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Machine learning corroborates
subjective ratings of walking and
balance di�culty in multiple
sclerosis
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Amber L. Critch2 and Michelle Ploughman2
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Memorial University of Newfoundland, St. John’s, NL, Canada, 2Recovery and Performance
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Machine learning can discern meaningful information from large datasets.

Applying machine learning techniques to raw sensor data from instrumented

walkways could automatically detect subtle changes in walking and balance.

Multiple sclerosis (MS) is a neurological disorder in which patients report

varying degrees of walking and balance disruption. This study aimed to

determine whether machine learning applied to walkway sensor data could

classify severity of self-reported symptoms in MS patients. Ambulatory people

with MS (n = 107) were asked to rate the severity of their walking and balance

di�culties, from 1-No problems to 5-Extreme problems, using the MS-Impact

Scale-29. Those who scored less than 3 (moderately) were assigned to the

“mild” group (n = 35), and those scoring higher were in the “moderate”

group (n = 72). Three machine learning algorithms were applied to classify

the “mild” group from the “moderate” group. The classification achieved

78% accuracy, a precision of 85%, a recall of 90%, and an F1 score of 87%

for distinguishing those people reporting mild from moderate walking and

balance di�culty. This study demonstrates that machine learning models can

reliably be applied to instrumented walkway data and distinguish severity of

self-reported impairment in people with MS.

KEYWORDS

artificial intelligence, gait analysis, machine learning, multiple sclerosis, walkway,

rehabilitation

Introduction

Machine learning is a valuable tool for dealing with enormous amount of data

and discovering new knowledge from that data, which has been widely employed in

gait detection and analysis from various types of sensors, including videos, inertial

measurement unit (IMU), surface electromyography, and insoles (Khera and Kumar,

2020; Saboor et al., 2020; Iosa et al., 2021; Seo et al., 2021). Instrumented walkways,

widely used in field of gait biomechanics, sensitively map the spatiotemporal profile of
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gait. The walkway consists of a dense matrix of embedded

sensors to capture walking data from gait.With the sophisticated

software package destinated to the walkway system, regular

spatiotemporal gait parameters can be estimated and visualized

for assisting in various neural-degenerative disease evaluation

and diagnosis, such as stroke and multiple sclerosis (Buckley

et al., 2018; van de Port et al., 2020; Khera and Kumar, 2022).

MS is a degenerative central nervous system disease (Reich

et al., 2018) with a prevalence of 35.9 per 100,000 people

worldwide (MSIF, 2020). Patients with MS experience limb

weakness, sensory loss, and foot drop which sometimes go

undetected until clearly observed by others (Socie et al.,

2013; Reich et al., 2018). Patients may sense subtle changes

in their walking and balance before these symptoms can be

detected by clinicians (Kirkland et al., 2018, 2020). Machine

learning methods have been successfully applied to estimate gait

parameters from wearables in multiple sclerosis. For example,

McGinnis et al. estimated gait speed of MS patients from an

array of accelerometers attached to different locations on the

body (McGinnis et al., 2017). Our previous published work (Hu

et al., 2022) applied machine learning to successfully detect MS

patients from healthy volunteers using novel features combined

with standard features derived from the raw walkway sensor

data. Also based on instrumented walkway raw data, Trentzsch

et al. explored different machine learning algorithms (Gaussian

Naive Bayes, Decision Tree, k-Nearest Neighbor, and Support

Vector Machines) to distinguish mild and moderate MS levels

defined by Expanded Disability Status Scale (EDSS) (Trentzsch

et al., 2021). However, a recent cross-sectional study showed

that spatiotemporal gait measures have great variability within

homologous EDSS categories suggesting that EDSS insensitive

to subtle differences (Zanotto et al., 2022). In this study, we

explored whether machine learning could be applied to raw

walkway data to discern the severity of subjective walking

difficulties in people with MS (or other neurological disorders).

We focused on the patients’ perspective because recent evidence

suggests that MS has a long prodromal period (up to 5 years)

when gait and balance symptoms can go undetected by clinicians

(Wijnands et al., 2019).

We grouped patients by their self-reported walking and

balance problems using questions in the MS Impact Scale−29

(Phillips et al., 2014) and applied machine learning to gait

features derived from the walkway sensors (Hu et al., 2022). It

was hypothesized that machine learningmodels could effectively

distinguish the targets.

Materials and methods

Data collection and experimental design

Following approval by the Institutional Health Research

Ethics Board (HREB # 2015.103), raw walkway sensor data

were collected from the Health Innovation Team in MS

(HITMS) project, which studies the health of people with

MS in Newfoundland and Labrador, Canada (Chaves et al.,

2019; Galloway et al., 2019). Each patient walked across the

instrumented walkway (Zeno Walkway, Protokinetics Haverton

PA) which measured 90 × 420 cm with or without a walking

assistive device (Severini et al., 2017). Spatial data were collected

from pressure sensors which represented in x, y coordinates and

had an active area of 1.27× 1.27 cm, 1 cm apart from each other.

By calculating Euclidean distance between sensors, the value of

the gait features can be obtained1. Participants performed two

different walking tests. Firstly, they walked four times across the

walkway at their self-selected comfortable speed. After a rest,

the participants performed a dual task walking test at their self-

selected speed for four times. During this dual task walking,

the participant was asked to walk while subtracting 7 from

a preceding number beginning with 100, and speaking aloud

the results (Kirkland et al., 2015; Chen et al., 2020; Hu et al.,

2022).

Expanded Disability Status Scale (EDSS) rating by the MS

neurologist were extracted from health records. Those patients

with EDSS scores of higher than 6.5, who could not walk, were

excluded. Thus, data from 107 patients were included. Their

EDSS scores range from 0 to 6.5, and their average EDSS score

was 2.11± 1.89.

The replies to a subset of eight MSIS-29 questions on

how patients felt about their walking, balance, and movement

(Table 1) were used to determine the self-reported rating of

walking problems. Patients who scored less than 3 (answering

“not at all” or “a little” to the MSIS-29) were considered to have

mild walking and balance problems. The remaining patients who

scored 3 (“moderate”), 4 (“quite a bit”) and 5 (“extreme”) were

considered moderate. There were five different levels of severity,

but since there were too few participants in some of the groups,

we decided to split the groups into moderate and mild2.

Gait features

A set of gait features was extracted from the raw sensor data

based on footprints from each pass. These included 21 features,

foot type/length/width/area, unsigned toe angle, step/stride

length, step/stride width, base width, step/stride time, step/stride

velocity, single/double support time, stance time, toe direction,

hull area, base of support (BOS) area, line of progression

(LOP) deviation angle. The details regarding each parameter and

how they were extracted from the walkway sensor data were

described previously (Hu et al., 2022).

1 GAITRite Electronic Walkway Technical Reference (47DevM2).

2 Multiple Sclerosis Impact Scale (MSIS-29), 2000.
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TABLE 1 Patient demographic data and MSIS-29 scores.

Characteristics Moderate

(mean ± SD)

Mild

(mean ± SD)

Gender 48 Women

24 Men

27 Women

8 Men

EDSS Score 2.73± 2.04 0.81± 1.54

Age 48.40± 9.95 46.82± 10.35

MSIS-29-Q4 Problems with your

balance?

2.99± 0.94 1.40± 1.37

MSIS-29-Q5 Difficulties moving

about indoors?

2.14± 1.01 1.10± 0.86

MSIS-29-Q6 Being clumsy? 2.76± 1.01 1.35± 1.22

MSIS-29-Q7 Stiffness? 2.86± 1.15 1.39± 1.24

MSIS-29-Q8 Heavy arms and/or

legs?

2.90± 1.14 1.22± 1.42

MSIS-29-Q9 Tremor of your arms

or legs?

2.17± 1.17 1.07± 0.89

MSIS-29-Q10 Spasms in your

limbs?

2.29± 1.25 1.10± 0.97

MSIS-29-Q11 Your body not doing

what you want it to do?

2.39± 1.21 1.20± 1.00

Machine learning process

The machine learning process is illustrated in Figure 1.

Data were cleaned negative values from time features were

excluded, incorrectly clustered data were checked and

eliminated from the dataset. The remaining data were scaled

to exhibit zero mean and unit variance. Feature selection were

completed using ANOVA-SVM based on previous work (Hu

et al., 2022). However, in this paper, we used the adaptive

synthetic sampling approach (ADASYN) for data balancing

and managing different hyperparameters for each model.

The importance of each feature to model prediction was

also calculated.

Data balancing

Imbalanced data means that the number of samples

belonging to each class in the problem is not evenly distributed.

For example, if 90% of the data belong to the same class,

models will reach 90% accuracy by classifying all the data

into the same class, and such a model is biased. In our

case, the data of mild/moderate patients had a ratio of

1:3. Therefore, data balancing was performed (Menardi and

Torelli, 2014). The ADASYN (He et al., 2008) was used to

synthesize new samples close to minority class samples that are

harder to learn, according to the possibility of the correctly

classified minority sample’s neighbor (K nearest neighbors)

(He et al., 2008).

Feature importance

Feature importance explains the model results and which

features are vital in distinguishing the targets. We evaluated

the feature importance through three different types of models,

intended to check which features are consistently important

between models. The pipeline ANOVA-SVM (Megantara and

Ahmad, 2021) calculates the average F-score for the selected

features. Linear models calculate the coefficient of each feature

to determine feature importance. Feature importance for tree-

based models is calculated based on how the nodes of the tree

used in training improve the model results. Then, feature scores

are scaled to have their sum equal to one. The higher the score,

the higher the importance of the feature. The scores of the

features are automatically computed by the provided sciki-learn

software (Pedregosa et al., 2011) when training is completed.

Machine learning algorithms

Logistic regression (LR) (Cox, 1958), support vector

machine (SVM) (Cortes and Vapnik, 1995), and extreme

gradient boosting (XGB) (Chen and Guestrin, 2016) were

selected, as these three algorithms represent three accepted

classification methods representing linear, non-linear, and

decision tree-based classifiers.

LR provides a probability for the target class between 0 and 1

to describe the relationship between the input variables and one

ormore output targets. The input value x is fitted into the logistic

function, whereby the weights or coefficient values are adjusted

to predict the output value y.

SVM has the capability to work with high-dimensional

data. SVM attempts to define a hyperplane boundary in an N-

dimensional space, where N is the number of input features.

SVM is supposed to determine the optimal plane that best

separates the classes.

XGB is a distributed gradient boosting machine learning

library. Applied to an ensemble of weak prediction models, the

gradient boosting algorithm trains data with these weak learners

forces the poor performance learners to learn to increase their

prediction score, and finally combines them into one accurate

prediction algorithm.

Training and evaluation

A standard grid search method was used to choose the best

hyperparameters. The hyperparameter options and the optimal

hyperparameters for each model described in Table 2.

Grouped 5-fold cross-validation strategy was employed

to evaluate the model result (Hu et al., 2022). Accuracy,

precision, recall, and F1-score were calculated to score the

model’s effectiveness.

We compared the means of accuracies between the three

models using Student’s T-test, and means of areas under curve

(AUC) using Delong test (Delong et al., 1988; Sun and Xu, 2014).
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FIGURE 1

Machine learning process.

TABLE 2 Hyperparameter options for each model.

Algorithms Hyperparameter options Optimal hyperparameters

LR “solver”: [“newton-cg”, ”lbfgs”, “liblinear”],

“penalty”: [“l1”, “l2”, “elasticnet”],

“C”: [100, 10, 1.0, 0.5],

“max_iter”: [200, 400, 600]

“solver”: “liblinear”

“penalty”: “l2”,

“C”: 10,

“max_iter”: 200,

SVM “kernel”: [“poly”, “rbf”, “sigmoid”, “linear”],

“C”: [8, 7, 6, 5, 4],

“degree”: [0, 1, 2]

“kernel”: “rbf”,

“C”: 8,

“degree”: 0,

XGB “max_depth”: [3, 4, 5, 6],

“eta”: [0.05, 0.1, 0.2, 0.3, 0.4],

“objective”: [“binary: logistic”, “binary: logitraw”, “binary: hinge”]

“max_depth”: 6,

“eta”: 0.05,

“objective”: “binary: hinge”
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FIGURE 2

Heatmap for numerical feature correlations. Heatmap regions that are increasingly dark show areas of higher correlations. Q4-Q11 represents

the MSIS-29 questions 4 to 11.

Experimental results

Feature selection based on feature
correlations

The 19 numerical feature correlations were visualized using

a heatmap, as shown in Figure 2. None of the features were

significantly correlated with the MSIS-29 questions. However,

a strong positive correlation was discovered between the “step”

and “stride” parameters and the base/stride width. Therefore,

3 features stride time, stride velocity, and base width were

excluded from further analysis.

ANOVA-SVM then determined that all remaining 16

features contributed to model prediction; respectively they

were step time/velocity, single/double support time, stance

time, foot length/width/area, hull area, LOP deviation angle,

toe angle unsigned, step/stride length, step/stride width, BOS

area. Foot type and toe direction were then reintroduced for

further analysis.

Feature importance

The average F-score values of features from ANOVA-SVM,

the absolute value of feature coefficient of features from LR,

feature importance from XGB are presented below.

Table 3 indicates that step width, step length, BOS area, and

hull area were the top four most important features for the

classification examined by ANOVA-SVM. Step time was the

most important feature of LR, followed by step width and area-

related features (Figure 3). For the XGB classifier (Figure 4),

BOS area was the most important feature, followed by the

step length and step time. Step velocity and step width were
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considered less important. Among all three types of models, step

time and step width were considered important.

Prediction results

Figure 5 and Table 4 show the prediction results of three

models. The student’s t-test shows the accuracy of LR (66%)

is significantly lower (p < 0.005) than those of XGB (78%)

TABLE 3 Average F- score for features.

Features Average F-scores

Step width 561.98

Step length 504.57

BOS area 416.50

Hull area 402.72

Stride length 354.94

Foot area 339.31

Foot length 261.41

Step velocity 181.54

Foot width 60.07

Toe angle unsigned 46.48

Double support time 39.89

Stance time 35.75

Step time 35.70

LOP Dev angle 10.66

Single support time 4.90

Stride width 1.41

and SVM (77%); there is no significant difference between the

accuracies of XGB and SVM. Similarly, LR has significantly

lower recall (70%) and f1-score (76%) values than those of XGB

(recall: 89%, f1-score: 87%) and SVM (recall: 90%, f1-score:

86%), with no significant differences between XGB and SVM.

There was no significant difference between the precision values

of the three models. However, the Delong test shows there are

significant differences betweenmeans of AUC of all threemodels

(p < 0.0001), with XGB being the best (98.1%), SVM (96%),

and LR (79.6%). The reason the AUC values of all three models

are higher than model accuracies could be that the optimized

decision thresholds were chosen for calculating AUCs (Bradley,

1997).

Discussion

This study demonstrates that different degrees of walking

and balance problems reported by MS patients can be

distinguished by the gait features calculated from the raw

walkway sensor data usingmachine learningmethods. Although

only about 78% accuracy was achieved by XGB, it is comparable

to the accuracy reported by Trentzsch et al. (2021) in

distinguishing moderate and mild MS divided by EDSS score),

where an accuracy of about 64% was achieved by using majority

decision among six machine learning models. Furthermore,

85% of the ‘moderate’ group was correctly identified (recall)

by the XGB classifier and 90% of predicted ‘moderate’ samples

identified by SVM were correct (precision), which are also

comparable to the corresponding results reported by Trentzsch

et al. (2021).

FIGURE 3

Absolute values of feature coe�cient of LR.
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FIGURE 4

Feature importance of XGB.

FIGURE 5

Accuracy, precision, recall, and F1 score for each model.

The most important gait features detected in this work

were different than those identified in our previous study

when distinguishing MS patients from healthy controls (Hu

et al., 2022). The previous work identified stride length as

the most important feature; a gait characteristic that strongly

distinguished MS patients from healthy controls. In this study,

step width, step time and base of support area became important,

suggesting that problems with stability are distinguishing

characteristics when detecting more subtle gait and balance

changes. Patients may adapt to feeling unsteady by widening

their feet and walking more slowly to prevent falls (Ploughman

et al., 2014; Chen et al., 2020). As reported by Brach et al.

(2005), people with either narrow or wide step width were

more likely to report a fall, and step width could also be an

indicator in identifying patients with potential gait disability.

Interestingly, foot area-related features including the base of
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TABLE 4 Accuracy, precision, recall, and F1 score for each model.

LR XGB SVM

Accuracy 66% 78% 77%

Precision 85% 85% 83%

Recall 70% 89% 90%

F1-score 76% 87% 86%

support area, foot area, and hull area were of high importance

both for determining the severity of the patient’s condition and

distinguishing MS patients from healthy controls as reported

by our previous study (Hu et al., 2022), which might hint that

the patient’s balance might be affected by disease progression

(Singh and Kelly, 2009).

Machine learning algorithms have been applied to other

neurological diseases to gauge severity of walking and balance

problems. For instance, machine learning algorithms applied

to vertical ground reaction force data predicted severity levels

of Parkinson’s disease patients according to the Hoehn & Yahr

scale (Hoehn and Yahr, 1967; Zhao et al., 2018). Center of

pressure coordinates and trajectories were used as prediction

features to rate level of gait impairment in Parkinson’s disease

and cerebral palsy (Mancinelli et al., 2012; Khera and Kumar,

2022). Importantly, these projects used clinician-reported scores

as ground truth; impairments that can be observed by another

person. The current work uniquely corroborates the patient’s

perspective regarding their own walking problems, some of

which may not be noticeable by others.

It is worth mentioning the limitations of the present

work. We employed only two levels (mild vs. moderate)

of self-reported (and combined) gait and balance problems

using binary class models. Future research should explore

expanded ratings, such as mild, moderate, and severe, or

divide self-reported mobility problems based on whether the

problem relates to gait or balance. Thus, more novel features

would be explored, including pressure distribution of the

foot, which could potentially be helpful for classification

(Kaya et al., 2022) and accuracy. The data used in this

project originates from 107 patients, and although this is

a fairly large sample in some types of research, a larger

sample size may further increase the model performance.

Feature importance determination in this study was limited

to model specific methods. In the future, more sophisticated

and model-agnostic methods such as Lorenz-Zonoid method

(Giudici and Raffinetti, 2021) would provide more explainable

comparison of the variable importance. Finally, this study

included two walking datasets, self-selected speed walking

and dual-task walking. Combining the datasets provided a

certain level of robustness of the machine learning model,

but more walking tests such as fast-paced walking should

be included in the future work to exhaustively interrogate

the models.

Conclusion

This study demonstrated that machine learning can be used

to classify patients’ self-reported disability levels using only the

raw data collected from an instrumented walkway system. We

achieved 78% accuracy, 85% recall, and 90% precision when

classifying mild patients from moderate patients using SVM.

Step time, BOS area and step width contributed most to

classifying mild patients from moderate patients suggesting

changes in balance.
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