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Simple Summary: To establish a therapy targeting scattered tumors throughout the body, we propose
a novel drug delivery system using a thermoresponsive polyoxazoline (POZ) as a drug carrier in
combination with gold nanorods (GNR), which produce heat when irradiated with near-infrared
(NIR) light. After the tumor was irradiated with NIR light, where GNR was accumulated in advance,
the radiolabeled POZ was intravenously injected. As a result, a marked tumor uptake was achieved
via self-aggregation of POZ by sensing heat yielded from the GNR. Because the POZ would be
chemically modified with various anti-tumor drugs including therapeutic radionuclides, remarkable
anti-tumor effects can be expected by enhancing delivery of POZ-based medicine into scattered
tumors throughout the body.

Abstract: The aim of this study was to establish a drug delivery system (DDS) for marked therapy of
tumors using a thermoresponsive polymer, polyoxazoline (POZ). The effectiveness of the following
was investigated: (i) the delivery of gold nanorods (GNRs) to tumor tissues, (ii) heat production of
GNR upon irradiation with near-infrared (NIR) light, and (iii) high accumulation of an intravenously
injected radiolabeled POZ as a drug carrier in tumors by sensing heat produced by GNRs. When the
GNR solution was irradiated with NIR light (808 nm), the solution temperature was increased both in
a GNR-concentration-dependent manner and in a light-dose-dependent manner. POZ, with a lower
critical solution temperature of 38 ◦C, was aggregated depending on the heat produced by the GNR
irradiated by NIR light. When it was intratumorally pre-injected into colon26-tumor-bearing mice,
followed by NIR light irradiation (GNR+/Light+ group), the tumor surface temperature increased
to approximately 42 ◦C within 5 min. Fifteen minutes after irradiation with NIR light, indium-
111 (111In)-labeled POZ was intravenously injected into tumor-bearing mice, and the radioactivity
distribution was evaluated. The accumulation of POZ in the tumor was significantly (approximately
4-fold) higher than that in the control groups (GNR+/without NIR light irradiation (Light–), without
injection of GNR (GNR–)/Light+, and GNR–/Light– groups). Furthermore, an in vivo confocal
fluorescence microscopy study, using fluorescence-labeled POZ, revealed that uptake of POZ by the
tumor could be attributed to the heat produced by GNR. In conclusion, we successfully established a
novel DDS in which POZ could be efficiently delivered into tumors by using the heat produced by
GNR irradiated with NIR light.

Keywords: thermoresponsive polymer; polyoxazoline; gold nanorod; near-infrared light; drug
delivery system
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1. Introduction

Since side effects can still be a major concern in cancer therapy, cancer-selective drug
delivery is essential for superior therapy without incurring systemic toxicities. Presently,
nanocarriers such as liposomes and micelles have been employed to deliver more drugs
per carrier (nanoparticle) into tumor tissues via the enhanced permeability and retention
(EPR) effect [1,2] in pre-clinical and clinical stages [3–7]. More recently, water-soluble
polymers have attracted considerable attention in the field of drug delivery systems for
diagnosis and therapy (theranostics) because of their biocompatibility, availability of a
wide range of molecular masses, and facile modification of polymer chains. To date, some
reports have revealed that water-soluble polymers, including polyethylene glycol (PEG) [8],
N-(2-hydroxypropyl)methacrylamide (HPMA) [9], polysarcosine [10], and polyoxazoline
(POZ) [11–13], could accumulate in the tumor via passive and active tumor-targeting
mechanisms.

In particular, polyoxazoline (POZ) has a lower critical solution temperature (LCST)
and is used in drug delivery systems (DDS) as a thermoresponsive polymer [14]. We
propose a novel tumor therapy where a POZ as a drug carrier could be delivered into
tumors via thermoresponsive aggregation of POZ in combination with tumor-localized
hyperthermia [15]. In fact, when the radiolabeled POZ was intravenously injected, an
approximate two-fold increase in drug delivery was observed in heat-treated tumors
compared to non-heat-treated tumors. However, this strategy using hyperthermia could
be applied only to tumors identified and localized before treatment.

Gold nanorods (GNRs), characterized by a uniform shape with a narrow size distri-
bution, are anisotropic gold nanoparticles because of their two absorption peaks on the
basis of longitudinal and transversal plasmon resonances [16]. Their optical and chemical
properties can be altered based on shape and aspect ratio (longitude/transverse), leading
to various biomedical applications [17,18]. Irradiation of near-infrared (NIR) light into
GNRs could yield a moderate temperature rise, causing damage to the target tumor tissue,
which is more sensitive to hyperthermia than healthy tissue. Therefore, photothermal
tumor therapies using GNRs have been intensively investigated owing to their excellent
photothermal conversion efficiency [19–22]. In contrast to conventional localized hyper-
thermia, tumor-selective heat production can be achieved throughout the body by using
GNRs conjugated with tumor-targeting moieties.

In this study, to establish a therapy targeting systemic tumors, we proposed a novel
drug delivery system as follows (Figure 1): (i) GNRs (heat source) is delivered into the
tumors, (ii) the intratumoral temperature is increased by irradiation by NIR light, and (iii)
POZ intravenously injected as a drug carrier can be efficiently taken up by the tumors
via polymer aggregation. In this study, the GNR was intratumorally injected in step (i)
to validate the tumor uptake of thermoresponsive POZ dependent on the heat produced
by GNRs as a proof-of-concept study. The radiolabeled POZ was used to evaluate the
distribution of POZ throughout the body quantitatively.
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that is self-aggregating in tumor tissue when given gold nanorods (GNRs) and irradiated with
near-infrared (NIR) light.
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2. Materials and Methods
2.1. Optical and Chemical Properties of GNR

GNRs functionalized by carboxylic acid (size; 10 × 45 nm, longitudinal surface plas-
mon resonance; 808 nm, 94 nM) was purchased from Nanopartz Inc. (Loveland, CO, USA).
We actually measured the size (Z-average fractioned mean diameters) and zeta potential
in PBS using a Zetasizer Nano (Malvern Instruments Ltd., Malvern, UK). Furthermore,
we evaluated the photostability of GNR (1 nM in PBS) by irradiating NIR light (SPOLD,
Hamamatsu Photonics, Hamamatsu, Japan) of 0.6 W/cm2 for 0, 5, 10, and 15 min based on
the Vis-NIR absorbance spectra.

2.2. Evaluation on Temperature Change of GNR Solution upon NIR Light Irradiation

The concentration of GNR was adjusted to 0, 0.1, 0.25, 0.5, and 1.0 nM by dilution with
distilled water. The GNR samples were irradiated with NIR light (808 nm, 1, 2, or 5 W/cm2)
for 5 min, and the solution temperature was monitored every 15 s using a thermographic
camera (FLIR E4, FLIR Systems, Inc., Wilsonville, OR, USA).

2.3. Aggregation of POZ via Heat Yielded from GNRs by NIR Light Irradiation

A POZ derivative was synthesized as described in our previous report [23]. Its
molecular structure in this study is shown in Figure 2. 1H NMR spectrum for the POZ
derivative was recorded by JEOL JNM-ECZ400S (400 MHz) (Figure S1). The molecular
weight of POZ was 22,342 g/mol, as measured by gel permeation chromatography. The
LCST of POZ was 38 ◦C, which was determined using a Zetasizer Nano. The hydrated
size of POZ was measured at 37 and 42 ◦C in phosphate-buffered saline (PBS). The POZ
solution (100 µM, 100 µL PBS) was mixed with GNRs (0 or 1 nM, 100 µL PBS) in the tubes.
The tubes were irradiated with NIR light (2 W/cm2) for 5 min, and then the aggregation of
POZ was observed.
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2.4. Synthesis of 111In-Labeled POZ and Fluorescence-Labeled POZ
111In-Labeling of POZ was performed according to our previous report [15]. 111InCl3

was kindly provided by Nihon Medi-Physics (Tokyo, Japan). After preparation of POZ
(LCST: 38 ◦C, M.W.: 21,645) modified by p-SCN-Bn-DOTA (Macrocyclics Inc., Dallas, TX,
USA) (DOTA-POZ), 111InCl3 was reacted with DOTA-POZ in acetate buffer (0.1 M, pH 6.0)
at room temperature for 30 min. After the addition of excess EDTA (50 equiv.), purification
with Amicon Ultra-4 (molecular weight cut-off (MWCO): 3 kDa, 7500× g) (Merck Millipore,
Co., Billerica, MA, USA) was conducted by elution with PBS. The radiochemical purity
was calculated using a PD-10 column (GE Healthcare, Piscataway, NJ, USA).

Furthermore, fluorescence-labeled POZ was synthesized to evaluate the intratumoral
distribution of POZ by confocal fluorescence microscopy. POZ (5.45 mg, 1 eq.) was
mixed with Fluorescein-5-isothiocyanate (FITC) (Life Technologies Co., Carlsbad, CA, USA)
(0.49 mg, 5 eq.) in PB (0.1 M, pH 9.0) (500 µL), and then stirred at room temperature for 24 h.
After the reaction, the mixture was diafiltrated twice with Amicon Ultra-4 (MWCO: 3 kDa)
using distilled water as a solvent to remove unreacted FITC, and the purified sample was
freeze-dried for storage. The number of FITC molecules conjugated to POZ was calculated
by measuring absorbance at 488 nm, as reported previously [15].
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2.5. Cell Culture and Animal Model

Colon26, a mouse cell line derived from rectal cancer, was purchased from the RIKEN
Bio Resource Center, Japan. The cells were harvested in DMEM (Life Technologies Co.)
containing 10% fetal bovine serum, 100 units/mL penicillin, and 100 µg/mL streptomycin
in 5% CO2 at 37 ◦C. Animal experiments were performed according to institutional guide-
lines. The protocol was approved by the Kobe Pharmaceutical University Committee for
Animal Care and Use. Colon26 cells (1 × 106 cells) were inoculated in both the right and
left flanks of BALB/c mice (male, 5 weeks old) after local hair removal, and the mice were
used for biodistribution study 7–8 days after inoculation. During the procedure, mice were
anesthetized with isoflurane.

2.6. Biodistribution of 111In-Labeled POZ When Combined with GNR-Based Hyperthermia

The GNR solution or PBS (5 µL) was intratumorally injected into the tumors in both
the right and left flanks of mice. The GNR concentration was adjusted to 1 nM. One side
was irradiated with NIR light (0.6 W/cm2) for 15 min, and the other side was shielded
from light using aluminum foil. The change in tumor surface temperature was monitored
using thermography (FLIR E4). While continuing light irradiation, 111In-labeled POZ
(4 nmol/100 µL) was intravenously administered, and the mice were sacrificed 60 min
after probe injection. The blood, spleen, pancreas, stomach, intestine, kidney, liver, heart,
lung, muscle, and tumor were excised, and their weights were measured. The radioactivity
of these organs was determined using a gamma counter (Wizard2480, PerkinElmer, Inc.,
Waltham, MA, USA). The accumulation of radioactivity in these organs was represented as
the percentage injected dose (%ID)/g of tissue.

2.7. Fibered Confocal Fluorescence Microscopic Imaging Studies

The intratumoral localization of POZ was investigated using a fibered confocal flu-
orescence microscopy imaging system (Cellvizio® Endomicroscopy System, Mauna Kea
Technologies, Paris, France) with an S-1500 probe (field of view: 600 µm diameter, lat-
eral resolution: 3.3 µm). By combining GNR injection with NIR light irradiation, the
tumors were pre-heated for 15 min as mentioned above. Thereafter, FITC-labeled POZ
(34 nmol/150 µL/mouse) was intravenously injected. The tumor temperature was main-
tained at 42–43 ◦C for an additional 60 min, followed by confocal fluorescence microscopy.
The imaging data were acquired at a scan rate of 12 frames/s.

2.8. Statistical Analysis

Four to six mice were used for in vivo experiments. Statistical significance between
groups was determined using Tukey’s test. Data were presented as the mean ± standard
deviation. Statistical significance was set at p < 0.05.

3. Results
3.1. Optical and Chemical Properties of GNR

The size and zeta-potential of GNR were 17.0 ± 3.3 nm and −10.5 ± 1.5 mV, respec-
tively. GNR used in this study has an absorbance peak at around 800 nm, and was highly
stable after the irradiation of NIR light (Figure S2). The biocompatibility of GNR with
carboxyl groups was reported by Wang et al. [24].

3.2. Evaluation on Temperature Change of GNR Solution upon NIR Light Irradiation

The change in the temperature of the GNR solutions was evaluated by thermography
when irradiated with NIR light (Figure 3). The temperature of the solutions was increased
by irradiation with NIR light (2 W/cm2) in a GNR-concentration-dependent manner
(Figure 3a). Furthermore, a higher light dose enhanced the increase in the GNR solution
temperature (Figure 3b).
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(a) Temperature elevation over a period of 5 min of NIR light irradiation (2 W/cm2) at different GNR
concentrations (0–1 nM). (b) The effect of NIR light dose (1–5 W/cm2) on temperature elevation
(GNR concentration: 0.1 nM). (c) Aggregation of polyoxazoline (POZ) via heat yielded from GNR by
NIR light irradiation.

3.3. Aggregation of POZ via Heat Yielded from GNR by NIR Light Irradiation

The aggregation of POZ was evaluated in mixed solutions of GNR and POZ upon
light irradiation. Immediately upon light irradiation, white turbidity of the POZ solution
was observed, suggesting the aggregation of POZ via an increase in solution temperature
(Figure 3c). On the other hand, POZ was not aggregated in the solution without light
irradiation, regardless of coexistence with GNR. The hydrated size of POZ was 4.7 ± 1.8 nm
and 429 ± 138 nm at 37 ◦C and 42 ◦C, respectively (Figure S3).

3.4. Synthesis of FITC-Labeled POZ and 111In-Labeled POZ

In the chemical structure of the POZ derivative (Figure 2), the m:n was approximately
3:1, which was determined by analysis of NMR data (Figure S1). The number of FITC
molecules conjugated to POZ was approximately 0.5, as determined by the absorbance at
488 nm. 111In-labeled POZ derivatives were successfully prepared with a radiochemical
yield of 56.2% and a radiochemical purity greater than 94%, which was determined using a
gel filtration column.

3.5. Evaluation of Distribution of 111In-Labeled POZ by Combination with GNR-Based
Hyperthermia

Under isoflurane anesthesia, tumor tissues were irradiated with NIR light (0.6 W/cm2,
15 min), where GNR solutions were intratumorally injected (intratumoral GNR concentra-
tion: 1 nM). Immediately (~150 s) after light irradiation, the tumor surface temperature
increased to 40–42 ◦C (above the lower critical solution temperature (LCST)) (Figure 4),
which was maintained for 60 min under light irradiation. In contrast, there was no marked
change in the tumor surface temperature (31–32 ◦C) under the condition of GNR +/NIR
light–.

Fifteen minutes after NIR light irradiation, 111In-labeled POZ was intravenously in-
jected, and the distribution in the tumor-bearing mice was evaluated (Figure 5). High
radioactivity was detected in the tumor where GNR had been intratumorally injected
followed by NIR light irradiation (GNR+/Light+ group), 1 h post-injection of probes
(9.5 ± 3.1% injected dose per gram (ID/g). On the other hand, the accumulation of ra-
dioactivity in the tumor was 2.5 ± 0.5, 2.8 ± 0.5, and 2.0 ± 0.5% ID/g for GNR+/Light–,
GNR–/Light+, and GNR–/Light– groups, respectively. A significantly higher (approx-
imately 4-fold) tumor uptake of 111In-labeled POZ was observed in the GNR+/Light+
group than in the other groups, suggesting that the tumor uptake of POZ was caused by
heat produced from GNR. Low levels of radioactivity were observed in normal tissues,
including the lungs (4.3 ± 0.8% ID/g), liver (2.5 ± 0.5% ID/g), and spleen (2.1 ± 0.4%
ID/g), except for the blood (14.5 ± 2.0% ID/g) and kidneys (9.7 ± 1.8% ID/g) (average
values collected from all mice).
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Figure 5. Biodistribution of 111In-labeled polyoxazoline (POZ) by combination with hyperthermia
using gold nanorods (GNRs) irradiated by near-infrared (NIR) light. (a) GNR was injected into both
tumors inoculated in right and left flanks, and then NIR light was irradiated into the one side of
tumors. (b) Phosphate-buffered saline (PBS) was injected into both tumors in right and left flanks,
and then NIR light irradiated a tumor on one side. (c) Radioactivity accumulation in the tumor
treated with or without GNR injection and NIR light irradiation. * p < 0.001 vs. other groups.

3.6. Fibered Confocal Fluorescence Microscopic Imaging Studies

Furthermore, the intratumoral distribution of FITC-labeled POZ was evaluated using
a fibered confocal fluorescence microscope (Figure 6, Movies S1 and S2). In the tumor
injected with GNRs and irradiated with NIR light, the distribution of FITC–POZ was
localized near the blood vessels (Movie S1). In contrast, in the untreated normal tissue
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(back), fluorescence signals derived from FITC–POZ were observed mainly within the
blood vessels (Movie S2).
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Figure 6. Distribution of fluorescence-labeled polyoxazoline (POZ) in the untreated normal tissue
(back) (a) and in the tumor treated with gold nanorods (GNRs) and near-infrared (NIR) irradiation
(b), which was visualized using confocal microscopy. Green: FITC-labeled POZ. Scale bar = 50 µm.

4. Discussion

POZ is a biocompatible water-soluble polymer and is expected to be used in the
biomedical field owing to its unique characteristics. This study demonstrated that the
tumor uptake of radiolabeled POZ (LCST: 38 ◦C) was markedly enhanced when combined
with GNR administration and irradiation of NIR light via POZ self-aggregation by sensing
heat produced by GNR. The tumor uptake of POZ was approximately 10% ID/g, which
was similar to that of superior antibody-based radiopharmaceuticals targeting tumor-
specific antigens, although it depends on the conditions including the tumor cell line,
radionuclide, injection dose, and evaluation timing [25]. Furthermore, in traditional
hyperthermia, the treatment is generally given for 30–60 min [26]. Photothermal therapy
using GNRs has also been used within 1 h in many reports [19,20]. In this study, polymer
aggregation was successfully induced early after treatment, and as a result, the amount of
POZ delivered to the tumor was dramatically improved within 1.25 h. (For the dosage and
administration timing of the POZ, we referred to our previous paper [15]). These results
suggested that it is easy to incorporate the treatment of POZ-based medicine into clinically
implemented protocols. Kawano et al. reported a photothermal therapy using GNR
modified with thermoresponsive water-soluble polymer on their surface, and the amount
of GNRs delivered to the tumor improved in combination with light irradiation [27]. We
proposed the more versatile therapeutic strategy where the delivery of thermoresponsive
POZ as a drug carrier into the tumor could be remarkably improved by sensing heat from
the GNRs.

Recently, therapeutic radiopharmaceuticals have attracted much attention owing
to their extraordinary use in internal radiotherapy of tumors. For instance, prostate-
specific membrane antigen-targeted radiopharmaceuticals labeled with various β− and
α-ray emitting radionuclides, including yttrium-90 [28], lutetium-177 (Lu-177) [29], and
actinium-225 [30] demonstrated marked therapeutic effects. Furthermore, a Lu-177-labeled
peptide-based radiopharmaceutical (Lu-177-dotatate) targeting somatostatin receptor 2,
which is highly expressed in neuroendocrine tumors, was approved by the Food and Drug
Administration [31]. POZ–DOTA could also be labeled with these therapeutic radiometals
as previously reported [23]; therefore, the application of this strategy using a radiolabeled
thermoresponsive POZ would be expected for efficient internal radiotherapy of tumors.

The most important issue in this strategy is being able to control the systemic distribu-
tion of GNRs precisely. The pharmacokinetics of GNRs have been thoroughly investigated,
and Akiyama et al. reported that PEG-modified GNRs are mainly trapped in the liver and
spleen, suggesting clearance by the reticuloendothelial system [32]. The relatively higher
tumor uptake via the EPR effect has been reported compared to that in the blood, kidney,
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and lung. Furthermore, in recent years, GNR-based medicines conjugated with tumor-
targeting moieties have been energetically studied [33,34], and antibody-GNR conjugates
have dramatically improved the tumor accumulation of GNRs [33].

Although it is essential to shield organs (liver and spleen) from non-specific accumu-
lation from light irradiation, the temperature increase in the tumor would be relatively
high when the NIR light irradiation is carried out systematically, and the proposed DDS
would work well. Notably, a strategy to maintain the temperature of normal organs below
the LCST of POZ would also be required to reduce unnecessary side effects. We believe
that this therapeutic strategy would cure scattered tumors that cannot be treated by local
hyperthermia.

5. Conclusions

In this study, we revealed that the radiolabeled thermoresponsive POZ as a drug
carrier could be markedly taken up by the tumor when it was irradiated by NIR light
where GNRs had highly accumulated. Therefore, we successfully established a novel DDS
in which POZ could be efficiently delivered into tumors using a light-responsive GNR.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13195005/s1, Figure S1: 1H NMR spectrum of a POZ derivative investigated in this
study, Figure S2: Vis-NIR spectra of GNR investigated in this study. At 0, 5, 10, and 15 min after
irradiation of NIR light (0.6 W/cm2), the Vis-NIR spectra was evaluated, Figure S3: Size distribution
of POZ derivative investigated in this study in PBS at 37 ◦C (A) and 42 ◦C (B), determined using
dynamic light scattering measurements. The number-average diameters were shown, Movie S1:
Confocal microscopy imaging of POZ distribution in the tumor tissues treated with gold nanorod
(GNR) administration and near-infrared (NIR) light irradiation, Movie S2: Confocal microscopy
imaging of POZ distribution in the non-treated normal tissues.
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