsive DNA sequences
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thereby regulating the transcription of nearby genes.
Herein we consider the example of the TF-A model
reported by [15] and [16] (see Fig. 1A). In this case, the
TF activates its own transcription according to a typical
positive feedback loop.
The translocation of macromolecules between cytosol

and nucleus have a tremendous impact on gene regula-
tion dynamics. Herein we consider a discrete delay for
the translocation of TF-A as suggested by [15] and [16],
giving rise to the following single delay differential equa-
tion describing the dynamics of the TF-A monomeric
concentration in the nucleus, x :

dx t
dt

k x t

x t Kd
x t K R

f
d b

( ) ( • ( ) )

( ( ) )
( )•=

−

− +
+





2

2 as (14)

The first term on the right-hand side of eq. (14) is the
rate of TF-A transcription in the cytosol which in the

Figure 1 Network Structures. Delay TF-A transcription model. (A) true network structure (B) DDEHM network without prior knowledge, (C)
DDEHM network with some prior knowledge. In structures (B) and (C), the ANN comprises three layers. The nodes of the input and output layer
have linear transition functions, except for the input node of the time which has a hyperbolic tangential transition function as do the nodes of
the hidden layer.

Figure 2 Impact of delays on the TF-A profile. Demonstration of
the impact of the delay on the trajectory of TF-A transcription
model over time. The TF-A model trajectory without delay is the
blue dashed line while the TF-A trajectory with delay is the green
continuous line.
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perspective of nucleus is affected by the translocation delay,
τ =120 min . The second term refers to TF-A dissociation
in the nucleus and the third term to a basal transcription
rate, Rbas , observed at very low TF-A concentrations.
Figure 2 shows the simulation of model eq. (14) with

the parameters proposed by [15]. The TF-A dynamics
are of a typical bistable system induced by the increase
of the cytosol synthesis rate, kf , at time t = 200 min ,
forcing the system to jump to another state. The effect
of the time delay can be assessed by comparing the full-
line (with delay) with the dashed-line (without delay).
The main consequence of the delay is that the TF-A
concentration exhibits a “staircase” transition between
the steadystates.

The main goal in this case study is to investigate if the
TF-A delay dynamics, shown in Fig. 2, can be properly
identified by the DDEHM framework proposed in this
paper. With this goal in mind, 6 data sets of TF-A con-
centration in the nucleus over time with varying initial
concentrations were generated (3 data sets with “clean”
data, which were corrupted with white noise in order to
obtain the training, validation and test set data).
Formulation and discrimination of a suitable DDEHM
structure
The two DDEHM structures, shown in Fig. 1B and 1C,
were identified from the simulation data. In the former
structure, no prior knowledge about the TF-A network
is incorporated while in the latter case some prior

Table 1 Results for Case Study I

NN τi BIC MSE NN τi BIC MSE

train valid test train valid test train valid test train valid test

5 0 -12217 -5836 -5997 0.0141 0.0152 0.0210 6 0 -12220 -5869 -6039 0.0139 0.0157 0.0222

2 100 -13118 -6209 -6190 0.0368 0.0350 0.0337 2 110 -13058 -6150 -6157 0.0347 0.0310 0.0315

3 100 -13087 -6273 -6336 0.0350 0.0384 0.0437 3 110 -13043 -6269 -6275 0.0334 0.0381 0.0385

4 100 -11826 -5650 -5888 0.0096 0.0105 0.0170 4 110 -12273 -5805 -5832 0.0151 0.0144 0.0152

5 100 -11386 -5379 -5733 0.0060 0.0059 0.0120 5 110 -12302 -5864 -6008 0.0152 0.0156 0.0210

6 100 -12873 -6174 -6176 0.0265 0.0282 0.0284 6 110 -13162 -6336 -6329 0.0355 0.0392 0.0386

7 100 -13144 -6269 -6176 0.0342 0.0330 0.0273 7 110 -11516 -5572 -5731 0.0066 0.0081 0.0111

2 120 -13047 -6148 -6139 0.0343 0.0309 0.0303 2 130 -13242 -6332 -6371 0.0417 0.0449 0.0486

3 120 -12105 -5782 -5960 0.0130 0.0142 0.0204 3 130 -13076 -6173 -6203 0.0346 0.0314 0.0333

4 120 -11974 -5761 -5891 0.0111 0.0132 0.0171 4 130 -12652 -6087 -6090 0.0221 0.0254 0.0256

5 120 -11436 -5462 -5489 0.0062 0.0068 0.0071 5 130 -11823 -5604 -5676 0.0094 0.0092 0.0107

6 120 -10820 -5170 -5714 0.0033 0.0036 0.0108 6 130 -12679 -6093 -6108 0.0218 0.0240 0.0247

7 120 -12533 -6002 -5881 0.0184 0.0193 0.0151 7 130 -13269 -6384 -6393 0.0388 0.0417 0.0424

2 140 -13069 -6155 -6167 0.0351 0.0313 0.0321 2 160 -13195 -6295 -6257 0.0398 0.0416 0.0385

3 140 -12303 -5805 -5803 0.0158 0.0149 0.0149 3 160 -12252 -5823 -5771 0.0151 0.0155 0.0139

4 140 -13288 -6375 -6384 0.0420 0.0455 0.0464 4 160 -13063 -6186 -6241 0.0334 0.0311 0.0347

5 140 -12537 -6043 -6039 0.0193 0.0225 0.0223 5 160 -12022 -5716 -5909 0.0114 0.0116 0.0171

6 140 -12564 -6067 -6078 0.0194 0.0228 0.0233 6 160 -12052 -5800 -5995 0.0116 0.0133 0.0197

7 140 -11439 -5535 -5994 0.0061 0.0075 0.0189 7 160 -11466 -5431 -5441 0.0063 0.0061 0.0062

2 80, 120 -13016 -6146 -6079 0.0330 0.0305 0.0266 2 120, 160 -12984 -6137 -6027 0.0320 0.0299 0.0240

3 80, 120 -12334 -5860 -5968 0.0162 0.0164 0.0204 3 120, 160 -13115 -6296 -6163 0.0357 0.0397 0.0303

4 80, 120 -11221 -5276 -5566 0.0051 0.0048 0.0087 4 120, 160 -12250 -5872 -5934 0.0145 0.0162 0.0183

5 80, 120 -12780 -6221 -6207 0.0243 0.0314 0.0305 5 120, 160 -12293 -5872 -5984 0.0148 0.0155 0.0194

6 80, 120 -12233 -5837 -5944 0.0136 0.0139 0.0172 6 120, 160 -11240 -5352 -7991 0.0050 0.0052 1.0762

7 80, 120 -11688 -5663 -5630 0.0077 0.0094 0.0088 7 120, 160 -11703 -5623 -6004 0.0078 0.0086 0.0187

2 80, 120,160 -12994 -6144 -6034 0.0321 0.0300 0.0241 5 80, 120, 160 -12487 -5953 -6045 0.0178 0.0178 0.0215

3 80, 120, 160 -11855 -5641 -5937 0.0099 0.0104 0.0189 6 80, 120, 160 -12824 -6193 -6213 0.0244 0.0276 0.0288

4 80, 120, 160 -11879 -5605 -5734 0.0099 0.0092 0.0120 7 80, 120, 160 -12167 -5758 -5774 0.0122 0.0110 0.0113

Effect of structure parameters (number of nodes in the hidden layer, NN, and number and values of time delays) on the performance of the structure displayed
in Fig. 1C. For every structure incorporating delays two random initial weight sets were investigated. For those without delays four different random initial weight
changes were investigated. At least 25 iterations were carried out for each set of weights. The number of iterations was expanded if network learning was
observed during the last iterations. Integration of the material balances along with the differential equations resulting from the sensitivity method for parameter
identification is carried out for this simulation case with the dde23 MATLAB function for the studies with delays, and with the ode23 MATLAB function for the
ones without delays. This results in higher simulation times, but as the dimension of the set of equations is rather small, the total simulation time is
maintainable.
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knowledge inspired in eq. (14) and in autoregulated sys-
tems is considered.
In preliminary studies, we concluded that structure

(1c) leads to both a faster convergence and improved
results than structure (1b) (results not shown). This
observation is in line with the study reported by [10],
where it was shown that including a priori knowledge in
the hybrid structure generally improves their identifica-
tion capacity.
A selection of results obtained with structure (1c) are

presented in Table 1 showing model performance cri-
teria for the training, validating and testing data sets
(namely MSE and BIC) over structure parameters. Over-
all, it can be observed that structures without time
delays are in general outperformed by those containing
time delays if one of the effectual delays is close to the
“true” delay, i.e. a model with a delay mismatch as high
as 10% still gives an improved performance in

comparison to no delay at all (Table 1). It can also be
noticed that the MSE values for the case of one delay
tend to improve the closer the effectual delay gets to the
“true” delay, peaking when the effectual is the true delay.
Also, it strikes that the best models (highest BIC values
for the validation set) are obtained mostly for 4-7 nodes
in the hidden layer, an observation that reflects the
complexity of the addressed system. Owed to this com-
plexity, are also the strayed deviations in the overall
consistent performance in terms of BIC. The considera-
tion of series of delays also gives rise to consistent mod-
els, especially if only two delays are considered. When
three delays are considered, model performance
increases with decreasing number of nodes, which con-
trasts with the results obtained for one or two delays.
Even so, the best values therewith are obtained with 4
numbers of nodes. While the good model performances
are due to the fact that the “true” delay is present in the

Figure 3 Qualitative results on the time curse of TF-A. TF-A modelling results for the two runs of test data. On the left side the whole
simulation region of the data set is shown while on the right side the most interesting section of the respective data set is highlighted: red
circles are “measured” TF-A data over time, green line are the identification results by model structure (1C) with 5 hidden nodes and τ =120
minutes; blue dashed line are the identification results by model (1C) with 5 hidden nodes and no time delay.
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applied models, the slightly worse performance when
compared to the single delay models sources from the
evitable, additional information. Evitable (correlated)
information hampers the model structure identification
[21,22], which explains why the model performance for
three considered delays decreases with the increasing
number of nodes.
The most consistent structure with highest predictive

power has 5 nodes in the hidden layer and a single
delay coincident to the “true” delay of 120 min. The
respective BIC value was -5489 while the MSE value
was 0,0071 for the test data set. The best structure with-
out time delays, which had also 5 nodes in the hidden
layer, showed a fourfold increase in the MSE value for
the test data set (0,0210) and a considerably lower BIC
value (-5997). This result clearly demonstrates the
advantage of the delay hybrid modelling approach
proposed in this paper.
Comparison of best structures with and without time delays
Figure 3 compares the modelling results for the two best
structures with delay τ =120 min and without delay for
the validation and test data sets. It can be seen that the
model without time delay provides a very smooth transi-
tion between the two steady-states. However, the “true”
dynamics, i.e. the staircase transition function, of the
measured data are not met. In contrast, the model with

τ =120 min was able to capture these “staircase”
dynamics. The curves both increase slightly in the
beginning until a time value of about 320 min, where
the first “stair” appears in the data.
Thereafter, a significant increase can be noticed until a

time of about 390 min, where the estimate has a first
maximum peak. Then the concentration estimation
decreases until a time point of about 450 min. Subse-
quently, in both cases, the data points are almost com-
pletely met by the estimates in the time interval from
450 until 650 min.

Case Study II: Heterologous protein expression by MUT+
Pichia pastoris
In methanol utilizing MUT+ Pichia pastoris strains, fast
phenotype, foreign protein expression is controlled by
the promoter of the alcohol oxidase gene 1 (AOX1). In
typical culture conditions, the yeast cells are first grown
on glycerol to reach a certain optimal cell density. Gly-
cerol and most carbon sources other than methanol
strongly repress AOX1, thus product is not formed in
this phase. Then methanol feeding induces AOX1 over
1000-fold [28] thereby initiating foreign protein expres-
sion. The transition between glycerol and methanol
phases can take between 1 to 4 hours depending on the
strategy for methanol feeding. This transition phase

Figure 4 Pichia pastoris network with delay dynamics. (A) network with a quadratic distributed time delay kernel of cell growth and protein
expression over methanol uptake. The respective equations are listed in Table 2. This network was used to generate simulation data (B)
Approximation of network (A) by a hybrid network. Structure (B) was investigated to see if the novel framework is able to identify unknown
distributed delay dynamics.

von Stosch et al. BMC Systems Biology 2010, 4:131
http://www.biomedcentral.com/1752-0509/4/131

Page 8 of 13



corresponds to the time needed by the cells to express
the alcohol oxidase enzyme, which is an essential
enzyme for the cells to metabolize methanol. Apart
from this delay in the transition phase, time delays
between methanol uptake, biomass growth and product
formation were also observed during the post-induction
phase, [2]. In the paper by Bellgardt and co-workers [2],
a so called extended regulator model was adopted which
is somewhat analogous to a linear distributed time delay
kernel of the specific protein synthesis rate over the spe-
cific growth rate. The inclusion of such a delay model
was essential to fit their data, although the underlying
biological fundamentals are not clearly understood. The
effects causing such time delays seem to be a principal
part of the Pichia pastoris systems. However, they are

poorly studied [29] and mechanistically not understood.
Thus the nature of the apparent delays can mechanisti-
cally not be precisely defined (i.e. as a discrete delay
model), wherefore a distributed delay model is the most
appropriate representation.
The main goal in this section is to determine if the

hybrid methodology proposed herein is able to effec-
tively identify such unknown distributed time delay
dynamics in P. pastoris. The P. pastoris network shown
in Fig. 4A was used as a case study. This network
includes a quadratic distributed delay kernel (Eqs. A5
and A6 of Table 2), which is considered as a strong
delay kernel, see Fig. 5. In this case, the cell growth rate
and the foreign protein expression rate are delayed in
relation to the methanol uptake. The corresponding

Table 2 Mathematical model for data generation

Reactor model equations:

dX t

dt
X t W t D X t

( )
( )• ( ( )) • ( )= + (A1)

dS t
dt

r S t X t D S t SF
( )

( ( ))• ( ) •( ( ) )= − − −s (A2)

dP t
dt

r W t X t D P t
( )

( ( ))• ( ) ( )= − ⋅ (A3)
dV t

dt
F t

( )
( )= (A4)

dW
dt

Z W= −


(A5)
dZ
dt

t Z= −S( )


(A6)

F t
V t

SF S t
r X t

S S t
( )

( )
( )

• • ( )
( )=

−
⎛

⎝
⎜

⎞

⎠
⎟ + −⎛

⎝
⎜

⎞

⎠
⎟s

set
set

(A7) D
F
V

= (A8)

Cell model equations:

 =
+

−K
W t

K s W t
K mB B ATP1 2·

( )
( )

· (A9)
r K K  = +1 2· (A10)

r
S t

K s S t
rS S= ⋅

+,
( )

( )max (A11) W t t d
t

( ) ( ( ) / ). •exp( / )•= − −
−∞∫ S      2 (A12)

Parameters and initial Values:

D ,-, (1/h); F ,-, (g/l); Sset ,10, (g/l); KB1 ,0.1184, (1/h); KB2 ,4.7376, (g/mol); KP1 ,0.48, (-); KP2 ,0.0008, (1/h); Ks ,10, (g/l); mATP ,0.0015, (mol/(g.h)); P ,0, (mg/l); rs, max ,0.19,
(1/h); S ,40, (g/l); SF ,1260, (g/l); t ,-, h ; V ,15, l ; W , W0 = S0 , (g/l); X ,1, (g/l); Z , Z0 = S0 , (g/l); τset ,1, h ; b, h; μ ,-, (1/h);

Mathematical model of MUT+ Pichia pastoris expression with a quadratic distributed delay kernel. This model was used to generate six data sets. Three of which
contain the clean, noise-free data and the other three the associated white noise corrupted data. One data set of the noise corrupted sets was used to train the
hybrid model, one was used for validation and the third one for testing. Integration was performed with the ode45 MATLAB function which integrates the
differential equation with a Runge-Kutta (4,5) integration scheme. The obtained state variables, namely concentrations of biomass, substrate and product, the
reactor volume and as well the feed concentration are recorded and assumed as measured data for the evaluation. Variation in the data was obtained by
application of varying initial values, i.e. the initial values were 5% Gaussian distributed. Note that model equations (A5 and A6) are derived from equation (A 12)
using the linear chain trick [17,18] and that (A 12) is never used for model calculations.
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model equations are listed in Table 2. Note that the
reactor balance equations are also listed since they are
an important element to generate consistent simulation
data.
Identification of distributed time delays by DDEHM
The hybrid model structure shown in Fig. 4B was
adopted to identify the network, Fig. 4A. The neural
network assumes no prior knowledge about Fig. 4B and
uses as the external excitation signal present delayed
methanol concentration values. The specific methanol
uptake rate, rS(t), specific growth rate, μ(t), and specific
product synthesis rate, rP(t), are the target kinetic vari-
ables that need to be identified. Note that in the real
system μ(t) and rP(t) are delayed in relation to rS(t)
according to a quadratic distributed delay kernel (see
Eqs. A9-A12 in Table 2). These three kinetic rates are
passed to the macroscopic reactor material balances for
the calculation of the respective concentrations.
Table 3 shows model performance parameters (BIC

and MSE) for the hybrid model structure (Fig. 4B) with
varying number of hidden nodes (between 2 and 8) and
different series of lagged input variables (between 0 and
4 with intervals of 2 or 2.5 hours). In general, the BIC
values for the two series of lagged variables are much
better than when no lagged variables are considered.
This again confirms the advantages of the DDEHM
methodology proposed herein for identifying delayed
dynamics.
The effect of discrete time delays
It can be further noticed that BIC values of the time ser-
ies with a time delay of 2.5(h) are slightly better when
compared to the ones for time series with a 2(h) time
delay. This observation agrees with the results of the
previous case study where the performance of the

hybrid model peaked the closer the model delay was to
the true delay. In this case the maximal weighted delay
is 5(h). Moreover, the BIC values tend to improve with
increasing number of lagged variables. The increasing
number of input lagged variables, which are weighted by
the neural network, seem to result in more accurate dis-
crete time approximations of the continuous distributed
time delays. In contrast, it can also be observed in Table
3 that with increasing number of delays the best BIC
value is more likely to be found for a lower number of
nodes in the hidden layer of the ANN. However, this
was expected as the BIC is constrained by the number
of model parameters. Nevertheless, the same observation
is made for the MSE values. Furthermore, it was
observed that significantly more random changes of the
parameter values were required when the numbers of
incorporated delays increased in order to achieve results
which were coherent with the ones obtained for smaller
numbers of delays.
Comparing standard and DDE hybrid models
Figure 6 shows non-noisy simulation data and the best
modelling results of hybrid models with and without
delays for the concentrations of biomass, substrate and
product in a fed-batch of the test set. In the figures of
biomass and product concentrations, predictions of the
hybrid models with delays are practically congruent to
the true process behaviour. The intrinsic dynamics of
the organism are perfectly met. In clear contrast are the
predictions of the hybrid standard model without time
delays. Biomass and product concentrations are under-
predicted for a time span between 50 to 85 h, then fol-
lowed by over-prediction from 85 h till the end. Before
50 h only insignificant differences between predictions
and data are visible. For the substrate concentration, the
DDEHM model shows a significant amount of error in a
short time window from about 48 to 55 h, which is
coincident to a fast decrease in the substrate concentra-
tion. It should be noticed that such fast dynamics are
rather challenging to integrate (see comments below).
As for the standard hybrid model without delays, it pre-
dicts accurately substrate dynamics only at the begin-
ning, i.e. from 0 to 30 h. Thereafter, between 30 and 50
h, the model under-predicts substrate concentration,
and after 50 h, it over-predicts the substrate
concentration.
Note about numerical integration of DDEs
The integration of the hybrid model differential equa-
tions using the built-in MATLAB solvers (dde23, ode23)
showed to be computationally intensive. A typical train-
ing run took 4 to 5 days. Moreover, convergence was
sometimes not accomplished due to the limitation of
the integration step size and accuracy. On the other
hand, the integration of the hybrid model differential
equations with the linear approximation only lead to

Figure 5 Impact of delays on the specific biomass growth rate.
Green full line, is the specific growth rate when considering the
network shown in Fig. 4A; blue dashed line is the specific growth
rate when no delay between substrate uptake and biomass growth
is considered.

von Stosch et al. BMC Systems Biology 2010, 4:131
http://www.biomedcentral.com/1752-0509/4/131

Page 10 of 13



small discrepancies for substrate concentrations if the
step size was chosen adequately small, i.e. between 0.05-
0.1 h. Convergence was tested by decreasing even
further the integration step without significant changes
in the integration results. This approach lead to a reduc-
tion of computation of about 75% (i.e. 3 days) when
compared to the MATLAB solvers.

Conclusions
Time-delays have a profound impact on cellular regula-
tory mechanisms. Therefore, their modelling is essential
in metabolic engineering and process optimization

studies. The detailed mechanisms behind observed time
delays are often unknown. The required “omic” data for
a fundamental mathematical modelling of such phenom-
ena is generally unavailable at the required time resolu-
tion and accuracy. As a result, biochemical delayed
dynamics are many times only “measurable” through
their external consequences in terms of extracellular
properties. We propose herein a hybrid semi-parametric
modelling method to identify such delayed dynamics.
The principle is probing from outside to understand the
inner workings. The concept was applied to two illustra-
tive case studies. The overall results show that

Table 3 Results for Case Study II

NN Nlag τ BIC MSE NN Nlag τ BIC MSE

train valid test train valid test train valid test train valid test

3 0 0 -18561 -5147 -5000 0.0155 0.0187 0.0157 6 0 0 -18500 -5199 -5030 0.0148 0.0187 0.0154

4 0 0 -18514 -5164 -4994 0.0155 0.0187 0.0150 7 0 0 -18576 -5197 -4990 0.0153 0.0180 0.0144

5 0 0 -18531 -5186 -5011 0.0151 0.0189 0.0153 8 0 0 -18430 -5211 -5053 0.0146 0.0182 0.0158

2 1 2 -17144 -4697 -4475 0.0086 0.0098 0.0065 2 1 2.5 -16343 -4293 -4331 0.0077 0.0076 0.0067

3 1 2 -16981 -4588 -4470 0.0085 0.0108 0.0067 3 1 2.5 -17230 -4725 -4584 0.0186 0.0327 0.0183

4 1 2 -16877 -4581 -4484 0.0087 0.0117 0.0072 4 1 2.5 -16635 -4506 -4690 0.0154 0.0220 0.0170

5 1 2 -16792 -4544 -4490 0.0078 0.0093 0.0064 5 1 2.5 -16927 -4614 -4524 0.0086 0.0111 0.0072

6 1 2 -16911 -4643 -4544 0.0087 0.0119 0.0073 6 1 2.5 -16944 -4523 -4488 0.0082 0.0092 0.0066

7 1 2 -17197 -4632 -4505 0.0097 0.0151 0.0084 7 1 2.5 -17044 -4742 -4608 0.0082 0.0107 0.0075

8 1 2 -17181 -4530 -4496 0.0123 0.0155 0.0105 8 1 2.5 -16976 -4694 -4608 0.0084 0.0110 0.0076

2 2 2 -16466 -4512 -4525 0.0067 0.0079 0.0067 2 2 2.5 -17813 -4833 -4759 0.0130 0.0152 0.0129

3 2 2 -16856 -4656 -4535 0.0081 0.0116 0.0073 3 2 2.5 -16637 -4684 -4595 0.0079 0.0123 0.0079

4 2 2 -16788 -4616 -4525 0.0079 0.0111 0.0072 4 2 2.5 -16703 -4507 -4517 0.0073 0.0083 0.0064

5 2 2 -16734 -4430 -4446 0.0075 0.0088 0.0061 5 2 2.5 -16384 -4327 -4404 0.0068 0.0074 0.0063

6 2 2 -16573 -4271 -4353 0.0077 0.0081 0.0065 6 2 2.5 -16601 -4400 -4432 0.0071 0.0079 0.0062

7 2 2 -16704 -4569 -4541 0.0071 0.0089 0.0065 7 2 2.5 -16569 -4405 -4466 0.0068 0.0072 0.0061

8 2 2 -16921 -4728 -4632 0.0082 0.0132 0.0079 8 2 2.5 -16833 -4790 -4664 0.0080 0.0127 0.0079

2 3 2 -19006 -5136 -5080 0.0181 0.0177 0.0158 2 3 2.5 -16619 -4566 -4514 0.0077 0.0099 0.0071

3 3 2 -16811 -4692 -4549 0.0078 0.0119 0.0073 3 3 2.5 -16037 -4218 -4259 0.0064 0.0072 0.0058

4 3 2 -16737 -4474 -4466 0.0069 0.0089 0.0063 4 3 2.5 -16439 -4224 -4287 0.0068 0.0078 0.0057

5 3 2 -16519 -4357 -4408 0.0066 0.0076 0.0058 5 3 2.5 -16199 -4358 -4295 0.0063 0.0076 0.0056

6 3 2 -16832 -4506 -4415 0.0090 0.0107 0.0078 6 3 2.5 -16604 -4577 -4556 0.0072 0.0094 0.0067

7 3 2 -16565 -4385 -4439 0.0066 0.0072 0.0058 7 3 2.5 -16344 -4475 -4432 0.0064 0.0078 0.0060

8 3 2 -16758 -4672 -4569 0.0079 0.0117 0.0069 8 3 2.5 -16471 -4374 -4505 0.0066 0.0069 0.0061

2 4 2 -16655 -4365 -4504 0.0071 0.0107 0.0077 2 4 2.5 -16562 -4532 -4503 0.0079 0.0097 0.0073

3 4 2 -16377 -4301 -4431 0.0067 0.0078 0.0064 3 4 2.5 -16325 -4471 -4470 0.0072 0.0086 0.0066

4 4 2 -16215 -4183 -4316 0.0062 0.0067 0.0057 4 4 2.5 -16261 -4189 -4281 0.0064 0.0068 0.0058

5 4 2 -16611 -4481 -4484 0.0070 0.0101 0.0066 5 4 2.5 -15954 -4190 -4255 0.0056 0.0060 0.0052

6 4 2 -17503 -4762 -4597 0.0189 0.0374 0.0197 6 4 2.5 -16439 -4334 -4476 0.0064 0.0073 0.0060

7 4 2 -25835 -7171 -7226 10.160 9.2368 11.843 7 4 2.5 -25949 -7288 -7280 13.781 19.040 17.824

8 4 2 -16256 -4328 -4369 0.0058 0.0061 0.0052 8 4 2.5 -16296 -4326 -4381 0.0061 0.0065 0.0054

Results of the performance measures, BIC and MSE, over structure parameters, namely Numbers of Nodes in the hidden layer of the ANN, NN, Number of time
lags, Nlag and the time lag, τ, for Pichia pastoris cells with distributed time delays using the structure of Fig. 4B. Integration of material balances along with the
equations obtained from the sensitivity method is carried out using the linear approximation integration schema described in the Methods section. The times
series were chosen such that one of the delays matched the maximum of the time delay of the weighting function of the simulation case (see Eqs. A 12).
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significantly better prediction qualities of the novel
hybrid model when compared to the traditional
approach were obtained in all case studies, being the
more distinctive the more significant the underlying sys-
tem delay is. When system and model delay are identical
the model quality peaked but even with a delay mis-
match as high as 10% in the TF-A gene-regulatory net-
work, modelling results were significantly enhanced in
comparison to no delay at all. These results support a
system delay identification strategy by studies of differ-
ent discrete delays in the input variables. For the studies
on Pichia pastoris with intrinsic distributed time delays
significant enhancements were introduced by the
DDEHM model. This suggests that even though the
proposed structure bases on discrete time delays directly
of external excitation variables, it poses no limitation of
applicability. In conclusion the method proposed herein
is a powerful tool to identify time delays in ill-defined
biochemical networks.
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