
����������
�������

Citation: Wu, H.-J.; Chu, P.-Y.

Current and Developing Liquid

Biopsy Techniques for Breast Cancer.

Cancers 2022, 14, 2052. https://

doi.org/10.3390/cancers14092052

Academic Editor: David Wong

Received: 26 March 2022

Accepted: 15 April 2022

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Current and Developing Liquid Biopsy Techniques for
Breast Cancer
Hsing-Ju Wu 1,2,3 and Pei-Yi Chu 4,5,6,7,8,*

1 Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan; hildawu09@gmail.com
2 Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town,

Changhua 505, Taiwan
3 Department of Biology, National Changhua University of Education, Changhua 500, Taiwan
4 Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University,

Taichung 402, Taiwan
5 Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
6 School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
7 Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
8 National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
* Correspondence: chu.peiyi@msa.hinet.net; Tel.: +886-975-611-855

Simple Summary: Breast cancer is the most common cancer and leading cause of death worldwide.
Therefore, it is important to diagnose and treat breast cancer early. Current diagnostic methods
include mammography and tissue biopsy; however, they have limitations. Liquid biopsy is a less
invasive tool for diagnosis. In this review, we summarize and focus on the recent discoveries on
liquid biopsy and development of detection techniques.

Abstract: Breast cancer is the most commonly diagnosed cancer and leading cause of cancer mortality
among woman worldwide. The techniques of diagnosis, prognosis, and therapy monitoring of breast
cancer are critical. Current diagnostic techniques are mammography and tissue biopsy; however,
they have limitations. With the development of novel techniques, such as personalized medicine and
genetic profiling, liquid biopsy is emerging as the less invasive tool for diagnosing and monitoring
breast cancer. Liquid biopsy is performed by sampling biofluids and extracting tumor components,
such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free mRNA (cfRNA) and
microRNA (miRNA), proteins, and extracellular vehicles (EVs). In this review, we summarize and
focus on the recent discoveries of tumor components and biomarkers applied in liquid biopsy and
novel development of detection techniques, such as surface-enhanced Raman spectroscopy (SERS)
and microfluidic devices.

Keywords: breast cancer; liquid biopsy; circulating tumor cells; circulating tumor DNA; microRNA;
extracellular vesicles

1. Introduction

Breast cancer is the most common female cancer in 2020, with an incidence of esti-
mated 2.3 million, representing 11.7% of total cancer cases in the world, and the leading
cause of cancer mortality in women, which was responsible for nearly 685,000 deaths world-
wide [1]. In US, the American Cancer Society’s 2022 update estimated that approximately
287,850 new cases of breast cancer will be diagnosed in US women, with an estimated
43,250 deaths [2]. Based on immunohistochemistry classification, breast cancer is classified
to five major molecular subtypes: luminal A (estrogen receptor (ER)+, progesterone re-
ceptor (PR)+, human epidermal growth factor receptor 2 (HER2)−, Ki-67 low), luminal B
HER2− (ER+, PR+, HER2−, Ki-67 high), luminal B HER2+ (ER+, PR+, HER2+, Ki-67 high),
HER2 (ER−, PR−, HER2+), and basal-like (triple-negative (TNBC), ER−, PR−, HER2−),
which are related to the clinical outcomes [3,4].
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Despite advances in diagnosis and treatments for breast cancer, the standard methods
have several drawbacks, such as being invasive, expensive, not suitable for all patients,
and low sensitivity and specificity [5]. Classical diagnostic/monitoring techniques include
imaging (mammography, ultrasound, MRI, CT, PET, and X-ray) and tissue biopsy [6,7].
Mammography can lead to both false-positive and -negative results, unnecessary exposure
to radiation, and the excessive use of biopsies, and it may fail to rapidly detect the changes
in tumor burden [8]. Particularly, tissue biopsy is an invasive procedure that is neither
extensive enough to capture the overall genomic landscape of breast tumors nor applicable
for monitoring treatment response [9]. These limitations point to the urgent need for
better and novel non-invasive methods for early detection, patient survival prediction, and
treatment response monitoring. Recent advances in molecular testing and genomics have
led the trend of personalized and precision medicine.

Liquid biopsy has attracted considerable attention and become an attractive alternative
strategy, as it is a minimally invasive molecular procedure for advanced monitoring of can-
cer. It relies on the quantification of genetic materials derived from tumor cells and released
into circulation, such as circulating tumor cells (CTCs), cell-free DNA (cfDNA)/circulating
tumor DNA (ctDNA), circulating tumor RNA, extracellular vesicles (EVs), circulating
tumor proteins, and tumor-educated platelets (TEPs) (Figure 1) by collecting body fluids,
mostly peripheral blood [10,11]. In comparison with traditional tissue biopsy, liquid biopsy
offers a number of notable advantages with easier and non-invasive sampling for serial
evaluation [12]. A liquid biopsy, combined with highly sensitive molecular technologies
and advance bioinformatics protocols, could reflect the intra-tumoral heterogeneity (spatial
heterogeneity) and molecular evolution of a distant metastatic lesion (temporal hetero-
geneity), which is not possible for conventional tissue biopsies, as the biopsy specimen
may not be representative of all the tumor cells [13–16]. Furthermore, it is possible for the
early diagnosis and screening, prediction of prognosis, early relapse detection in localized
and locally advance breast cancer, minimal residual disease (MRD) identification, and
longitudinal monitoring of the disease progression and treatment response surveillance
during adjuvant and neoadjuvant therapies upon sequential sampling, due to its minimally
invasive nature [9,17,18] (Figure 1). Despite these, detection limits of liquid biopsy still exist.
The low levels of CTCs and ctDNA found in early-stage breast cancer, along with the lack
of ctDNA secreting from some tumors, can further complicate detection. Moreover, genetic
patterns in primary tumors and metastases vary significantly from patient to patient [12,19].
More sensitive detection methods are urgently needed to improve the clinical application
of liquid biopsy.

In this review, we discuss a variety of tumor components and biomarkers applied in
liquid biopsy (both already applied in clinical practice and under research), as well as the
current developed detection techniques for liquid biopsy in breast cancer, mainly focusing
on recent studies.
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Figure 1. Comparison of liquid biopsy and tissue biopsy. Liquid biopsy is a minimally invasive
method and relies on quantification of genetic materials derived from tumor cells and released into
circulation, such as circulating tumor cells (CTCs), cell-free DNA (cfDNA)/circulating tumor DNA
(ctDNA), circulating tumor RNA, extracellular vesicles (EVs), and circulating tumor proteins. Liquid
biopsy allows for early diagnosis and screening, prediction of prognosis, early relapse detection
in localized and locally advance breast cancer, minimal residual disease (MRD) identification, and
longitudinal monitoring of the disease progression and treatment response. Therefore, liquid biopsy
can be applied in as many time points as required during tumor progression and treatments, in order
to detect recurrence and monitor response to treatment (green arrows). In contrast, tissue biopsy is
an invasive procedure and not applicable for monitoring treatment response; subsequently, tissue
biopsy is mainly applied at the time points for diagnosis and detection of recurrence during tumor
progression (purple arrows).

2. Tumor Components

Liquid biopsy components, termed tumor circulome, including CTCs, cfRNA, ctDNA,
TEPs, EVs, proteins, and metabolites, are secreted from tumor (apoptotic or necrotic)
cells [20,21] (Figure 1). These tumor components present novel and minimally invasive
biosources that are clinically implicated in precision medicine [22]. Notably, CTCs and
ctDNA have been approved by the US Food and Drug Administration (FDA) as biomarkers
in clinical use for cancer management [23].

2.1. Circulating Tumor Cells (CTCs)

CTCs are cancer cells compromising of a heterogeneous population with the majority
of cells being highly differentiated, while others have stem cell-like properties (CSCs). They
are released from primary and metastatic tumors into the circulation by trans-endothelial
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transition as single cells or clusters. These cells, which are able to adapt and survive
by epithelial-to-mesenchymal transition (EMT) in the bloodstream and different tissues,
can form new tumors or metastases [24–27]. Interacting with blood components, such as
platelets, is critical for promoting tumor cells for subsequent metastasis [28], and inter-
action with immune cells results in evasion from immune surveillance and formation of
metastases [29,30].

There are a considerable number of studies demonstrating CTC detection as an effec-
tive technique for the evaluating treatment efficacy, early diagnoses, metastatic progresses,
recurrence, and prognosis [31–33], and it was correlated with unfavorable prognosis,
shorter disease-free survival (DFS) and overall survival (OS), lack of treatment efficacy with
poor recurrence-free survival (RFS), and tumor progression [34–37]. Several researches
showed that CTC enumeration could be an independent prognostic tool for early breast
cancer patients, particularly for metastatic breast cancer [38,39]. CTCs are substantially
less abundant in the blood of patients with early stage of tumors [34–37]. Cristofallini et al.
applied CTCs, detected by CellSearch system, to stratify patients into Stage IV aggressive
with ≥5 CTCs/7.5 mL and Stage IV indolent with <5 CTCs/7.5 mL. In a pooled analysis of
2436 metastatic breast cancer patients, Stage IV indolent patients had significantly longer
median OS (36.3 months) than Stage IV aggressive patients (16.0 months, p < 0.0001), inde-
pendent of metastasis localization, tumor subtype, and molecular variables [40]. Therefore,
this study further demonstrated CTC count is an important prognostic tool for metastatic
breast cancer. More recently, 1933 HER2- metastatic breast cancer patients who participated
in DETECT III and IV trials were screened, and it was confirmed that the CTC count has a
high prognostic relevance [41]. Intriguingly, patients with ER- and PR+ tumors were more
likely to harbor ≥1 CTC with strong HER2 staining, and it was significantly associated
with shorter OS (median OS: 9.7 vs. 16.5 months in patients with CTCs with negative-to-
moderate HER2 staining, p = 0.013). This study indicates that CTC detection, in patients
with HER2- breast cancer, is a strong prognostic factor, and it remains the largest study
conducted in HER2- metastatic breast cancer.

In addition to the prognostic value, in the STIC CTC randomized, multicenter prospec-
tive, noninferiority phase 3 trial, 755 hormone receptor (HR)+, HER2- metastatic breast
cancer patients were allocated into either clinician-driven group, where the decision to
administer hormone therapy or chemotherapy was made clinically without the CTC results,
or a CTC-driven group, where endocrine therapy was administered if CTC <5/7.5 mL
and chemotherapy administered if CTC ≥5/7.5 mL. Median progression-free survival
(PFS) was significantly longer in the CTC-driven arm (15.5 months, 95% CI: 12.7–17.3),
compared with the clinically-driven arm (13.9 months, 95% CI: 12.2–16.3) [33]. This key
study demonstrated that CTC is promising to direct therapy. However, there is the need
for more studies to validate this. Other studies also proved that CTCs can be applied
in real-time monitoring treatment responses at different time points during the tumor
progression and for the detection of relapses [42,43] (Figure 1). In another study of F.C.
Bidard’s group, the CirCe01 trial evaluated the clinical utility of CTC-based monitoring of
therapy [44]. In this prospective, multicentre, randomized phase III study (NCT01349842),
patients with metastatic breast cancer, scheduled beyond the third line of chemotherapy,
were randomized between the CTC-driven arm and standard arm. However, OS was not
significantly different between two groups (p = 0.8). In subgroup analyses, patients with no
CTC response who switched chemotherapy early nevertheless experienced longer median
PFS and OS than those who did not.

Beside blood, as the most commonly studied and clinically used fluid in liquid biopsy,
Malani et al. [45] recently applied the CTC count in cerebrospinal fluid (CSF) diagnose
leptomeningeal metastases in HER2+ breast cancer patients. Their study also proved that
CSF CTC enumeration could assess the tumor burden in the central nervous system during
therapy for leptomeningeal metastasis and before detectable changes on MRI images or
CSF cytology [45]. Importantly, these recent studies on CTC, as a liquid biopsy, confirmed
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its clinical value in prognosis and role in dynamic and real-time monitoring of treatment,
although there is no current clinical application of CTC [39].

2.2. Cell-Free DNA (cfDNA) and Circulating Tumor DNA (ctDNA)

Like CTC, cfDNA and ctDNA play important roles in liquid biopsy. cfDNA refers
to the double- or single-stranded fragmented DNA liberated into body fluids, such as
blood, saliva, lymph, tear fluid, bile, urine, milk, sweat, mucous suspension, amniotic,
cerebrospinal and pleural fluids, cervicovaginal secretion, and wound efflux, by both
normal and tumor cells, whereas circulating tumor DNA (ctDNA) represents only a fraction
of cfDNA derived from the tumor tissue [9,46,47]. Specific patterns of cfDNA can be
analyzed ex vivo to characterize the targets of interest [48]. While cfDNA is present in
healthy controls, its concentration is significantly lower in healthy subjects, compared to
cancer patients, due to active nuclease degradation [49,50].

In addition to cfDNA gene sequence and mutation, cfDNA can be further analyzed
for epigenetic alterations, such as DNA methylation, histone modifications, and expression
of long and micro non-coding RNAs [51,52]. Methylation changes in DNA contribute
to gene expression regulation and play a significant role in the etiology of early breast
cancer [53,54]. The DNA methylation pattern is retained in the cfDNA released from its
tissue origins of tumor cells [55,56]. Therefore, DNA methylation could serve as important
biomarkers for diagnosis of cancer [57]. Indeed, DNA methylation has been assessed in
cfDNA in several studies, both single and panels of genes have been demonstrated as
diagnostic tools [58–60]. Furthermore, the methylation patterns of cfDNA could be also
related to relapse, metastasis, and survival [5]. Panagopoulou et al. established a cfDNA
methylation panel of five cancer-related genes (KLK10, SOX17, WNT5A, MSH2, and GATA3)
and found that increased methylation of three or more and four or more genes (KLK10,
SOX17, WNT5A, and MSH2) significantly correlated to OS (p = 0.042, 0.043, and 0.048) and
the absence of pharmacotherapy response (p = 0.002), respectively. Subsequently, using
machine learning combined clinical data and experimental findings, they developed multi-
parametric prognostic signatures for the prediction of survival and treatment response to
chemotherapy in metastatic breast cancer [19].

Correlations between elevated concentrations of cfDNA and tumor stage, tumor
size, and nodal involvement were demonstrated [19]. In particular, Panagopoulou et al.
showed that the metastatic breast cancer patients who had cfDNA levels > median value of
496.5 ng/mL had significantly shortened PFS, compared with those who had < median
value of cfDNA (p = 0.036), indicating cfDNA quantification could serve as a prognostic
marker for PFS. For the predictive value of cfDNA levels for the treatment response of
metastatic breast cancer patients to first-line chemotherapy, the median value of cfDNA of
the “non-responders” (970.0 ng/mL) was significantly higher than that of the “responders”
(465.0 ng/mL, p = 0.026), thereby demonstrating cfDNA as a potent predictive marker
for response to first-line chemotherapy [19]. The prognosis values of the combination
of CTC and cfDNA were firstly evaluated by Ye et al. [61] by collecting blood samples
from 117 metastatic breast cancer patients. High levels of CTC (CTC ≥ 5) and cfDNA,
individually or jointly, had significantly higher risks of PFS and OS (CTC: p < 0.001 for
PFS, p = 0.001 for OS; cfDNA: p = 0.001 for PFS, p = 0.002 for OS; joint effect: p < 0.001 for
PFS, p = 0.002 for OS). In a similar result, Fernandez-Garcia et al. compared cfDNA and
CTCs with conventional breast cancer blood biomarkers (CA15-3 and alkaline phosphatase
(AP)) by analyzing blood samples from 194 metastatic breast cancer patients. Their results
showed that both CTCs and total cfDNA levels are predictors for OS (p = 0.001 and 0.024,
respectively), while only cfDNA correlated with PFS (p = 0.042), indicating their potential
clinical application of liquid biopsy [62].

Generally, ctDNA can be released into the bloodstream by excretion and transport in
exosomes or during the apoptosis and necrosis of tumor cells [47]. ctDNA is a small nucleic
acid fragment of about 134–144 bp [50,63]. ctDNA is more abundant than CTCs, but it is
more rapidly cleared from circulation, within hours, than CTCs. Moreover, ctDNA has been
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demonstrated to accurately represent the mutational profile of CTCs; Thierry et al. showed
that ctDNA can capture the majority of mutations found in tissue biopsy, such as the
PIK3CA and ESR1 mutations [64]. However, the evidence on the prognostic value of ctDNA
in metastatic breast cancer is rather limited, especially compared with CTCs [65]. Specific
somatic DNA mutations, loss of heterogeneity (LOH), and epigenetic alterations, such as
methylations, are the valuable factors for precisely discriminating the cfDNA from normal
cell and tumor cell [66]. LOH is a cross chromosomal event that results in the loss of one
normal allele producing a locus with no normal function [67]. This is a common mechanism
for cancer development as the inactivation of a tumor suppressor gene occurs [68]. ctDNA
has been demonstrated to detect cancer in early stages [69,70], determine prognosis [13],
real-time monitor treatment response [71], and determine therapeutic resistance [72], MRD
after primary treatments, and relapse [73,74]. Minimally invasive serial measurement of
ctDNA might, thus, monitor and predict treatment response, presenting an advantage over
tissue biopsy [5,75–77] (Figure 1). Remarkably, increases in ctDNA levels could predict
disease progression several months before standard imaging techniques [64]. However,
ctDNA has not yet been validated to apply in clinical practice [78].

Prognostically, ctDNA detection was correlated with poor survival in early breast
cancer [79–82]. As in early breast cancer, the quantity of ctDNA is associated with a worse
outcome in metastatic breast cancer [75–77,83–85]. In both the INSPIRE phase II and
LOTUS randomized phase II trials, ctDNA levels in TNBC were correlated with PFS, OS,
and overall clinical response rate (ORR) [86].

In the aspect of recurrence, a prospective and multicenter study utilized serial plasma
samples to assess patients with early-stage breast cancer [74]. Somatic mutations of primary
tumors were identified by sequencing, and personalized tumor-specific digital polymerase
chain reaction (digital PCR, dPCR) assays were applied to surveil these mutations. Plasma
samples were collected every three months for the first-year follow-up and subsequently
every six months. The results showed that the presence of ctDNA had a median lead
time of 10.7 months before the development of clinical symptoms, indicating ctDNA could
predict relapse. Moreover, the use of ctDNA could detect extracranial metastatic relapse in
96% of patients. This addressed that the use of ctDNA, as a surveillance technique, may
improve survival.

A number of studies have evaluated ctDNA levels in both the neoadjuvant and ad-
juvant therapies [81,82,87–89]. In the phase 2 I-SPY 2 trial, Magbanua et al. examined
the serial ctDNA test, in early breast cancer patients undertaking neoadjuvant chemother-
apy, for predicting pathologic complete response (pCR) and risk of recurrence. Blood
samples were collected at several time points, i.e., pretreatment, after therapy initiation,
between regimens, or prior to surgery. Patients who remained ctDNA-positive after
therapy initiation were significantly more likely to have residual disease after neoad-
juvant chemotherapy (83% non-pCR) than those who were ctDNA-negative (52% non-pCR,
p = 0.012). After neoadjuvant chemotherapy, the presence of ctDNA was associated with
lower pCR rates, whereas ctDNA clearance after treatment was correlated with longer
survival. Therefore, personalized monitoring of ctDNA during treatment may be a good
predictor treatment response [81]. McDonald et al. also demonstrated nonmetastatic breast
cancer patients with lower ctDNA concentrations achieve pCR than patients with higher
ctDNA level after neoadjuvant therapy (p = 0.0057) [89], illustrating that personalized
ctDNA panels could monitor breast cancer progression in the neoadjuvant setting. Most
recently, Papakonstantinou et al. [90] performed a systematic review and meta-analysis to
investigate the prognostic value of ctDNA in patients with early breast cancer treated with
neoadjuvant therapy. The association between the detection of ctDNA, both at baseline
and after completion of neoadjuvant therapy, and worse relapse-free survival (HR: 4.22,
95% CI: 1.29–13.82 and HR: 5.67, 95% CI: 2.73–11.75, respectively) and OS (HR: 19.1, 95%
CI: 6.9–53.04 and HR: 4.00, 95% CI: 1.90–8.42, respectively) were observed, whereas the
detection of ctDNA did not achieve a pCR. Therefore, this meta-analysis again supports
the previous studies.
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In metastatic breast cancer, Darrigues et al. also collected plasma samples of 61 pa-
tients at different time points, i.e., before treatment, at day 15, at day 30, and at disease
progression, and proved that treatment with palbociclib and fulvestrant can be successfully
monitored by serial ctDNA measurements before radiological evaluation [77]. However,
more large, prospective, and randomized trials are needed. Interestingly, a study evaluated
the predictive and prognostic values of ctDNA in 26 TNBC patients and observed a signifi-
cant rise in ctDNA levels after neoadjuvant therapy was predictive of residual tumor and,
thus, an incomplete pathologic response. This also indicated worse relapse-free survival
(p = 0.046) and OS (p = 0.043) [79]. These studies support using serial monitoring of ctDNA
for accurate assessment of tumor progression in real time, resulting therapeutic decision
making. However, more clinical studies will be required before ctDNA monitoring can be
implemented in a clinical setting [12,79].

2.3. Non-Coding RNAs

It is known that RNA, especially non-coding RNA (ncRNA), plays significant roles
in the deregulation of cell function and cancer development. Like CTC and ctDNA, RNA
can also be secreted from tumor cells into blood and other biological fluids of cancer
patients and, thus, as a potential analyte in liquid biopsy [91,92]. However, RNA is
less stable than CTC and DNA and hindered by the variability in the methodologies
performed [93]. Despite these, there are growing evidences depicting the importance of
circulating ncRNAs representing 80% of the total circulating RNA application in the field
of oncology. They are involved in regulating transduction pathways, acting as tumor
activators or suppressors [94]. There are a number of types of ncRNAs, including long
non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and
PIWI-interacting RNAs (piRNAs) [95,96].

microRNAs (miRNAs) are small ncRNAs (18~25 nt), capable of binding and reg-
ulating mRNA expression at the post-transcriptional level [97]. Additionally, miRNAs
play important role in cellular communication, proliferation, programmed cell death, and
differentiation [98]; thus, they have significant implications in cancer management [99] as
potential biomarkers applied in liquid biopsy. miRNAs are derived from CTCs, cell-free
miRNAs, apoptotic bodies, or from extracellular vesicles (EVs), either in their lumen or on
their surface [100]. miRNAs are the most studied RNA types in tissues and the bloodstream,
where several studies proved their clinical application in diagnosis, prognosis, detection
of metastasis, and drug resistance [101–104]. However, little is known about their clinical
utility as biomarkers in liquid biopsy, which requires more studies [101].

2.4. Extracellular Vesicles (EVs)

EVs refers to the cell-derived membranous vesicles released by all cells into the extra-
cellular environment [105]. They play a role in intracellular communication among tumor
cells [106]. EVs carry DNA, mRNA, ncRNA, lipids, metabolites, and proteins protecting
and preventing degradation of their cargo from enzymes, such as plasma nucleases, and
transferring their contents from a parental to different recipient cells [107,108]. Unlike
CTCs, which are mostly released into blood, EVs exist in a variety of body fluids and
can be more easily enriched for subsequent analysis than CTCs [109]. cfDNA is secreted
into the bloodstream either as free DNA (unbound DNA), bound to protein or lipoprotein
complexes (nucleosomes and vitrosomes) [110], or enclosed in EVs [111,112].

It has been proven that EVs, involve in the tumor development and initiating the
formation of premetastasis niche, play a role in intracellular communication [113]. Tumor-
derived vesicles also carry the molecular footprint reflecting the genetic status of parental
tumor cells [114]. EVs have been demonstrated as diagnostic, prognostic, and therapeutic
agents in clinical settings and have also been associated with drug resistance [115]. As
a result, EVs are promising biomarkers in liquid biopsy. However, further studies are
required to investigate their clinical validity in breast cancer [5].
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EVs are generally heterogeneous and classified into microvesicles (MVs, also referred
to as ectosomes or microparticles), exosomes, and apoptotic bodies, based on origin and
size [116,117]. Apoptotic bodies are the largest vesicles (1~5 µm in diameter) derived from
budding of apoptotic cells and usually contain nucleosomes, protecting tumor DNA and
RNA from degradation by DNAses and RNAses [118,119].

The second largest EVs are microvesicles with large diameters (100–1000 nm) that
are actively shed from protuberances in the plasma membrane [120,121]. Tumor-derived
microvesicles (TDMs) contain DNA reflecting the genetic status of their original cell [5];
they also carry RNA that can be transferred to recipient cells [114]. It was found that the
number of TDMs in the plasma of breast cancer patients was significantly associated to
disease stages I-IV (p < 0.05 and p < 0.0001) [122], indicating a clinical value.

Exosomes, the best studied EVs, with small diameters (30–150 nm) derived from
the endocytic pathway, are secreted upon fusion of multivesicular bodies (MVBs) with
the plasma membrane [105,117,121]. Exosomes are secreted by almost all types of cells
and can be transferred to recipient cells [123]. They also play critical roles in intercellular
communication and can deliver their content to other cells in a paracrine fashion. Im-
portantly, exosomes are also detected in biological fluids, including blood, saliva, urine,
breast milk, and cerebrospinal fluid, indicating that they can act as mediators in long
distance cellular signaling [124–126]. In particular, it has been demonstrated that exosomes
contribute to cancer development and metastasis, preparation of the pre-metastatic niche,
stem cell stimulation, apoptosis, angiogenesis, immunity, and drug resistance [117,127–129].
Tumor-derived exosomes also contain cancer-associated miRNA [130] and proteins [131]
that could have diagnostic, prognostic, and therapy monitoring values. Exosomal miRNAs
are also associated with tumor aggressiveness [132], angiogenesis [133], metastasis [134],
and drug resistance [135] in breast cancer. Remarkably, it has been shown that tumor cells
secrete more exosomes than normal cells in response to pathophysiological conditions,
such as hypoxia in the tumor microenvironment [129]. Furthermore, exosomes from breast
cancer patients contain distinct RNA and protein from healthy donors [136,137].

EVs represent one of the latest biomarkers in the liquid biopsy field; thus, the clinical
application of EVs is still immature, and no standard detection method exists for breast
cancer [23]. More clinical studies are required to confirm the clinical relevance of EVs, such
as diagnosis and prognosis, and evaluate the sensitivity and specificity of EVs-based assays.

3. Biomarkers

Biomarkers, including DNA, miRNA, and EV, detected in blood or other body fluid,
are important for early diagnosis and prognosis. In addition, the ability to monitor cancer
progression and assess response to treatment is important for clinicians to determine the
most effective therapy [12]. These can all be performed by liquid biopsy [138]. These are
elucidated in detail in the following sections (Table 1); the sensitivities of these methods
vary from 19% to 98%, and specificities vary from 64% to 100%.

Table 1. Biomarkers utilized for liquid biopsy.

Biomarkers Clinical Outcome Sensitivity and
Specificity Clinical Trials References

CTC

For Prognosis

PD-L1 expression in
CTCs

PD-L1 expression in CTCs correlates
with survival in metastatic breast

cancer
-

A total of 72 patients with
metastatic breast cancer
(prospective clinical trial

(NCT02866149))

[139]



Cancers 2022, 14, 2052 9 of 33

Table 1. Cont.

Biomarkers Clinical Outcome Sensitivity and
Specificity Clinical Trials References

cfDNA/ctDNA

For diagnosis

ctDNA: PIK3CA and
TP53

Correlation between ctDNA
detection with age, tumor grade and
size, immunohistochemical subtype,
BIRADS category, and lymph node

positivity

- A total of 29 patients [140]

ctDNA: the TP53,
PIK3CA, and AKT1

For the detection of early and
advanced breast cancer

ctDNA detection rates:
37% for local or locally
advanced breast cancer;

81% for metastatic or
recurrent breast cancer

A total of 109 early and
metastatic breast
cancer patients

[141]

ctDNA: SNPs in MDM2
and MDM4

For the detection of early breast
cancer - A total of 100 unrelated

Lithuanian women [142]

For prognosis

ctDNA: a panel, based
on COSMIC data,

covering 136 genes

Served as a predictor of worse
prognosis Predictive value: 92%

A total of 861 serial plasma
and matched tissue specimens

from 102 patients with
early-stage breast cancer who

need chemotherapy and 50
individuals with benign breast

tumors

[143]

ctDNA: PIK3CA and
TP53

Absence of detectable PIK3CA and
TP53 variants before neoadjuvant
therapy was associated with high

pCR rates

-
A total of 455 patients

(sub-study of the NeoALTTO
phase 3 trial)

[144]

ctDNA panel: 488
mutations

Detecting MRD at 1-year
postoperatively, which was

positively associated with distant
recurrence

Sensitivity: 19%

A total of 6 patients with
ER+/HER2- metastatic breast
cancer and 142 patients with

stage 0 to III breast cancer

[88]

ctDNA: TP53, PIK3CA,
and DNA damage

repair genes

Correlation between ctDNA
profiling and therapeutic response

and disease progression
-

A total of 19 HER2+ and
12 HER2- breast cancer

patients
[145]

For predicting treatment response

ctDNA: the PIK3CA,
ESR1, HER2, PTEN, and

AKT1

Enables the selection of
mutation-directed therapies Sensitivity: 93% A total of 1034 patients

(plasmaMATCH trial) [146]

ctDNA: PIK3CA

Treatment with alpelisib-fulvestrant
prolonged progression-free survival

among patients with
PIK3CA-mutated, HR+, HER2-

advanced breast cancer

-

A total of 572 patients
(341 patients with confirmed

tumor-tissue PIK3CA
mutations, SOLAR-1 trial)

[147–149]

ctDNA: AKT1, PIK3CA,
ATM, TP53, ERB2, and

ESR1

Predict PFS in the treatment of
paclitaxel and capivasertib -

A total of 66 patients with ER+
metastatic breast cancer
(phase I/II BEECH trial)

[83]

ctDNA: FRS2, PRKCA,
MDM2, ERB2, AKT1,

and BRCA1/2

Predicted a trend for increased PFS
benefit of ribociclib treatment -

A total of 1507 ER+ HER2-
metastatic breast cancer

patients
(MONALEESA 2-, 3-, and

7-trials)

[150]

ctDNA: ESR1

ESR1 mutations predicted
significantly shorter PFS on

treatment with aromatase inhibitors
and palbociclib

-

A total of 1017 ER+
HER2- patients

(a large phase III PADA1
study)

[151]
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Table 1. Cont.

Biomarkers Clinical Outcome Sensitivity and
Specificity Clinical Trials References

cfDNA/ctDNA Methylation

For diagnosis

APC, FOXA1, and
RASSF1A

Methylation levels differed markedly
in breast cancer patients in

comparison to healthy controls

Sensitivity: 81,82%
Specificity: 76,92%

A total of 137 cases of primary
breast cancer tissues and

44 cases of plasma samples
[60]

For prognosis

cfDNA methylation
panel of five genes

(KLK10, SOX17, WNT5A,
MSH2, and GATA3)

Methylation of ≥3 and ≥4 genes
correlated to OS and no

pharmacotherapy response,
respectively

Sensitivity: 80%
specificity: 59%

A total of 150 and 16 breast
cancer patients under adjuvant

and neoadjuvant therapy,
respectively, 34 patients with

metastatic disease and 35
healthy volunteers

[19]

miRNA

For diagnosis

Combination of
miR-1246, miR-1307-3p,
miR-4634, miR-6861-5p,

and miR-6875-5p

Detect early breast cancer Sensitivity: 97.6%
Specificity: 82.9%

The serum of 1280 patients
with early breast cancer [152]

miR-1246, miR-6756-5p,
and miR-8073 For detection of breast cancer Sensitivity: 96.7%

Specificity: 97.2%

A total of 429 breast
cancer patients and
895 healthy controls

[153]

For prognosis

miR-21-5p, miR-194-5p,
miR-205-5p, miR-375,

miR-376c-3p, miR382-5p,
and miR-411-5p

Could be used as recurrence
biomarkers for both hormonal

positive and TNBC patients

Sensitivity: 92.9%
Specificity: 77.4%

A total of 48 breast
cancer patients [154]

A prognostic miRNA
panel template

(PROMPT): miRNAs,
miR-141, miR-144,

miR-193b, miR-200a,
miR-200b, miR-200c,
miR-203, miR-210,
miR-215, miR-365,
miR-375, miR-429,

miR-486-5p, miR-801,
miR-1260, and

miR-1274a

Associated with OS and RFS Sensitivity: 77%
Specificity: 75%

A total of 237 metastatic breast
cancer patients [155]

miR-21, miR-23b,
miR-200c, and miR-190

An increase in the expression of
miR-21, miR-23b, and miR-200c,
accompanied by a decrease in
miR-190 in relapsed patients,

compared to the non-relapsed ones

Sensitivity: 71.4%
Specificity 63.9%

A total of 49 relapsed and
84 non-relapsed localized

breast cancer patients
[18]

For predicting treatment response

miR-125b Correlation between miR-125b and
chemotherapeutic resistance - - [156]

miR-155
miR-155 serum levels decreased after

surgery and four cycles of
chemotherapy

- - [157]
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Table 1. Cont.

Biomarkers Clinical Outcome Sensitivity and
Specificity Clinical Trials References

EV

For diagnosis

Exosomoal miR-142-5p,
miR-320a, and
miR-4433b-5p

For breast cancer diagnosis Sensitivity: 93.33%
Specificity: 68.75%

A total of 31 breast cancer
patients [158]

Exosomal miR-424,
miR-423, miR-660,

and let7-i
For breast cancer detection Sensitivity: 98.6%

Specificity: 100%

A total of 69 breast cancer
patients and 40 healthy

controls
[159]

Exosomal miR-188-3p,
miR-500a-5p, and

miR-501-5p in plasma;
exosomal miR-188-3p,

miR-501-3p, miR-502-3p,
miR-532-3p, and

miR-532-5p in serum

Upregulated in breast cancer patients -

A total of 800 plasma and
serum samples from breast
cancer patients and healthy

controls

[160]

let-7b-5p, miR-106a-5p,
miR-19a-3p, miR-19b-3p,
miR-25-3p, miR-425-5p,
miR-451a, miR-92a-3p,

miR-93-5p, and
miR-16-5p

Upregulated in serum-derived
exosomes in breast cancer patients,

compared to controls

Specificity: 94.9%
Sensitivity: 96.2%

A total of 32 pairs of breast
cancer patients and healthy

controls
[161]

Exosomal lncRNA H19
Exosomal levels of the lncRNA H19
were significantly higher in breast

cancer patients than healthy controls

Sensitivity: 87.0%
Specificity: 70.6% A total of 50 patients [162]

Exosomal Hsp70
Increased levels of exosomal Hsp70
in breast cancer patients, compared

to healthy donors
- A total of 40 patients and

14 healthy volunteers [163]

Claudin-7 and
claudin-7/CD81 levels

in EVs

Claudin-7 might be a universal
marker for the early diagnosis of

breast cancer

Sensitivity: 95%
Specificity: 75.13%

A total of 60 breast cancer
patients and 20 healthy

volunteers
[164]

Seven proteins
(fibronectin, focal

adhesion kinase 1 (FAK),
dual-specificity

mitogen-activated
protein kinase kinase 1,
β-Actin, p90RSK_pT573,

N-cadherin, and
proto-oncogene c-RAF)

Distinguish patients (early patients
accounted for nearly 70%) with

breast cancer from healthy
individuals

Sensitivity: 94%
Specificity: 82%

A total of 27 patients and
22 healthy controls [165]

EGFR in EV Diagnosing breast cancer patients
with different clinical stages (I–IV) Sensitivity: 90%

n = 49: 6 healthy control,
5 benign tumor, and

38 malignant tumor, including
13 with stage I, 14 with stage II,
5 with age III, 2 with stage IV,
4 without stage information

[166]

Eight plasma EV protein
markers (mucin-1,

CA-125,
carcinoembryonic

antigen, HER2, EGFR,
PSMA, EpCAM, and

VEGF)

Distinguish among metastatic breast
cancer, nonmetastatic breast cancer,

and healthy donors
Overall accuracy: 91.1% A total of 220 plasma samples

from breast cancer patients [167]



Cancers 2022, 14, 2052 12 of 33

Table 1. Cont.

Biomarkers Clinical Outcome Sensitivity and
Specificity Clinical Trials References

Exosomal AnxA2

Higher expression of serum
exosomal AnxA2 in breast cancer
patients compared to non-cancer

females;
high expression of exosomal AnxA2
levels in was significantly associated
with poor overall survival and poor

disease-free survival

-
A total of 169 breast cancer
patients and 68 non-cancer

females
[168]

γ-glutamyltransferase 1
in EVs

Patients with breast cancer had
enhanced γ-glutamyltransferase 1

detection signals than those of
healthy donors

-
Patients with breast cancer

(five cases) and healthy donors
(five cases)

[169]

For prognosis

miR-21 and miR-105

miR-21 and miR-105 were
overexpressed in metastatic patients,
compared to non-metastatic ones, as

well as controls

- A total of 53 patients [170]

Exosomal miR-30b,
miR-328, and miR-423 Predicted pCR - A total of 20 breast cancer

patients [171]

Heat shock protein 70 in
small EVs

Elevated in patients with recurrence
or metastasis -

1. 27 patients;
2. Serum of 40 breast

cancer patients
[165,172]

For predicting treatment response

Exosomal mRNAs
encoding TK1 and

CDK9

Elevated exosomal levels of mRNAs
encoding TK1 and CDK9 were
associated with poor clinical
response to the CDK4/CDK6

inhibitor palbociclib

- - [173]

lncRNA HOTAIR
Possible predictor of response to

chemotherapy and tamoxifen
treatment

-

A total of 15 breast cancer
patients treated surgically,

15 healthy individuals,
25 patients received

neoadjuvant chemotherapy
before surgery, and 25 patients

received tamoxifen
hormone treatment after

surgery

[174]

ANXA6 in plasma EVs Reflect treatment response of
neo-adjuvant treatment - - [175]

Protein

CCN1 For early cancer detection Specificity: 99.0%
Sensitivity: 80.0%

A total of 544 patients with
breast cancer and 427 healthy

controls
[176]

3.1. Gene Mutation
3.1.1. For Diagnosis of Breast Cancer

A number of studies have shown that ctDNA PIK3CA mutations can be detected in
breast cancer [177,178]. Rodriguez et al. [140] evaluated the utility of ctDNA in the diagnosis
of early breast cancer patients by comparing the PIK3CA and TP53 mutations of fresh tissue
biopsies and plasma samples using amplicon-based SafeSEQ (Sysmex Inostics) technology
and NGS TruSeq custom amplicon low input panel (Illumina). Intriguingly, they found
that plasma DNA sequencing permitted the identification of additional TP53 and PIK3CA
mutations in ctDNA not detected in tumor biopsy sequencing. Furthermore, ctDNA
detection was significantly correlated with younger age (p = 0.040), higher tumor grade
(p = 0.041) and size (p = 0.033), immunohistochemical subtype (p = 0.025), BIRADS category
(p = 0.004), and lymph node positivity (p < 0.001). This study addresses the fact that ctDNA
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analysis could be used in diagnosis of early breast cancer and highlights the importance
of plasma ctDNA as an accurate alternative to tissue biopsy. More recently, Chin et al.
showed the TP53, PIK3CA, and AKT1 mutations for ctDNA detection. ctDNA detection
rates were 37% and 81% for stage I-III breast cancer and metastatic or recurrent breast
cancer, respectively. Additionally, the ctDNA detection rate was correlated with disease
stage (p = 0.00026), nodal spread (p = 0.00649), and distant metastases (p = 0.0005) [141].

Other studies have investigated additional mutations in ctDNA as a biomarker for
early breast cancer detection. Bartnykaite et al. investigated the association between single
nucleotide polymorphisms (SNPs) in MDM2 (rs2279744, rs937283, rs937282) and MDM4
(rs1380576, rs4245739) and breast cancer of the I–II stage. Their results showed that the
rs937283 AG, rs937282 CG, rs1380576 CC, and rs4245739 AA genotypes were linked to HR+
breast cancer and suggested they may be useful diagnostic biomarker [142].

3.1.2. For Prognosis and Recurrence of Breast Cancer

It is important that early diagnosis of recurrence can decrease the mortality of breast
cancer patients greatly. Consequently, there are a number of studies on the evaluation of
biomarkers for the prognosis of breast cancer. Here, we only highlight the recent studies.

In a sub-study of the NeoALTTO phase 3 trial, a randomized, neoadjuvant dual HER2-
targeted therapy study in early HER2+ breast cancer patients, Rothé and colleagues [144]
found that the presence of PIK3CA and TP53 mutations, before neoadjuvant therapy, was
correlated with low pCR (p = 0.0089). This result indicate that targeted treatment could be
planned for patients carrying these mutations. Intriguingly, patients with HER2+ breast
cancer and undetectable baseline ctDNA had the highest pCR, indicating the need to apply
treatment de-escalation strategies.

Zhang et al. [143] developed a novel methodology to detect ctDNA by designing a
panel based on COSMIC data, covering 136 genes and integrating with Breast Imaging
Reporting and Data System classification (BI-RADS). Remarkably, the predictive value
of this combination improved from 74.2% up to 92%. Thus, ctDNA detection is also a
sensitive and specific marker indicating worse prognosis, and the combination of ctDNA
with current imaging techniques might be applied to reduce surgical overtreatment.

MRD detection could be critical for assessing therapeutic response and guiding sub-
sequent treatment decisions [78]. Hence, several trials specifically evaluated the value
of ctDNA for detecting MRD in the post-neoadjuvant and post-surgery setting [88,179].
Parsons et al. developed an ultrasensitive patient-specific ctDNA panel for tracking up to
488 mutations having 100-fold more sensitivity than droplet dPCR (ddPCR). The clinical
sensitivity for detecting MRD was 19% at 1-year postoperatively, which was strongly as-
sociated with distant recurrence (HR = 20.8; 95% CI: 7.3–58.9). Importantly, the median
lead time from first positive test to recurrence was 18.9 months [88]. These patient-specific
ctDNA mutations are attractive biomarkers in liquid biopsy and advance the field of preci-
sion medicine. However, it is important to avoid false-negative results, sequencing errors,
and artifacts.

In addition, novel immunotherapies have emerged for cancer treatment. In a prospec-
tive clinical trial in 72 patients with metastatic breast cancer, no significant association was
revealed between PD-L1 tumors and CTC expression. Triple negative (TN) phenotype,
number of metastatic treatments, metastatic sites, ≥5 CTCs, and PD-L1(+)-CTCs were
shown to be significantly correlated with PFS, whereas tissue PD-L1 expression was not.
Therefore, unlike PD-L1(+) tumors, PD-L1 expression in CTCs was associated with survival
in metastatic breast cancer, indicating a potential role of PD-L1(+)-CTCs as a stratifying
factor for anti-PD-1/PD-L1 treatment for metastatic breast cancer patients [139].

3.1.3. For Predicting Treatment Response of Breast Cancer

In evaluating the predictive value of cfDNA in metastatic breast cancer patients, a
large, phase III, ongoing PADA1 study analyzed the ESR1 mutation in 1017 ER+ HER2-
patients treated with a first-line aromatase inhibitor plus palbociclib at regular inter-
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vals [151]. ESR1 mutations, detected in cfDNA, were associated with significantly shorter
PFS on treatment with aromatase inhibitors + palbociclib than those with wild-type ESR1
(11.0 vs. 26.7 months). This indicated that the presence of the ESR1 mutation, at baseline,
might promote resistance to aromatase inhibitors plus palbociclib.

The mutations in ctDNA may also be promising biomarkers for assessing treatment
response or resistance [180]. For example, HER2 [82], ESR1 [181], and TP53 [182] in
ctDNA could be applied to monitor therapy response. The ongoing plasmaMATCH
trial, a multicenter, multicohort, phase IIa trial of ctDNA, tested on metastatic breast
cancer patients from 18 UK hospitals, assesses the utility of ctDNA in predicting treatment
response. A total of 1034 patients were recruited into four treatment cohorts, based on
mutations identified in ctDNA—cohort A, with ESR1 mutations treated with extended
dose of fulvestrant; cohort B, with HER2 mutations received oral neratinib and in case of
ER+ breast cancer with a standard-dose of fulvestrant; cohort C, with AKT1 mutations in
ER+ cancer treated with capivasertib + standard-dose of fulvestrant; and corhort D, with
AKT1 mutations in ER- cancer or with PTEN mutations treated with capivasertib [146].
Long-term follow-up is ongoing, but preliminary results have shown positive response
in cohorts B and C, with 25% and 22% response rates for neratinib and capivasertib,
respectively, demonstrating the ctDNA’s utility to identify targetable mutations, PIK3CA,
ESR1, HER2, PTEN, and AKT1 in metastatic patients and enables the selection of mutation-
directed therapies (NCT03182634) [146].

Additionally, there are several studies that identified the PIK3CA mutation in ctDNA
for treatment prediction. The phase III SOLAR-1 trial determined PIK3CA mutation-status
using both tissue samples and ctDNA of 572 ER+ HER2- endocrine pretreated metastatic
breast cancer patients. For the patients with ctDNA PIK3CA mutations treated with alpelisib
and fulvestrant, there was a 45% risk reduction in PFS (11 vs. 5.7 months, HR: 0.65,
95% CI: 0.50–0.85, p < 0.001) [147,148]. The recently published paper for this trial showed
an improvement of 7.9 months in OS for alpelisib treatment in the PIK3CA mutated group,
but it was not statistically significant (HR: 0.86, 95%: CI 0.64–1.15, p = 0.15) [149].

In the retrospective study, Chen et al. revealed a direct correlation between ctDNA
profiling, therapeutic response, and disease progression in breast cancer patients [145].
They identified multiple ctDNA mutations in HER2+ and HER2- breast cancer patients
that reliably associated with treatment response and drug resistance. The ERBB2, TP53,
EGFR, NF1, and SETD2 mutations were identified in HER2+ breast cancer as contributing
to trastuzumab resistance, whereas in HER2- breast cancer patients with resistance to
chemotherapy, genetic variations in the TP53, PIK3CA, and DNA damage repair genes
were shown. The study also demonstrated that longitudinal ctDNA monitoring provides
valuable insights for assessing therapy efficacy and therapeutic resistance.

The predictive value of ctDNA in drug efficacy was confirmed in the phase I/II BEECH
trial, which included patients with ER+ metastatic breast cancer treated with paclitaxel and
AKT-inhibitor capivasertib vs. paclitaxel and placebo [83]. Several specific mutations, such
as AKT1, PIK3CA, ATM, TP53, ERB2 and ESR1, have been detected by ddPCR to evaluate
ctDNA changes during the treatment. The median PFS in patients with suppressed ctDNA
at 4 weeks and in patients with high ctDNA were 11.1 months and 6.4 months, respectively
(p < 0.0001).

Apart from the PIK3CA and ESR1 mutations, other gene mutations were found to
predict treatment response. In MONALEESA 2-, 3-, and 7-trials, the largest biomarker
analysis of any CDK4/6 inhibitor in advanced breast cancer [150], blood samples from
1507 ER+ HER2-metastatic breast cancer patients were analyzed at baseline using NGS
with a targeted panel of 557 genes. Gene changes in FRS2, PRKCA, MDM2, ERB2, AKT1,
and BRCA1/2 were correlated with increased PFS benefit of ribociclib treatment; thus, they
are potential biomarkers of response. However, the patients with alterations in CHD4,
BCL11B, ATM, or CDKN2A/2B/2C genes had little or no benefit from ribociclib, indicating
the biomarkers of resistance.
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Therefore, these trials showed encouraging results that cfDNA and ctDNA in liquid
biopsy may serve as early predictors for therapeutic response, and there are a number of
gene mutations serving as biomarkers for this purpose.

3.2. miRNAs
3.2.1. For Diagnosis of Breast Cancer

Shimomura et al. [152] analyzed the sera of 1280 early breast cancer patients and
demonstrated that the combination of five miRNAs (miR-1246, miR-1307-3p, miR-4634,
miR-6861-5p, and miR-6875-5p) was able to detect early breast cancer with 97.6% sen-
sitivity and 82.9% specificity. Similarly, Cui et al. [153] reanalyzed the dataset from
Shimomura et al. [152] and revealed a panel of three miRNAs, miR-1246, miR-6756-5p, and
miR-8073, in order to generate an neural network cascade model can successfully diagnose
breast cancer. It showed 97.1% accuracy in 429 breast cancer patients and 895 healthy
controls (AUC = 0.971, sensitivity = 96.7%, specificity = 97.2%). Therefore, these studies
proved the feasibility of miRNA in liquid biopsy for early breast detection.

The novel method of machine learning models, incorporating a large set of miRNA ex-
pression profiles, have been developed for early detection of five types of cancers including
breast cancer. For breast cancer, they demonstrated a 91% sensitivity and 90% specificity.
This presents the promising value of liquid biopsy, combined with machine learning, that
they are more sensitive even in the early stages of cancer, compared to other diagnostic
methods, such as cfDNA diagnostics [183].

These studies confirm the great potential of miRNAs as diagnostic biomarkers for
breast cancer. However, there is no best miRNA to be applied in the clinical setting yet.
Hence, more accurate and robust studies for miRNA are required.

3.2.2. For Prognosis of Breast Cancer

miRNAs were also investigated as prognostic biomarkers in early breast cancer. By
using Exiqon miRCURY microRNA RT-PCR panels, Huo et al. [154] investigated the ex-
pression levels of 11 miRNAs between patients with and without recurrence and identified
seven miRNAs, including four upregulated (miR-21-5p, miR-194-5p, miR-205-5p, and
miR-375) and three downregulated (miR-376c-3p, miR382-5p, and miR-411-5p) for recur-
rent patients. This seven-miRNA signature showed a better discriminatory capacity than
individual miRNA and could be utilized as prognostic biomarkers for both HR+ and TNBC
patients. Madhavan et al. [155] established a prognostic miRNA panel template (PROMPT),
including 16 miRNAs, i.e., miR-141, miR-144, miR-193b, miR-200a, miR-200b, miR-200c,
miR-203, miR-210, miR-215, miR-365, miR-375, miR-429, miR-486-5p, miR-801, miR-1260,
and miR-1274a, correlated with OS and RFS. Therefore, these miRNAs could serve as
prognostic biomarkers for metastatic breast cancer, which can assist making the decision
of the treatment. Papadaki et al. [18] observed the expression levels of a different set of
four miRNAs with an increase in the expression of miR-21 (p < 0.001), miR-23b (p = 0.028),
and miR-200c (p < 0.001), as well as a decrease in miR-190 (p = 0.0032) that discriminated
relapsed from non-relapsed patients. Thus, the combined expression of these four miRNAs
could be prognostic biomarkers.

Obviously, there is increasing evidence that the use of miRNAs signatures as prog-
nostic biomarkers is increasing, although no consensus has been reached for using in
clinical setting.

3.2.3. For Predicting Treatment Response of Breast Cancer

Apart from the functions described, miRNAs can also be biomarkers for monitoring
response in treatment. Hamam et al. proved miR-125b was correlated with chemotherapeu-
tic resistance [156]. Furthermore, miR-155 levels decreased after surgery and four cycles of
chemotherapy in breast cancer patients, indicating miR-155 can possibly monitor treatment
response [157].
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3.3. EVs
3.3.1. For Diagnosis of Breast Cancer

There are a number of studies identifying miRNAs derived from EVs for breast cancer
detection. A recent study proved that a panel including miR-142-5p, miR-320a, and miR-
4433b-5p has clinical value as breast cancer biomarker (AUC of 0.8387, sensitivity of 93.33%,
and specificity of 68.75%) [158]. Zou et al. [160] focused on the members from the miR-
532-502 cluster with tumor regulation roles. They analyzed the expression patterns of
miRNAs in the miR-532-502 cluster in approximately 800 plasma and serum samples from
breast cancer patients and healthy controls. Three miRNAs (miR-188-3p, miR-500a-5p,
and miR-501-5p) in plasma and five miRNAs (miR-188-3p, miR-501-3p, miR-502-3p, miR-
532-3p, and miR-532-5p) in serum were significantly increased in breast cancer patients.
More recently, Zou et al. [161] investigated the expression of 12 miRNAs from 32 pairs of
serum-derived exosomal samples from breast cancer patients and healthy controls and
identified 10 miRNAs, i.e., let-7b-5p, miR-106a-5p, miR-19a-3p, miR-19b-3p, miR-25-3p,
miR-425-5p, miR-451a, miR-92a-3p, miR-93-5p, and miR-16-5p, to be upregulated in breast
cancer patients than controls.

Besides blood samples, Hirschfeld et al. analyzed the expression of 13 miRNAs
derived from exosomes extracted from urine samples of 69 patients with breast cancer
and 40 healthy controls [159]. They identified that a specific panel of four urine exoso-
mal miRNAs, including miR-424, miR-423, miR-660, and let7-i, could be utilized as a
highly specific combinatory biomarkers for detecting breast cancer (98.6% sensitivity and
100% specificity).

In the aspect of lncRNA, Zhong et al. discovered that serum exosomal levels of the
lncRNA H19 were significantly more elevated in patients with breast cancer than healthy
controls (p < 0.001), indicating as a novel biomarker for the diagnosis of breast cancer [162].

There are already some EV proteins, discovered from a large number of patient sam-
ples, showing good discriminative power. Thus, they are potential diagnostic biomarkers
for breast cancer [23]. Recently, a prospective clinical pilot study revealed that there were
increased levels of exosomal Hsp70 in plasma from breast cancer patients than healthy
donors [163]. In addition, claudin-7 and claudin-7/CD81 levels in EVs showed no signif-
icant correlation with ER, PR, and HER2 status in breast cancer patients, indicating that
claudin-7 might be a universal biomarker for the early diagnosis of breast cancer [164].
Vinik et al. [165] performed proteomic analysis of small EV and identified seven proteins,
fibronectin, focal adhesion kinase 1 (FAK), dual-specificity mitogen-activated protein kinase
kinase 1, β-Actin, p90RSK_pT573, N-cadherin, and proto-oncogene c-RAF, to discriminate
breast cancer patients from healthy individuals (sensitivity: 94%, specificity: 82%), in which
FAK and fibronectin revealed high early diagnostic accuracy. Furthermore, Li et al. [166]
revealed the epidermal growth factor receptor (EGFR) as a potential biomarker candidate
for the early diagnosis of breast cancer, with a sensitivity of >90% and different clinical
stages of I–IV, although the AUC was ~0.7. Tian et al. [167] identified that the weighted
sum of eight plasma EV protein markers, EV signature, including mucin-1, CA-125, carci-
noembryonic antigen, HER2, EGFR, prostate-specific membrane antigen (PSMA), EpCAM,
and vascular endothelial growth factor (VEGF) was able to discriminate metastatic breast
cancer, non-metastatic breast cancer, and healthy donors, with a high accuracy of 91.1%.

Other studies proved the higher expression of serum exosomal annexin A2 (AnxA2)
in breast cancer patients, compared to non-cancer females (p < 0.0001), especially for TNBC,
rather than luminal and HER2+ breast cancer. In addition, high expression of exosomal
AnxA2 levels in breast cancer was significantly correlated with tumor grade (p < 0.0001),
poor OS (p = 0.0353), and DFS (p = 0.0301). Hence, in addition to the diagnostic biomarker,
exosomal AnxA2 represents a promising prognostic biomarker and therapeutic target of
TNBC [168].

Additionally, EV protein biomarkers from other sources were investigated.
Takeuchi et al. [169] successfully applied tears, for the first time, to detect breast cancer-
related small EVs and discovered that γ-glutamyltransferase 1, in small EVs from tears,
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could differentiate between breast cancer patients and healthy donors. Further analysis
revealed a significant reduction in postoperative γ-glutamyltransferase 1 signals from tear
small EVs of patients with stage I breast cancer, before and after total mastectomy, also
revealed a significant reduction in postoperative γ-glutamyltransferase 1 signals. Because
the sample size was small, further large studies are required to verify this diagnostic
biomarker [23].

3.3.2. For Prognosis of Breast Cancer

In the study of Rodríguez-Martínez et al. [170], the miRNA expression in 53 patients
was measured before and after neoadjuvant therapy, showing that levels of circulating
exosomal miR-21 and miR-105 were significantly higher in metastatic patients, compared
to local ones, as well as controls. In HER2+ cancers, the level of miR-21 decreased after
treatment with trastuzumab in a neoadjuvant setting, suggesting that miR-21 levels could
be the biomarker for monitoring the treatment response [170].

Most recently, three exosomal miRNAs, miR-30b, miR-328, and miR-423 before neoad-
juvant chemotherapy predicted pCR. An increase in miR-127 correlated with pCR in TNBC.
After the first neoadjuvant chemotherapy, exo-miR-141 was used to predict pCR, whereas
non-pCR was predicted by miR-34a, exo-miR182, and exo-miR-183. The candidate miRNAs
were significantly correlated with OS, subtype, and metastasis in breast cancer, indicating
their promising role as predictive biomarkers of pCR in liquid biopsy [171]. However, this
should be further validated by studies with large cohorts.

In the aspect of protein, the heat shock protein 70 was significantly upregu-
lated in presurgery plasma small EVs from patients with recurrence [165]. Likewise,
Rothammer et al. [172] demonstrated that heat shock protein 70 levels in serum from breast
cancer patients who developed recurrence or metastases after radiotherapy were signifi-
cantly higher than those who remained disease-free (p = 0.007). As a result, these confirmed
that heat shock protein 70 in EVs could be the prognostic biomarkers for breast cancer.

3.3.3. For Predicting Treatment Response of Breast Cancer

Most studies investigated exosomal miRNAs, but there are still few studies demon-
strating that exosomal mRNAs and lncRNAs might be potential biomarkers [184]. In
HR+ advanced breast cancer, upregulated exosomal mRNAs encoding cell cycle-regulated
thymidine kinase 1 (TK1) (p = 0.01) and cyclin-dependent kinase 9 (CDK9) (p = 0.03)
correlated with poor clinical response to the CDK4/CDK6 inhibitor palbociclib [173]. Fur-
thermore, it was found that lncRNA HOTAIR levels were elevated in circulating exosomes
in breast cancer patients than those in healthy controls [174]. High exosomal HOTAIR
levels were also correlated with poor prognosis; thus, it is the potential diagnostic and
prognostic biomarker.

Keklikoglou et al. revealed increased levels of ANXA6 in plasma EVs, compared with
pretreatment levels in five of six breast cancer patients undergoing neo-adjuvant treatment,
decreased at the end of therapy with partial or complete remission [175]. This addresses
the importance of EV proteins that might have the potential to be used as the biomarker
clinically for breast cancer prognosis [23].

3.4. Proteins

Although proteins are mostly expressed on CTCs or enclosed in EVs, they can be freely
circulated in blood stream. Recently, a novel biomarker, protein cellular communication
network factor 1 (CNN1), was analyzed in the plasma of 544 breast cancer patients and
427 healthy controls by ELISA [176]. CCN1, formerly cysteine-rich angiogenic inducer 61,
is an extracellular matrix-associated signaling protein of the CCN family and can regulate
a broad range of cellular functions, such as cell adhesion, migration, and differentiation,
by interacting with cell surface integrin receptors [185,186]. Importantly, CCN1 has been
involved in breast cancer progression [176]. Remarkably, it showed the cancer detection
specificity of 99.0% and sensitivity of 80.0%. Even 81.5% of small T1 cancers were CCN1+.
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These demonstrated that circulating protein CCN1 could be applied in the early detection
of breast cancer, and it was suggested it could be, thus, included in liquid biopsy panels
containing other DNA or proteins [176].

4. Detection Techniques

The detection methods for tumor components are well-established. There are three
main types of detection methods: PCR-based techniques, targeted deep sequencing, and
whole-genome sequencing (WGS) [12]. For PCR-based method, dPCR are extremely
sensitive and can detect point mutations as low as 0.01% [187]; this is suitable for liquid
biopsy as the concentrations of tumor components are always low. Furthermore, dPCR
has been developed to ddPCR [188]. However, these techniques require prior mutational
information of tumor cells [12]. Unknown mutations are screened by targeted DNA
sequencing techniques, cancer personalized profiling by deep sequencing (CAPP-Seq),
tagged-amplicon deep sequencing (Tam-Seq), the safe sequencing system (Safe-SeqS), and
amplicon sequencing (AmpliSeq) by means of next-generation sequencing (NGS) [189].
Whole-genome (or exome) sequencing (WGS/WES) can provide a more comprehensive
ctDNA profile, based on the somatic chromosomal aberrations, copy number variations, and
detection of rearrangements; however, they have the disadvantage of decreased analytical
sensitivity [15]. The recent development of detection techniques is elucidated in the details
in the following section and Table 2.

Table 2. Detection techniques for liquid biopsy.

Detection Techniques Target Advantages References

For CTC Detection

CellSearch® CTCs immunoisolation by positive
selection targeting EpCAM

Gold standard and the only technique
approved by the FDA for the isolation

and detection of CTCs in metastatic
breast, prostate, and colon cancer

[37,190]

Adnatest (QIAGEN®)

A combination of antibodies
conjugated with magnetic beads for

selecting tumor and epithelial
markers and an RT-PCR for detecting

breast cancer mRNAs biomarkers

Isolate CTCs in the breast cancer
neoadjuvant setting [191]

CTC-iChip a digital RNA signature For CTC isolation and detection in early
and metastatic breast cancer patients [192]

Nanotube-CTC-chip Breast cancer-specific antibodies,
such as anti-EpCAM and anti-her2

Identify CTCs in the 100% of the studied
breast cancer peripheral blood samples [193,194]

AFM chip EpCAM, CK19, CD45, and DAPI
Highly efficient at rapidly capturing

CTCs from cancer patients’ whole blood,
without requiring extra equipment

[195]

For cfDNA detection

The Oncomine Breast
cfDNA (Thermofisher,

Waltham, MA, USA) test
DNA Detect mutations in a limited number of

genes from breast cancer patients [196]

dPCR cfDNA: HER2 Could be used as a companion diagnostic
tool to detect plasma HER2 status [197]



Cancers 2022, 14, 2052 19 of 33

Table 2. Cont.

Detection Techniques Target Advantages References

For ctDNA detection

ddPCR and the BEAMing
technology

PIK3CA mutations in plasma ctDNA
from advanced breast cancer patients

Allow absolute quantification of allele
frequencies as low as 0.01% [198–200]

PIK3CA RGQ PCR Kit
11 mutations in the PIK3CA gene
from patients with advanced or

metastatic breast cancer

May help doctors identify
breast cancer patients who should be

treated with PIQRAY®
[147]

NGS-based ctDNA test,
Signatera™ ctDNA

For the detection of MRD after surgery
and earlier detection of disease

recurrence
[73]

TARDIS of ctDNA Multiple tumor mutations in ctDNA

Highly sensitive method combining a
targeted linear pre-amplification,

followed by unique molecular identifiers
(UMIs) ligation, targeted exponential

PCR, and ultra-deep sequencing

[89]

SiMSen-Seq assay PIK3CA mutations in ctDNA

Allows detection of extremely rare
variant alleles at <0.1% frequency and

shows advantageous concordance with
the tissue analyses

[201]

INtegration of VAriant
Reads (INVAR)

ctDNA detection; up to a thousand
loci for mutations

As little as one mutant molecule per
100,000 can be detected, thus significantly

increasing the ctDNA detection
sensitivity

[202]

For miRNA detection

SERS with SMGAPs miR-21 and miR-155 SERS gives information for trace amount
of material [203]

For protein detection

Localized
fluorescent-imaging

method
Multiple proteins on individual EVs Enables the detection of multiple proteins

on individual EVs [204]

High-resolution flow
cytometry Proteins on EVs Improve reporting and reliability of

single EV flow cytometry experiments [205]

Microfluidic devices Proteins on EVs Achieve higher specificity and sensitivity [206]

The aptasensor method Proteins on EVs
Pre-separation of EVs is not needed, the
total detection time is short (within 3 h),

and it has a low cost (less than $1)
[167]

4.1. Detection for CTCs

There is a variety of technologies for detecting CTC. The technique developed by
Menarini Silicon Biosystems called CellSearch® is the gold standard and only technique
approved by the FDA for isolating and detecting CTCs in metastatic breast, colon, and
prostate cancers. This technique target the epithelial marker protein, EpCAM, on sur-
face of CTCs. However, when CTCs do not express EpCAM in the status of EMT or the
stem cell stage, they will not be detected. Several studies have confirmed that a count
of ≥1 CTCs, in 7.5 mL of blood, by the CellSearch® system, at different time points, is
correlated with worse PFS and OS, and recurrence [37,190,207]. Adnatest (QIAGEN®) is
another commercial technique for CTCs analysis, which uses a combination of antibodies
conjugated with magnetic beads for targeting epithelial markers and RT-PCR for detecting
mRNAs biomarkers. Kasimir-Bauer et al. [191] utilized this technique to isolate CTCs
and demonstrated the correlation between CTC and worse prognosis. In the study by
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Kwan et al. [192], a digital RNA signature and a technique called CTC-iChip were per-
formed for CTC isolation and detection in early and metastatic breast cancer patients.

In addition, a nanotube-CTC-chip, a newly developed methodology to detect CTCs in
early breast cancer patients, was used [193,194]. This technique utilizes label-free nanotube-
antibody microarrays using breast cancer-specific antibodies, such as anti-EpCAM and
anti-HER2. Remarkably, this technology was able to identify CTCs in the 100% of the
studied breast cancer blood samples. Most recently, Abdulla et al. [195] developed a novel
antibody functionalized microfluidic (AFM) chip for detection of CTCs in breast cancer
patients’ whole blood. AFM chip can achieve capture efficiency of 99.5% and capture
EpCAM, CK19, CD45, and DAPI rapidly, demonstrating AFM chip could be beneficial in
clinical setting.

4.2. Detection for cfDNA

The targeted DNA sequencing techniques are very useful for analyzing a limited panel
of potential mutations in biopsy samples [196,208]. The Oncomine Breast cfDNA (Ther-
mofisher, Waltham, MA, USA) test, based on AmpliSeq technology, is applied in clinical
practice to detect mutations in a limited number of genes from breast cancer patients [196].
More recently, Xie et al. [197] validated the newly developed dPCR detection on HER2
status of cfDNA in stage III/IV breast cancer by comparing with tissue biopsy by using
immunohistochemistry (IHC)/fluorescence in situ hybridization (FISH). The sensitivity
and specificity between dPCR in plasma and IHC/FISH in tissues were 43.75% and 84.38%,
respectively, for 224 breast cancer patients. The overall concordance is 66.97%. Therefore,
dPCR could be used as a companion diagnostic tool to detect plasma HER2 status.

4.3. Detection for ctDNA

Generally, there are two main techniques for detecting ctDNA, targeted and untargeted
techniques. The targeted technique, referring to ddPCR or beads amplification magnetics
PCR (BEAMing-PCR), is applied to detect previously determined tumor-specific mutations,
such as PIK3CA and ESR1. The untargeted technique, on the other hand, refers to digital
NGS (dNGS), such as genome-wide analysis of copy number aberrations (CNAs), WGS,
WES, or array comparative genomic hybridization (CGH). These methods allow sequencing
of large DNA or RNA fragments and are able to detect previously unknown genetic
mutations [22]. Measuring ctDNA is more specific than measuring cfDNA; thus, developing
tools for ctDNA detection are more clinically applicable [184].

4.3.1. ddPCR

Both ddPCR and BEAMing have been shown to be able to detect PIK3CA mutations in
plasma ctDNA from patients with breast cancer [199,200]. The Therascreen PIK3CA RGQ
PCR kit, detecting PIK3CA mutations on ctDNA, has been approved by the FDA. It is able
to detect 11 mutations in the PIK3CA gene from patients with HR+, HER2-, and advanced
or metastatic breast cancer. The presence of PIK3CA mutations is correlated, with response
to treatment with PIQRAY® (alpelisib) [147]. Therefore, this kit may assist doctors stratify
breast cancer patients who should be treated with PIQRAY®.

Recently, Wan et al. developed INtegration of VAriant Reads (INVAR), a novel tech-
nique for ctDNA detection. INVAR can detect as little as one mutant molecule per 100,000,
thus significantly increasing the sensitivity. However, the median integrated mutant allele
fraction (IMAF), obtained in early breast cancer, was 5.2 parts-per-million (ppm), much
lower than that obtained in advanced melanoma with the 15,000 ppm, addressing the
difficulties to detect ctDNA in localized breast tumors [202].

4.3.2. NGS

The first custom-built NGS-based ctDNA test, Signatera™, was launched in 2019,
aiming to improve the detection of MRD after surgery, as well as earlier detection of
recurrence. Signatera™ provides each individual with a customized blood test, tailored
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to match the clonal mutations by WES. Coombes et al. validated the clinical utility of
Signatera™ on breast cancer patient samples [73]. Coombes et al. [73] performed WES of
tumor tissues from 49 patients and designed personalized profiling targeting 16 patient-
specific variants, targeted by multiplex sequencing of plasma ctDNA in the detection for
recurrence. Importantly, ctDNA was detected in disease relapse in 89% of the relapsed
patients, up to two years earlier than imaging with a specificity of 100%. Such early
identification of relapse may provide more effective treatments.

McDonald et al. developed a targeted digital sequencing (TARDIS) of ctDNA might
be a highly sensitive technique for predicting pCR to neoadjuvant treatment in early and
locally advanced breast cancers [89]. TARDIS uses simultaneous deep sequencing of
patient-specific panels, comprised of multiple tumor mutations as ctDNA biomarkers for
monitoring disease in the pre-surgery setting, as well as to detect MRD [89]. By applying
this sensitive technology, McDonald et al. analyzed plasma for personal mutations before
neoadjuvant treatment and detected ctDNA in 100% of the samples. ctDNA was then
monitored at different time points of neoadjuvant treatment and, expectedly, ctDNA levels
were higher in patients with the residual disease, compared to those that displayed pCR.
Therefore, TARDIS is a promising test demonstrating the ctDNA clinical relevance as
a biomarker for NAT treatment response and MRD detection and surveillance in early
breast cancer.

Most recently, PIK3CA hotspot mutations in HR+ metastatic breast cancer were an-
alyzed by a newly developed and high-resolution SiMSen-Seq assay [201]. SiMSen-seq,
a simple, multiplexed, PCR-based barcoding of DNA and sequencing, allows detection
of extremely rare variant alleles at <0.1% frequency [209]. As a result, PIK3CA mutations
were detected in 47.3% of plasma samples, with identical PIK3CA mutation detected in
both tissue and plasma in 33.3% patients [201]. This implies detection of PIK3CA mutations
in plasma using SiMSen-seq is feasible and shows concordance with tissue biopsy.

Both PCR and NGS-based techniques showed promising results; these might be the
future trend in clinical practice.

4.4. Detection for miRNA

The current methods for detecting miRNA are reverse transcription-quantitative
PCR (RT-qPCR), dPCR, microarray, and NGS. RT-qPCR is the gold standard method for
quantifying small amounts of miRNA, showing good sensitivity, reproducibility, and
accuracy. dPCR offer another technique for quantifying miRNA [210]. Microarray and
NGS approaches are usually utilized for initial screening and obtain profiles of miRNAs,
whereas RT-qPCR and dPCR are applied to validate previous results [211].

A newly developed technique for detecting miRNA is called surface-enhanced Raman
spectroscopy (SERS) with seed-mediated grown Ag nanopillars (SMGAPs). The electro-
chemical reduction on the pre-distributed 40 nm gold nanoparticle seeds (sGNP) served as
scaffolds for growth of silver ion, and a nanopillar-shaped silver structure was successfully
grown on the substrate surface of gold. miR-21 and miR-155 were applied as the SERS
diagnostic target. The limits of detection of each labeled target were 451 zmol and 1.65 amol,
respectively. Hence, quantitative analysis of miRNA in urine was successful, compared to
that of the healthy group [203].

4.5. Detection for Protein

Currently, commercialized EV ELISA kits have been available for quantifying common
EV proteins, such as the tetraspanins CD63, CD9, or CD81. Mass spectrometry, on the
other hand, is the core technique for characterizing protein. Recently, new techniques
have been developed for quantifying proteins, such as microfluidics, SERS, high-resolution
flow cytometry, antibody microarrays, electrochemical sensors, and DNA aptamers [212].
Furthermore, a localized fluorescent imaging method, termed digital profiling of proteins
on individual EV (DPPIE), was recently developed for analysis of multiple proteins, CD63,
EpCAM, and mucin-1, on individual EV [204]. High-dimensional data collected from each
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individual EV would provide more precise information than ELISA. The proportion of
CD63/EpCAM/mucin-1 vesicle in patients with breast cancer was significantly higher
than that of healthy control with overall accuracy of 91%. Additionally, high-resolution
flow cytometry has been commercialized, and the standardization of assay is also being
established [205]. With advance in nanotechnology, microfluidic devices are expected to
gain better specificity and sensitivity [206]. Moreover, thermophoretic aptasensor (TAS) is
rapid, sensitive, and low-cost to profile cancer-associated protein profiles of plasma EVs.
This aptasensor method has several advantages that preseparation of EVs is not needed,
the total detection time is short (within 3 h), and it has a low cost (less than $1) [167].This
work addresses the promising clinical utility of EVs in the care of metastatic breast cancer.
Combination of these diverse detection techniques on a microfluidic platform could achieve
personalized assistance for the clinical application of EVs in breast cancer [213].

5. Current Challenges with Liquid Biopsy

Although liquid biopsy has many advantages over tissue biopsy, there are challenges
for liquid biopsy that need to be solved before applying in clinical practice. The challenges
for CTCs are isolation, detection limit and feasibility in clinical application. The number
of CTCs in blood is low and profoundly diluted by blood cells, making their detection
technically difficult particularly in early breast cancer [101,214]. Currently, the CellSearch®

platform is the only technique approved by the FDA for isolating CTCs [215]. The isolation
of CTCs by CellSearch® platform is based on the expression of EpCAM. However, EpCAM
expression is downregulated in most aggressive cancer cells undergoing EMT [216,217]
mentioned earlier in Section 4.1. Therefore, this makes CellSearch® platform face the
serious limitation of leaving most CTCs undetected in advanced stage of breast cancer [218].
In addition, current biological techniques will inactivate CTCs, which greatly affects the
application of CTCs in clinical setting. Thus, there is an urgent need to develop a mild and
specific technique for isolating CTCs in vitro.

The difficulty for cfDNA detection is again its low amount in blood [219]. Importantly,
the major challenge of utilizing cfDNA for diagnosing breast cancer is the need for a prior
knowledge of tumor-specific variants [220]. An impediment of technical detection of ctDNA
in early cancer stages is low concentration of ctDNA, relative to the total concentration
of cfDNA [15,221]. Early stages of cancers have about <0.1% ctDNA (10 ctDNA copies
per 5 mL), in contrast to ~1% in non-metastatic advanced cancer patients and in stage IV
100–1000 copies per 5 mL (up to 10%) were detected [222,223]. Consequently, technical
detection of ctDNA in early cancer stages is strongly challenging, due to its extremely low
concentration and requires ultra-sensitive technologies. Recently, Stetson et al. compared
four commercial NGS gene panel assays for detecting mutations in ctDNAs. However,
there were substantial variability among the ctDNA assays, with a range of sensitivity
(38~89%) and positive predictive value (36~80%), particularly in the detection of allele
frequency variants <1% [224]. These findings indicate that most NGS assay discordance is
a result of technical variations; therefore, standardization of sample collection and analysis
is urgently needed before ctDNA tests could be implemented in the clinical setting. Lastly,
the utility of ctDNA for diagnosis is further complicated by false-positive readouts caused
by clonal hematopoiesis of indeterminant potential (CHIP) mutations, which are somatic
mutations in blood stem cells in healthy and elderly population [225,226]. CHIP mutations
are considered background noise in liquid biopsy samples, and thus they can lead to in
accurate diagnosis and subsequently inappropriate therapeutic treatment [227]. Therefore,
it is significantly required to develop strategies for accurately identifying CHIP mutations
to avoid false positives.

There are challenges in translating an accurate and reliable panel of circulating miRNA
to clinical setting, due to their low amount, differences in the cohort size, collection, type
of sample and processing, and current inability to detect novel miRNAs [156,210]. There
is not a significant overlap in the miRNA panels across the different studies, reflecting
the complicated miRNA expression in breast cancer patients [214]. Another variation is
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the isolation method different for miRNAs from different sources, such as EVs or cancer
cells [210].

For exosome, it is required to standardize exosome extraction, which can exclude
contaminants, such as lipoprotein particles and protein complexes [228]. Furthermore, the
methods need to be fast and convenient for application in clinical practice; however, the
current isolation method for exosome is ultracentrifugation, which is tedious [184].

6. Conclusions and Future Directions

Despite the recent advance in diagnosis and treatment for breast cancer, breast cancer
is still the leading cause of death in women worldwide. Therefore, developing innovative
technologies with the clinical potential to detect breast cancer at its early stage and predict
treatment response is still highly required. Liquid biopsy has gained much attention as a
non-invasive methodology, which serves to obtain key tumor information via blood-based
biomarkers for cancer diagnosis and treatment monitoring. All the tumor components of
liquid biopsy, including CTCs, cfDNA, ctDNA, miRNA, and EVs, have promising value in
diagnosis, prognosis, and treatment prediction. Especially, the greatest advantage of liquid
biopsy over tissue biopsy is the “real-time” longitudinal monitoring of disease progression
and treatment response. Currently, only a liquid biopsy blood test, for detecting the
PIK3CA mutation, is approved by the FDA for breast cancer that can be used in clinical
practice. Most biomarkers described in this review are still under clinical trials or pilot
studies (Table 1).

Despite the benefits mentioned above, the clinical application of tumor components in
liquid biopsy remains to be fully established and requires performing multicentre clinical
studies with a large cohort of breast cancer patients. Another major problem hampering
their application in clinical practice is the lack of a standard procedure. Furthermore, it is
difficult to detect circulating tumor in the early stage of breast cancer, as their amounts in the
biofluids from patients are very low. Important advances in detection were developed, such
as NGS techniques, which can detect ultra-low diluted tumor materials. Once standard and
feasible methods are established, these technologies benefit both the patients and clinicians,
as they are relatively inexpensive and noninvasive for diagnosing and monitoring early-
stage cancers.

Most RNAs show promising utility in liquid biopsy are miRNAs. More characteri-
zation of other circulating RNA types, such as lncRNAs, will provide more options for
liquid biopsy.

Finally, the combination of different tumor components, i.e., multi-omics approaches,
should be considered, in order to fulfil the unmet need in clinical practice.
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