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Abstract: The development of modern technologies has revolutionised science and has had a huge
impact on biomedical studies. This review focuses on possible tools that scientists can use to face the
challenges of fighting ovarian cancer. Ovarian cancer is the deadliest gynaecologic malignancy and,
even after years of study, the mortality has not decreased significantly. In the era of sequencing and
personalised and precision medicine, we are now closer than ever to helping patients and physicians
in regard to treatment and diagnosis of this disease. This work summarises the newest findings in the
development of ovarian cancer research.
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1. Introduction

Technology has revolutionised every aspect of our lives. Computers have allowed us to analyse
bigger datasets faster. Modern technologies are also strongly present in life sciences. Since Crick and
Watson described DNA structure [1] and since it has been recognised as hereditary information [2],
extensive studies have been conducted to further understanding on DNA, referred to as “the code
of life”. In 1990, the Human Genome Project (HGP) was launched, with the goal of sequencing and
mapping the entire human genome. There was much hope and promise in that unveiling of the genome
sequence would provide new insights and lead to the development of tools for fighting diseases.
In April 2003, the project was successfully finished, earlier and more economically than predicted.
However, the results produced many more questions than answers [3].

Molecular mechanisms are multi-layered networks, and many diseases, including cancer, disrupt
many of these levels. It is known that the human genome includes coding regions (around 1–2% of
the genome) and non-coding regions (98–99%). For a long time, non-coding DNA was considered
as “junk” DNA. However, nowadays it is known to have structural and functional relevance [4–6].
Sequence variations in coding regions can impact protein structures, and those in non-coding regions
may result in differentiated gene expression and splicing. Gene expression describes the dynamic state
of cells and tissues. In a diseased state, gene expression is often altered according to different levels
of genetic regulation. This can involve regular mechanisms, such as through promoter or enhancer
activity, or other mechanisms, such as DNA methylation and the expression of coding and non-coding
RNA [7]. After protein synthesis, protein–protein interactions and post-translational modifications (for
example glycosylation, phosphorylation, ubiquitination) can strongly impact the correct functioning
and structure of proteins [8]. Recently, there has been a rise in multiomics technologies which tend to
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integrate different levels of so-called “omics”. These omics technologies are collective characterisations
and measurements of pools of biological molecules which are then translated into the structure,
function, and dynamics of organisms. The basis for omics technologies are next generation sequencing
(NGS), mass spectrometry (MS), and antibody-dependent reverse-phased protein microarrays (RPPM).

NGS methods are very useful in cancer biology. Whole-genome and whole-exome sequencing
allow for the investigation of somatic mutations related to cancer. Additionally, the use of RNA
sequencing allows for the identification of altered gene expression, novel transcripts, and gene fusions.
The epigenome plays a crucial role in the regulation of cell function. NGS allows for the study of
methylation profiles during tumourigenesis through chromatin immunoprecipitation sequencing
(ChIP-Seq), bisulphite sequencing, or methylation-targeting microarray methods. Moreover, NGS
can be used for germline genotyping. Germline genotyping is useful for the investigation of cancer
predisposition, and can identify not only the germline status of known cancer predispositions, but
also identify novel loci of inherited variation. MS-based techniques allow for the identification and
quantification of proteins, peptides, and metabolites. Proteins control most of the biological processes
and metabolites provide an insight into the state of metabolic pathways and cell fluxes. Changes in
the protein or metabolic profiles can give important clues due to understanding the cell state and key
disrupted pathways. Additionally, analysing multiomics data in combination with the clinical data
from patients will allow us to better understand the risk and protective factors of diseases and improve
strategies for their prevention.

This review focuses on new developments and promises of modern technologies for ovarian
cancer (OC) research. OC is the most fatal gynaecological malignancy and the fourth leading cause
of cancer-related deaths among women in Europe and the United States [9,10]. In 2018, the number
of new OC cases worldwide reached almost 300,000, and the number of deaths from OC almost
200,000 [11]. These numbers have not changed much for some years. The high mortality rate of
OC is partially attributed to the asymptomatic nature of early-stage OC, which often leads to late
diagnosis. Although conventional therapeutic strategies have been developed, the long-term prognosis
of OC patients is still poor [12–14]. There are no well-established screening methods or specific and
sensitive diagnosis tools for the diagnosis of early-stage OC with high accuracy [15,16]. Therefore,
novel and effective therapeutic and diagnostic approaches are in urgent demand. Such approaches
could be made possible, for example, by identifying new molecular biomarkers or using a combination
of biomarkers to obtain fewer false-negative results. Drug resistance often develops during OC
treatment, leading to treatment inefficiency [17]. The mechanisms underlying the pathogenesis and
reoccurrence of OC are not yet well understood. Understanding the pathways of cancer progression
and pathogenesis, and the development of multidrug resistance in OC, will result in new therapies
and the discovery of new molecular targets. OC is characterised by high disease heterogeneity, poorly
understood progression, and the absence of definite precursor lesions. Different OC subtypes differ
in terms of prognosis and response to chemotherapy. Furthermore, the newest studies show large
differences in cell origin and epidemiology, as well as the driver mutations of OC histotypes [18,19].
Tumourigenesis can start in epithelial cells, stromal cells, or germ cells [18,19]. However, 85–90% of all
OCs are epithelial carcinomas. The four common subtypes of OC are serous, endometrioid, clear-cell,
and mucinous cancers [19,20]. The detection of differences in molecular pathways between cancer
subtypes will lead to more precise treatment by allowing the correct targets to be accurately targeted.
A number of excellent review papers have been published on the pathology and heterogeneity of
OC [13,16,19,21–23].

2. Focus on Genomics

The human genome undergoes sequence alterations, which lead to genetic variations. Such
variations can be detected by NGS. One example is point mutations, which involve single-nucleotide
base-pair changes (SNPs) and structural rearrangements. Genome variations caused by point mutations
can result in benign, protective, or harmful consequences for an organism. Knowledge about any
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relevant genome changes allows us to better understand the molecular basis of diseases. Recognition
of changes in functional genetic variants of a disease can help us simplify diagnosis, guide patient
treatment, and recognise genetic risk factors [24]. The integration of genomic profiling with other omics
and clinical characteristics allows opportunities for developing precise and personalised treatments,
and for the identification of molecular biomarkers for early diagnosis.

During its pan-cancer analysis project, The Cancer Genome Atlas (TCGA) [25] investigated the
genomics of high-grade serous ovarian adenocarcinomas (HG-SOC). The investigation included the
analysis of expression profiles of messenger RNA (mRNA) and micro RNA(miRNA), the methylation
of promoter regions, and DNA copy number variation in 489 HG-SOC samples, and additionally
included the analysis of exons in 316 samples. The pathway analysis demonstrated the involvement
of notch receptors (notch), forkhead box M1 (FOXM1), RB transcriptional corepressor 1 (RB1), and
phosphatidylinositol 3-kinase/RAS type GTPase family (PI3K/RAS) signalling in the pathophysiology
of HG-SOC [26]. Data have been published online, and have been used by many scientists for
further investigation.

Data analysis is becoming more complex. Studies focus on aberrations in the genome,
transcriptome, and epigenome between tumour and control samples. Data of each omics can
be analysed individually or in combination, the latter of which is known as multiomics. Additionally,
sequencing data can be analysed after integration with clinical data, such as survival outcomes or drug
resistance. This helps to understand the key pathways in diseases. The investigation of differences
between primary tumour and metastasis sites are bringing researchers closer to understanding tumour
evolution. Many scientists are using publicly available data to build new algorithms and data networks
for data mining, and are thereby recognising complex patterns and correlations.

2.1. Somatic and Germline Mutations, Amplifications, and Structural Instability

An integrated genomic analysis of OC by the TCGA team showed a high prevalence of tumour
protein p53 (TP53) mutation (96%) in HG-SOC. Also, neurofibromin 1 (NF1), BRCA1/2 DNA repair
associated (BRCA1/2), RB1, and cyclin dependent kinase 12 (CDK12) were found to have a statistically
significant incidence of recurrent somatic mutations, however, their prevalence in the population was
much lower [26]. The analysis identified around 113 significant focal DNA copy number aberrations.
Furthermore, the survival analysis showed a higher overall rate of survival in the BRCA1/2-mutated
(germline and somatic mutations) cases than in BRCA1/2 wild type. In cases of epigenetically
silenced BRCA1, which are mutually exclusive to BRCA1/2-mutated cases, the survival outcome was
similarly poor as in BRCA1/2 wild type [26]. In around half of the cases, genes which are involved in
homologous recombination (EMSY transcriptional repressor, BRCA2 interacting (EMSY), phosphatase
and tensin homolog (PTEN), RAD51 paralog C (RAD51C), ATM serine/threonine kinase (ATM), ATR
serine/threonine kinase (ATR), Fanconi anemia genes) were impaired. This means that the homologous
recombination pathway is meaningful, and could be an important target for HG-SOC therapy [26].

Another study used whole-genome sequencing of the tumours of 92 patients with primary
refractory, resistant, sensitive, and matched acquired resistant OC to investigate chemoresistance. The
results showed that in many cases, chemoresistant tumours inactivated tumour suppressor genes (RB1,
NF1, RAD51 paralog B (RAD51B), PTEN) through gene breakage. Furthermore, they showed that
cyclin E1 (CCNE1) amplification occurred in samples of refractory disease and primary resistant cells.
Additionally, in some individual cases, multiple independent reversions of germline BRCA1 or BRCA2
mutations led to promoter fusion, influencing the expression of drug efflux pump MDR1 [27].

Many patterns can be revealed using modern technologies. Computers allow complicated patterns
to be uncovered in large amounts of data. For instance, Macintyre et al. [28] studied the copy number
signatures of HG-SOC using shallow whole-genome sequencing of 117 samples. Profiles of copy
number signatures at the point of OC diagnosis may correlate with overall survival and the probability
of platinum-resistant relapse. OC is characterised by high chromosomal instability [29]. Specific copy
number features may allow the prediction of structural changes, such as breakage–fusion–bridge
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cycles or tandem duplications. For this reason, the following characteristics of copy number features
were included into the signatures: the breakpoint number per 10 Mbp, the copy number of the
segments, the difference in copy number between adjacent segments, the breakpoint counts per
chromosome arm, the lengths of oscillating copy number segment chains, and the size of segments [28].
TP53 mutation has been shown to be an early event in HG-SOC. However, after analysing HG-SOC
signatures, Macintyre et al. [28] described seven different copy number signatures. This suggests
that after the initiating TP53 mutation, multiple different mutational processes follow [28]. The
results of copy number signature analysis confirmed the earlier described results which showed that
mutations of BRCA1/2 are related to better prognosis in HG-SOC. A high exposure to signatures
characterised by BRCA1/2-related homologous recombination deficiency was associated with longer
overall survival. Patients with high exposure to signatures with mutations of the RAS pathway
(NF1, KRAS proto-oncogene, GTPase (KRAS), NRAS proto-oncogene, GTPase (NRAS)) showed
fast platinum-resistant relapse and a poor overall outcome [28]. This information allowed further
research to be focused on aberrations in the OC genome which influence patient survival or therapy
response success. Knowledge about the main pathways involved in OC pathogenesis will assist in the
development of suitable and precise therapeutics.

2.2. Tumour Evolution and Heterogeneity

OC varies according to histological type and grade in genetic characteristics, precursor lesions,
response to treatment, and patient outcome [30]. The most common OCs are epithelial ovarian cancers
(EOCs). Around 50–60% of EOC cases are HG-SOC, and these are the best studied among all OCs. The
integrated genomic analysis of HG-SOC by TCGA is currently the biggest genomic analysis for OC.
Many of the molecular differences that exist between the histotypes of EOC have been characterised
in genomics studies. Table 1 summarises the most common mutations and pathway alterations for
different types of EOC. HG-SOC is associated with chromosome structure instability and initiating
TP53 mutations. Furthermore, homologous recombination repair genes are also altered in many cases
of HG-SOC [26,28]. HG-SOC is the most aggressive subtype of EOC, and is often discovered when
already at an advanced stage. Around 5% of EOCs are low-grade serous ovarian cancers (LG-SOC).
Genetic profiling of LG-SOC has shown less overall karyotype instability and lower rates of mutation
than in HG-SOC. Mutations in B-Raf proto-oncogene, serine/threonine kinase (BRAF), and KRAS are the
most abundant mutations in the LG-SOC subtype. Abnormalities in these genes cause the constitutive
activation of the mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/Erk)
pathway. The activation of downstream processes of this pathway results in higher tumour cell survival
and proliferation. Another type of EOC is endometrioid carcinoma. This subtype accounts for around
25% of EOC cases. Characteristics of endometrioid carcinomas are an impaired PI3K pathway and
an aberration of the main effector of WNT signalling gene family/catenin beta 1 (WNT/CTNNB1)
signalling [31,32]. Studies on mucinous epithelial carcinoma have often shown mutations within the
RAS signalling pathway [33]. The last EOC subtype to be introduced is clear-cell carcinoma, which
often acquires inactivating mutations in the switch/sucrose non-fermentable chromatin remodelling
complex (SWI/SNF) [13,34].
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Table 1. The main subtype-specific mutations and other alterations of epithelial ovarian cancer (EOC).

Subtype of EOC Mutations Other Publications

HG-SOC
TP53, BRCA1/2, NF1, CDK12, RB1,
PTEN, RAD51B, homologous
recombination repair genes

PI3K/Ras, notch, FOXM1
pathways alterations [13,26,27,35–37]

LG-SOC BRAF, KRAS, NRAS, ERBB2 [13,35,36,38,39]

Endometrioid ARID1A, PIK3CA, PTEN, PPP2R1A,
β-Catenin

MMR deficiency,
microsatellite instability [13,31,35,36,40]

Clear cell PIK3CA, PTEN, CTNNB1, PP2R1A
ARID1A, TP53, SWI/SNW

Chromatin remodelling
factor inactivation,
microsatellite instability

[13,31,35,36,41–43]

Mucinous KRAS, ERBB2 [13,33,35,36,43,44]

HG-SOC: high-grade serous ovarian cancer; TP53: tumour protein 53; BRCA1/2: BRCA1/2 DNA repair associated;
NF1: neurofibromin 1, CDK12: cyclin dependent kinase; RB1: RB transcriptional corepressor 1, PTEN: phosphatase
and tensin homolog; RAD51B: RAD51 paralog B PI3K/Ras: phosphatidylinositol 3-kinase/RAS type GTPase family;
notch: notch receptors; FOXM1: forkhead box M1; BRAF: B-Raf proto-oncogene, serine/threonine kinase; KRAS:
KRAS proto-oncogene, GTPase; NRAS: NRAS proto-oncogene, GTPase; ERBB2: erb-b2 receptor tyrosine kinase
2; ARID1A: AT-rich interaction domain 1A; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha; PPP2R1A: protein phosphatase 2 scaffold subunit Alpha; CTNNB1: catenin beta 1; SWI/SNW:
switch/sucrose non-fermentable chromatin remodelling complex; MMR: mismatch repair; LG-SOC: low-grade
serous ovarian cancer.

Only a few studies have compared the overall genetic and expression profiles between primary
tumours and metastases. Lee et al. [45] investigated genomic changes during tumour evolution.
Whole-exome sequencing with a high depth of coverage was used to investigate the variants of
mutations in metastatic sites [45]. Next, targeted ultra-deep sequencing was conducted to study
somatic mutations and perform copy number analysis. Study material was collected from the primary
tumour sites and associated metastatic sites of a HG-SOC patient (Staging of The International
Federation of Gynecology and Obstetrics (FIGO) IIIC). To investigate the evolution of the tumour, a
phylogenetic tree was generated. The results of the analysis were consistent with those of previous
studies in that mutation of TP53 was ubiquitous in all metastatic and primary tumour samples. The
phylogenetic analysis based on mutation profiles identified two clusters of primary tumours (P1 and
P2) and one of the metastatic (M) regions. The two clusters of primary tumours had already diversified
in the early phase of tumourigenesis. The M cluster originated in the P1 primary tumour cluster,
and only a few additional somatic mutations and copy number variations arose due to metastatic
processes [45]. The authors suggested that in the examined patient, transcoelomic metastasis arose with
little accumulation of somatic mutations and copy number alterations. The patient did not show tumour
reoccurrence for at least 12 months after cytoreduction surgery [45]. A follow-up and comparisons
with a bigger cohort could allow for a good overview of tumour evolution in relation to outcome.
Another group performed phylogenetic analysis of HG-SOC using multiregion whole-genome and
single-nucleus sequencing of 68 samples from seven patients to reveal the characteristics of cell
populations spread within HG-SOC. The results supported the findings of Lee et al. [45]. A high degree
of polyphyletic clonal mixing and reseeding of clones at distal foci was not often observed. Mostly,
clonal diversity had already emerged at a primary site, and the seeding followed in a unidirectional,
monoclonal way to distal intraperitoneal sites [46]. High intratumoural heterogeneity of OC has been
observed in the personal landscapes of somatic mutations, copy number alterations, transcriptome
variations, and gene aberrations in primary and metastatic sites [47].

3. Focus on Transcriptomics

Cell mechanisms occur on many levels, and are strictly regulated to ensure the proper functioning
of cells. Transcriptomics examines RNA expression levels. This includes both mRNA and non-coding
RNAs (ncRNA). ncRNAs are involved in regulatory events. Complex statistical data analysis allows
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for the classification of diseases and prediction of their future outcome, in addition to facilitating a
better understanding of the underlying biological disease mechanisms [24].

Zhu et al. [48] presented a complex analysis using multiomics with clinical data for various human
cancers for quantifying the prognostic values of omics profiles via kernel machine learning. The best
performance regarding the accurate prediction of clinical variables (e.g., survival) was seen when using
mRNA, miRNA, and methylation profiling. However, the prediction performance increased even
more when multiomics was included as part of the kernel machine learning method [48].

An analysis of differentially expressed genes in OC and their relation to patient survival was
performed by Hossain et al. [49] using data published in the TCGA database. The analysis focused
on profiling 26 genes which had previously been mentioned in the literature as being important in
OC biology. Using multivariate, univariate, and combined analysis, they identified genes which may
be critical markers for the progression and survival of OC. Kallikrein-6 (KLK6), which is a member
of the kallikrein-related peptidase family, showed significantly different expression levels in all three
analyses [49]. This result was consistent with previous studies which showed the involvement of KLK6
in OC aggressiveness [50,51]. Modern data science approaches allow for the mining of existing data.
The databases of TCGA and the Gene Expression Omnibus (GEO) have been used to build integrated
competing endogenous RNA (ceRNA) networks for OC with the goal of predicting candidate RNA
signatures for recurrent disease [52]. The treatment of OC faces many challenges. One of them is
drug resistance. Knowledge regarding the development of drug resistance in OC is limited. Some
of the factors influencing the reoccurrence and drug resistance of OC are altered miRNA and long
non-coding RNA (lncRNA) expression levels [17,53]. miRNAs are short, single-stranded non-coding
RNA molecules that play an important role in the post-transcriptional and transcriptional expression
of genes. lncRNAs are long (>200 nt) non-coding transcripts that play a role in OC pathogenesis,
especially in epithelial–mesenchymal transformation (EMT) [17,53]. Wang et al. [52] used a support
vector machine classifier to analyse the expression patterns of mRNA, miRNA, and lncRNA in OC
patients with the goal of identifying prognostic RNAs for disease reoccurrence and to build a network to
reveal the potential regulatory relationships between various RNAs. A significant difference was found
in the expression of 36 genes (e.g., TP53, RNA binding protein, mRNA processing factor (RBPMS)). The
results showed differential expression of three lncRNAs and many miRNAs. Significant alterations in
the expression of these genes could be potential biomarker for OC reoccurrence. The ceRNA network
revealed a connection with the altered expression of RBPMS and TP53 genes. These genes and their
interaction with miRNAs may be a crucial mechanism underlying OC reoccurrence, and should be
further investigated [52].

Many studies show the involvement of miRNAs in OC pathogenesis. For example, miR-542-3p
has been shown to be strongly downregulated in EOC. Functional analysis of the miRNA showed
that overexpression of miR-542-3p results in the suppression of tumour progression. Additionally,
knockdown of that miRNA supports a role tumour development. One of the targets of miR-542-3p is
cyclin-dependent kinase 14 (CDK14). CDK14 is directly involved in the control of the eukaryotic cell
cycle [54] and, therefore, any abnormalities in its regulation may negatively impact the cell cycle.

miRNAs are also strongly involved in the coordinating network of DNA damage response (DDR).
An miRNA expression-dependent model, based on 10-miRNA-score, has been developed for the
prediction of OC outcomes [55]. The building of an RNA network includes many steps, starting with
obtaining genes involved in DDR. The miRNAs that interact with the obtained genes have been searched
for and carefully chosen using strict rules. Next, the miRNA regulatory network was built. This
included miRNA—target interactions between 75 miRNAs and 55 DDR genes. The index of genome
instability was evaluated using the correlation between altered miRNA expression and the frequency
of DDR gene mutation. The 10-miRNA-score model was constructed using 10 miRNAs which showed
a significant and strong correlation regarding their level of DDR gene mutation in cancerous genomes.
This allows for the prediction of defects in DDR and genome instability. The verification of the model
showed that a low 10-miRNA-score predicts poor survival of the patients [55]. Elias et al. [56] also
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focused on using miRNAs as prediction markers, and developed an miRNA algorithm for the diagnosis
of EOC. The algorithm—developed using machine learning—is able to discriminate between benign,
non-invasive tumours, and healthy samples. The resulting neural network consists of 14 miRNAs
and seven neurons in the hidden layer. The data used for the analysis came from three independent
databases (Effects of Regional Analgesia on Serum miRNA after Oncology Surgery Study (ERASMOS),
Pelvic Mass Protocol (PMP), and New England Case Control Study (NECC)) and included 179 patients.
The algorithm was tested during one clinical study. The results outperformed currently used diagnostic
tools, suggesting potential for this approach to be used in non-invasive diagnostic testing for OC [56].
Many other attempts of using miRNA networks have been described and show great potential as
predictive and prognostic biomarker [57,58].

In order to develop effective treatment, it is important to target key mutations underlying disease
development that are also amenable to drug treatment. Strong inter- and intratumoural heterogeneity
may lead to the different, and sometimes completely opposite, behaviour of specific alterations in one
subtype of cancer compared to another. For this reason, drugs that help in one cancer might not be
useful in treating another. This also explains the importance of complex multifactorial analysis [34,59].
To reveal OC intratumoural heterogeneity, Shih et al. [60] investigated tumour cell populations using
single-cell RNA sequencing (scRNA-seq). They studied cell population patterns and their changes
between different grades of disease (low, high, benign) as well as in primary versus metastatic sites.
The study included 14 samples from nine patients. A total of 16 different cell clusters were identified,
and specific cells were found to be correlated with differences in tumour grade. Moreover, the authors
identified changes in the proportion of epithelial cells to leukocytes from primary and metastatic sites.
Additionally, in samples of primary tumour, myeloid lineage cells were shown to be the main cell
population which expresses soluble factors, while in metastatic samples, these factors were mainly
expressed by fibroblasts. Furthermore, it was found that leukocytes were not suppressed by pro-tumour
cytokines in any of the cell populations.

The analysis was based on four subtypes within HG-SOC (differentiated, immunoreactive,
mesenchymal, and proliferative) as described by Bell et al. [26]. The differentiated subtype cell
population was most common in epithelial cells of benign tumours and LG-SOC. The immunoreactive
subtype was most abundant in the myeloid lineage cells of primary and metastatic tumours. The
mesenchymal subtype characteristics were connected to primary fibroblasts, metastatic fibroblasts,
and cancer stromal cells. No enrichment of the proliferative subtype was observed [60].

As mentioned before, OC tumours are very heterogeneous, containing many subpopulations.
Cancer stem cell populations with stem cell-like characteristics have been extensively studied in recent
years, and may play a very important role in cancer progression, drug resistance, and the metastasis
process [61,62]. The scRNA-seq technique allows tumours to be examined at single-cell resolution,
which allows for new insights into tumour biology [60].

Tumour progression models based on cancer stem cells are of increasing interest. Cancer stem
cells are self-renewing, apoptosis-resistant, able to differentiate asymmetrically, often resistant to
chemotherapy and radiotherapy, able to form spheroids, and have tumour-initiation ability. Cancer
stem cells are thought to persist in tumours as small populations, and are considered to cause relapse
and metastasis. OC is described as a prototypical example of a cancer stem cell-driven disease. Cells
found in peritoneal ascites are cancer cells with the ability to overcome anoikis, as has been shown
in vitro. In vivo, the cells show the ability to develop the tumour and metastasise [62,63].

Understanding the biology of OC stem cell populations and its role in disease progression may
be crucial to resolving most difficulties in the treatment of ovarian cancer, such as drug resistance,
cancer relapse, and metastasis. The omics approach, together with appropriate downstream analyses,
may be helpful in identifying cancer stem cells. The scRNA-seq technique allows cell population
heterogeneity to be elucidated [60], which can help in analysing cancer stem cell populations and their
fluctuations during different stages of OC. As computational methods to study cancer cell hierarchies
are developing quickly and are becoming more advanced, a method has been introduced to extract
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cell type-specific gene expression signals from the gene expression profiles of unsorted tumour cells
by deconvolution. One group applied this method to study acute myeloid leukaemia and recover
markers for acute myeloid leukaemia stem cells [64]. Using bulk sequencing results, they were able to
provide specific gene expression profiles for cancer stem cells and propose potential markers for them.

4. Focus on Epigenomics

DNA expression is regulated very tightly and on many levels. Alterations in the regulation
processes lead to abnormalities in cell function. The epigenome regulates gene expression without
altering the primary DNA sequence. An important component of the epigenome is miRNA, which
plays a role in post-transcriptional regulation. Epigenetic modification also includes DNA methylation
and histone modification. These processes modulate gene expression at the transcription level. DNA
methyltransferase is an enzyme which adds methyl groups to cytosine nucleotides, commonly on
cytosine–guanine dinucleotides (CpGs). The unique level and pattern of DNA methylation plays
an important role in tissue-specific expression, suppression of the expression of repetitive elements,
allele-specific expression, as well as the inactivation of the X-chromosome in women. Changes in
the epigenetic state may cause alterations to fundamental cell functions and trigger diseases such
as cancer. Commonly observed methylation patterns in cancer are (1) hypermethylation in the
promoter regions of tumour-suppressing genes, and (2) the hypomethylation of highly repetitive DNA
sequences [17,65–68].

Earp et al. [30] reviewed alterations in the hypermethylation of DNA between EOC histotypes.
They noticed strong variations in the results for histotype-specific DNA methylation. Since DNA
methylation is tissue-specific, correct matching of precursor cancer tissues to control tissues is crucial
for obtaining correct results. However, the identity of the precursor tissue is not always clear, which
imposes a strong limitation to epigenomic studies of OC. Additionally, it is known that the patterns
of DNA methylation become less consistent with increasing age, and that OC is more common in
postmenopausal women. The small sample size of rare OC histotypes and the lack of replication in
the associated studies are other issues leading to the high variation in methylation profiles between
the studies. It is necessary to find a way to overcome these limitations in order to draw conclusions
regarding the patterns of DNA methylation between OC histotypes [30]. However, histological type
does not seem to influence the global DNA hypomethylation of repeat elements, which has been
proposed to be a ubiquitous characteristic of cancer [30].

Sina et al. [65] introduced a simple and quick assay for detecting cancer based on the differences in
physicochemical properties between normal and epigenetically altered cancer genomes. Cancer DNA
is globally hypomethylated, with short regions of clustered methylation often occurring in regulatory
regions. These characteristics lead to purified cancer genomic DNA (gDNA) dissolving in solution,
and also to higher DNA–gold affinity, properties which were exploited for the detection of cancer,
however, further analysis is needed to describe the type, stage, and likelihood off disease recurrence is.
Table 2 summarises the characteristics of cancer and normal genomes that are important for this cancer
diagnosis method [65].

Unlike changes in DNA sequences, DNA methylation and histone modification are reversible.
Therefore, the investigation of epigenetic alterations in OC progression could lead to novel treatments
being developed. Epigenetic therapies target DNA methyltransferase (DNMT) and histone deacetylase
(HDAC). The DNMT inhibitor (DNMTi) decitabine was investigated in a clinical trial of 17 heavily
pretreated and platinum-resistant patients. The study showed that decitabine helped to restore
sensitivity to carboplatin and resulted in a high response rate (35%) and prolonged progression-free
survival (10.2 months). The patients with restored sensitivity had a greater number of demethylated
genes, including the known tumour suppressor genes mutL homolog 1 (MLH1), Ras association domain
family 1 isoform A (RASSF1A), and homeobox A10 and -A11 (HOXA10 and HOXA11) [69]. However,
most of the clinical trials using single-agent therapy had disappointing outcomes. A new approach
is combination therapy, which uses several epigenetic drugs. The combination of the pan-HDAC
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inhibitor belinostat with DNMTi decitabine was shown to enhance the effects of single-agent therapy
both in vitro and in mice [70,71]. A targeted treatment approach involving the inhibition of HDAC6 in
tumours with mutated AT-rich interaction domain 1A (ARID1A) showed an improvement of survival
using xenograph. This success was due to the direct deacetylation of Lys120 of cellular tumour antigen
p53 (p53), resulting in selectively promoted apoptosis [72].

A better understanding of the molecular mechanisms and patterns of the epigenome will allow
for more effective usage of existing therapies and for the development of novel therapies dependent on
cancer characteristics.

Table 2. The characteristics of cancer genomes vs. normal genomes important for the DNA–gold
affinity for cancer diagnosis. gDNA: genomic DNA; CpGs: cytosine–guanine dinucleotides [65].

Genome Type
Methylation of
Intergenomic

Regions

Methylation of
Regulatory

Regions

Methylscape
Biomarker

In-Solution
Properties of

Purified gDNA

Surface-Based
Properties

Cancer
genome Low methylation High

methylation
Clustered

methylation DNA solvation High
adsorption

Normal
genome

High methylation
(individual CpGs
~150 kbp apart)

Low
methylation

Dispersed
methylation

DNA
aggregation

Low
adsorption

5. Focus on Proteomics and Metabolomics

Useful complementation and validation to genomics and transcriptomics information are
proteomics and metabolomics information. The analysis of the genome, gene expression, and
its regulation create many hypotheses about cell processes. Given that proteins control most of
the biological processes, proteome alteration can give additional insight into pathways which drive
diseases, whereas endogenous metabolites influence biochemistry of cell processes. Proteomics and
metabolomics methods allow the identification and quantification of small molecular compounds,
description of protein–protein interactions, identification of posttranslational modifications, and
functional analysis, and are needed for the translational success of cancer genomics [8]. Nevertheless,
there are still many technical difficulties to overcome. Proteins are very dynamic and there are no
tools to amplify them yet. Modern MS approaches allow accurate analysis of differential protein
abundance, genome-wide differential protein expression analysis and differential metabolite expression
analysis. Notably, the introduction of high-resolution “Orbitrap” MS instrument working together
with computational platforms (f.eg. MaxQuant) allowed for the construction of the first overview of
the human proteome [73,74]. Although there have been strong improvements, methods are still under
development and constant refinement, and are presently unready for being used routinely in clinical
settings and are insufficient for detection of less abundant proteins and metabolites. Less abundant
proteins and metabolites are crucial as potential biomarkers, as OC is characterised by loss-of-function
and downregulation of tumour suppressor activities [26]. On the other hand, the technologies give
promise to a better understanding of cancer processes and pathways, especially when considered
together with other omics. This knowledge may lead to the identification of novel, specific and sensible
diagnostic and prognostic biomarkers [75]. Given the central dogma model of molecular biology [76],
proteins are functional mediators in phenotype characterisation. That means, although decisions are
initiated already at the genomic and transcriptional levels, they are executed on the protein level and
alteration in the protein level will lead to improper or altered functioning of cell machinery [75,77].
Both proteins and metabolites profiles are altered in cancer cells in comparison to healthy cells and the
information gives important insights into the pathophysiology of cancer.

In order to complement the TCGA analysis of HG-SOC genome, the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) performed a MS-based proteomic and phosphoproteomic study on
samples of HG-SOC. The results exhibit 9600 proteins from 174 tumours and 24,429 phosphosites
from 6769 phosphoproteins in a subset of 69 tumours. The integration of proteome information with
previously studied genomic information lead to the conclusion, that copy-number alterations influence
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differences in the proteome, which alters signaling pathways. Homologous repair deficiency, which is
widely present in HG-SOC, correlates with acetylation of histone H4. Additionally differences in protein
and phosphoprotein abundance indicate the signaling changes, which correlate with survival [78].

Garg et al. [79] conducted metabolomic profiling of HG-SOC and LG-SOC, combining two
methods: 1D H Nuclear magnetic resonance spectroscopy (NMR) and targeted MS. The results showed
22 metabolites, which were overlapping in both platforms, and most of the identified metabolites
were identified only on one of the platforms. Nowadays, no single platform is able to detect all
metabolites in a biological sample, especially due to the high variety of physiochemical properties
of metabolites. To achieve more comprehensive profiling, the group used two platforms. Due to
this experimental design, they were able to find differences in ascorbate and aldarate metabolism
which have not been previously described in EOC. [79]. Additionally, glycophospholipid, serine,
cysteine, taurine, tryptophane, fatty acid, choline phospholipid, nitrogen and methane metabolism
pathways and glycerol, phosphocholine, ketone bodies concentrations between HG-SOC, LG-SOC
and controls differed. The experiment was performed on a small number of patients (n < 20 in each
group), which is a strong limitation. Further research is necessary to validate the findings and provide
its clinical relevance.

Ovarian cancer is characterised by an intertumoral and intratumoral heterogeneity. Experiments
conducted on cell lines need to be carefully thought through and appropriate cell lines need to be
selected. Experimental design is crucial, otherwise there can be rough consequences for patients if the
wrong conclusions have been drawn. Coscia et al. [80] used single-run MS to analyse proteome profiles
of 26 OC cell lines, HG-SOC tumours, immortalised ovarian surface epithelial cells, and fallopian tube
epithelial cells. Deep proteomics results allowed grouping of the cell lines in three distinct categories:
epithelial, clear cell, and mesenchymal cells lines. Additionally, a signature based on 67 proteins
has been developed, which is clearly separated for HG-SOC on epithelial and mesenchymal clusters.
The two groups vary in survival as well. These results may be another clue confirming the dualistic
precursor model of HG-SOC [80].

Combined proteomics and metabolomics studies can be used for the validation of one another
and also for better elucidation of mechanisms driving ovarian cancer. Drug resistance development
is very common in ovarian cancer and is one of main issues to overcome in the quest for successful
treatment. Studies combining proteomics and metabolomics of serum from platinum-resistant and
platinum-sensitive EOC have been conducted in order to detect the pathways altered in chemoresistancy
and develop detection markers or treatment targets for drug resistant ovarian cancer. A total of
248 proteins have been identified, from which the altered expression of fibronectin 1(FN1), serpin
family A member 1 (SERPINA1) and orosomucoid 1 (ORM1) in further analysis showed significant
differences in abundance between platinum-resistant and -sensitive samples. However only the ORM1
showed potential to become a sensitive and specific for platinum resistance biomarker with the Area
Under The Curve (AUC) for ORM1, 0.91. Using High performance liquid chromatography- mass
spectrometry (HPLC-MS), 25,800 metabolic features have been revealed and six of them were chosen
as candidate biomarkers to develop metabolic signature. Using NMR, metabolic signatures have
been built and a clear separation of control group, platinum-sensitive group, and platinum-resistant
group has been shown. Metabolites from signature are potential proteomics and metabolomics serum
biomarkers for recognition of chemotherapy resistant cancer, which could help future treatment
decision-making [81]. The topic of cancer stem cells is also strongly researched in metabolomics. One
theory proposes that early and late metabolomic hits can affect chromatin organisation and activate
an epigenetic program involved in metabolic-driven reprogramming of cancer stem cells. In this
case, identification of key metabolic pathways would be crucial for the identification and targeting
of cancer stem cells. Cancer stem cells, sometimes also called tumour initiating cells, are a small
but heterogeneous cell population which show stem cell-like characteristics. Additionally, they are
thought to be responsible for drug resistance and metastasis. Within the tumour microenvironment,
a growing tumour faces hypoxia or limited nutrient availability, and to survive and further grow it
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need to overcome these problems. Metabolic heterogeneity and plasticity might play a crucial role in
tumour adaptability. De Francesco, E.M. et al. [82] pointed out the promising benefits of cancer stem
cells metabolomics research. Cancer stem cells, when activated, lead to cancer relapse and in many
cases to drug resistance. Understanding cancer stem cell biology and identifying novel treatment
targets may strongly influence the success in the handling of cancer patients. It has been asserted that
mitochondrial biogenesis and activity plays a critical role in the transition from a quiescent to active
state of cancer stem cells [83]. According to the metabostemness theory, there are two main pathways
in cancer stem cell metabolism—glycolysis and oxidative phosphorylation—which are important in
therapeutic intervention [82,84]. Understanding the metabolic changes of cancer stem cells might
help us track and develop targeted therapies to inhibit cancer relapse. The presented study examples
demonstrate the potential of the metabolomic and proteomic approaches. The fast technological
development of metabolomic and proteomic applications gives hope for future OC research.

6. Conclusions

Studies using modern technologies generate large amounts of data, however, the next step—making
sense of the data and using this to develop applications—is crucial. A well-prepared experimental
design is crucial to facilitate a better understanding of heterogeneous OC. The treatment of OC
faces many problems. Inter- and intratumoural heterogeneity results in difficulties for targeted
treatment. Asymptomatic early-stage OC often results in late diagnosis. The five-year survival rate
of late diagnosed patients is 30%. Most patients develop resistance to chemotherapy after some
rounds. Understanding the mechanisms behind this resistance development will allow us to overcome
the associated problems of its treatment and target the disease using precise treatment strategies.
During tumour progression, somatic mutations, gene expression alterations, epigenetic changes, and
chromosomal abnormalities occur, which could be tracked using NGS technologies and subsequent
data analysis. It is often hard to clearly identify precursor lesions, which makes the study of tumour
evolution complicated [61]. Table 3 summarises the main problems which researchers need to resolve
when studying OC, and examples of methods to understand the roots of these problems. In this review,
we have discussed modern biomedical approaches which allow us to face main OC challenges.

Table 3. Overview of the different approaches to resolving problems in the analysis and treatment
of ovarian cancer using modern technologies included in this paper. MS—mass spectrometry;
miRNA—micro RNA, gDNA—genomic DNA, mRNA—messenger RNA, lncRNA—long non-coding
RNA; LC-ESI-MS/MS—liquid chromatography-electrospray ionization/multi-stage mass spectrometry;
LC-MS—liquid chromatography-mass spectrometry; RT-PCR—real-time PCR; DNMT—DNA
methyltransferase; SNV—single nucleotide variation; CNV—copy number variation;

Problems Approach Method Expected Application Example Studies

Heterogeneity

Studying cell population
patterns between ovarian

cancer tumours of different
grade, as well as between
primary and metastatic

tumours

Single-cell RNA
sequencing

Understanding the leading cell
population; may conclude in
finding a specific target for

diagnosis and precise treatment

[60]

Proteomic profiling and
statistical comparison between

ovarian cancer cells and
controls

Single-run MS
Potential biomarkers for

diagnosis or outcome
prediction

[80]

Late diagnosis

Training of machine to become
a neural network with the
lowest number of miRNAs

needed for best diagnosis by
correlation with clinical data

Machine learning
algorithm based on
miRNA expression
data (microarrays,
RNA sequencing)

Building of sensitive
non-invasive diagnostic tools [56]

Using the physicochemical
properties between alterations

in genome methylation and
gold surface

gDNA isolation
and DNA–gold

affinity

Development of easy, fast, and
non-invasive diagnostic tools [65]
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Table 3. Cont.

Problems Approach Method Expected Application Example Studies

Drug resistance Building of endogenous RNA
network

Support vector
machine classifier

(using data of
mRNA, miRNA,
and lncRNA vs.

clinical data)

Development of a good model
to predict disease reoccurrence

in advance and to find
potential biomarkers for the

development of drug resistance

[52]

Proteomic and metabolomics
investigation and further

statistical analysis to recognise
differences between controls,

platinum-resistant tumour, and
platinum-sensitive tumour

2D-LC-ESI-MS/MS,
LC-MS

Development of biomarkers for
recognition of chemoresistant

ovarian cancer
[81]

Comparison of the primary
sensitive and refractory

resistant tumour

Whole-genome
sequencing;

transcriptome,
methylation, and

microRNA
(miRNA)

expression analyses

Designing of novel drugs for
resensitisation or targeted

therapy
[27]

Metastasis

Phylogenetic analyses
identifying constituent clones
and quantifying their relative

abundances at multiple
intraperitoneal sites

Whole-genome and
single-nucleus

sequencing

Understanding the process of
metastasis migration and

understanding the population
spread, which could lead to

better treatment management
in the future

[46]

Comparison of the mutation
landscape, and copy number

analysis between primary and
metastatic sites

High-depth
whole-exome

sequencing

Understanding the ways of
genomic evolution in

transcoelomic metastasis
[45]

Establishment, isolation,
cloning, and propagation of the

cellular content of ovarian
multilayered spheroids (cancer

stem cells) to study their
clonogenic, tumourigenic, and

invasive properties

In vitro and in vivo
study, RT-PCR

Describing cellular mechanisms
and the influence of cancer

stem cells on the aggressiveness
of ovarian cancer

[63]

Targeting

Treatment of heavily pretreated
and chemoresistant patients
with the addition of DNMT

inhibitor

Clinical trial

Development of treatment
which helps to restore the
sensitivity to carboplatin

(classic treatment)

[70,71]

Finding SNV, CNV, alteration
in mRNA expression, miRNA

expression

Exome sequencing,
RNA sequencing,
integrated data

analysis

Finding driver mutations and
key disrupted pathways in
pathogenesis for precision

medicine

[26,49]

Analysis of copy number
signatures (including many

copy number features)

Shallow
whole-genome

sequencing

Finding ways to predict overall
survival and the probability of
drug-resistance and relapse at

the point of diagnosis

[28]

10-mRNA-score model
constructed so that it strongly

correlates with the level of
DNA mutations and predicts

the genome instability

Construction of
RNA network

Prediction model of poor
outcome, which could identify

important pathways for
targeting disease

[55]
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Abbreviations

ARID1A AT-rich interaction domain 1A
ATM ATM serine/threonine kinase
ATR ATR serine/threonine kinase
AUC Area Under The Curve
BRAF B-Raf proto-oncogene, serine/threonine kinase
BRCA1/2 BRCA1/2 DNA repair associated
CA125 cancer antigen 125
CCNE1 cyclin E1
CD133 prominin 1
CD44 CD44 molecule (Indian blood group)
CDK12 cyclin-dependent kinase 12
CDK14 cyclin-dependent kinase 14
ChIP-Seq chromatin immunoprecipitation-sequencing
CNV copy number variations
CpG cytosine–guanine dinucleotides
CTCs cancer tumour cells
ctDNA circulating tumour cells
CTNNB1 catenin beta 1
DDR DNA damage response
DNMT DNA methyltransferase
DNMTi DNA methyltransferase inhibitor
EMSY EMSY transcriptional repressor, BRCA2 interacting
EMT epithelial–mesenchymal transition
EOC epithelial ovarian cancer
EpCAM epithelial cell adhesion molecule
ERASMOS Effects of Regional Analgesia on Serum miRNA after Oncology Surgery Study
ERBB2 erb-b2 receptor tyrosine kinase 2
FIGO The International Federation of Gynecology and Obstetrics
FN1 fibronectin 1
FOXM1 forkhead box M1
gDNA genomic DNA
GEO Gene Expression Omnibus (database)
HDAC histone deacetylase
HGP The Human Genome Project
HG-SOC high-grade serous ovarian cancer
HOXA10/11 homeobox A10/A11
HPLC High-performance liquid chromatography
IL6/JAK/STAT3 interleukin 6/Janus kinase/signal transducer and activator of transcription 3
KLK6 kallikrein-6
KRAS KRAS proto-oncogene, GTPase
LG-SOC low-grade serous ovarian cancer
lncRNA long non-coding RNA
M metastatic region
MAPK/Erk mitogen-activated protein kinases/extracellular signal-regulated kinase
MDR1 multidrug resistance protein 1
miRNA microRNA
MLH1 mutL homolog 1
mRNA messenger RNA
MS Mass Spectrometry
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ncRNA non-coding RNA
NECC New England Case Control study
NF1 neurofibromin 1
NFκB Nuclear Factor Kappa B
NGS Next Generation Sequencing
NMR Nuclear magnetic resonance spectroscopy
NRAS NRAS proto-oncogene, GTPase
OC ovarian cancer
ORM1 Orosomucoid 1
P1/2 primary tumour site
PI3K/AKT phosphatidylinositol 3-kinase/protein kinase B
PI3K/RAS phosphatidylinositol 3-kinase/RAS type GTPase family
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
PMP pelvic mass protocol
PPP2R1A protein phosphatase 2 scaffold subunit Alpha
PTEN phosphatase and tensin homolog
RAD51B RAD51 paralog B
RAD51C RAD51 paralog C
RASSF1A Ras association domain family 1 isoform A
RB1 RB transcriptional corepressor 1
RBPMS RNA-binding protein, mRNA processing factor
scRNA-Seq single-cell RNA sequencing
SERPINA1 serpin family A member 1
SNPs single-nucleotide polymorphisms
SNV single nucleotide variant
SWI/SNF switch/sucrose non-fermentable chromatin remodelling complex
TCGA The Cancer Genome Atlas
TP53 tumour protein 53
WNT WNT signalling gene family
Wnt/β-Catenin canonical Wnt pathway
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