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Abstract

Motivation: Structure based ligand discovery is one of the most successful approaches for aug-

menting the drug discovery process. Currently, there is a notable shift towards machine learning

(ML) methodologies to aid such procedures. Deep learning has recently gained considerable atten-

tion as it allows the model to ‘learn’ to extract features that are relevant for the task at hand.

Results: We have developed a novel deep neural network estimating the binding affinity of ligand–

receptor complexes. The complex is represented with a 3D grid, and the model utilizes a 3D convo-

lution to produce a feature map of this representation, treating the atoms of both proteins and

ligands in the same manner. Our network was tested on the CASF-2013 ‘scoring power’ benchmark

and Astex Diverse Set and outperformed classical scoring functions.

Availability and implementation: The model, together with usage instructions and examples, is

available as a git repository at http://gitlab.com/cheminfIBB/pafnucy.

Contact: pawel@ibb.waw.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Structure-based virtual screening techniques are some of the most

successful methods for augmenting the drug discovery process

(Bajusz et al., 2017; Fradera and Babaoglu, 2017). With structure-

based screening, one tries to predict binding affinity (or more often,

a score related to it) between a target and a candidate molecule

based on a 3D structure of their complex. This allows to rank and

prioritize molecules for further processing and subsequent testing.

Numerous scoring schemes have been developed to aid this process,

most of them use statistical and/or expert analysis of available pro-

tein–ligand structures (Morris et al., 2009; Muegge, 2006; Verdonk

et al., 2003). Currently, there is a notable shift towards scoring func-

tions using machine learning (ML) methodologies, and this have

been highlighted by several reviews (Cheng et al., 2012; Lima et al.,

2016; Ma et al., 2013). These methods are naturally capable of cap-

turing non-linear and complex relationships in the available data.

Rather than ‘manually’ creating rules using expert knowledge

and statistical inference, ML models use arbitrary functions with

adjustable parameters that are capable of transforming the input (in

this scenario, a protein–ligand complex) to the output (a score

related to protein–ligand binding affinity). Briefly, when the model

is presented with examples of input data paired with the desired out-

come, it ‘learns’ to return predictions that are in agreement with the

values provided. Typically the process of learning is incremental; by

introducing small changes to the model parameters, the prediction is

moved closer to the target value. Prime examples of ML scoring

functions are RF-Score (Ballester and Mitchell, 2010), which uses

random forest, and NNscore (Durrant and McCammon, 2010,
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2011), which uses an ensemble of shallow neural networks. These

scoring functions were proven useful in virtual screening campaigns

and yielded more active compounds than their classical counterparts

(Kinnings et al., 2011; Wójcikowski et al., 2017).

However, one drawback of such ML approaches is that they still

rely on feature engineering, i.e. they utilize expert knowledge to de-

fine rules that will become the basis of input data preprocessing.

Hence, one can argue that they are just more sophisticated classical

scoring functions with more complex rules.

The ML rule of thumb says that in order to establish a good pre-

dictive model, the model needs a lot of data to be able to distinguish

more general trends and patterns from noise. The growing amount

of both structural data and affinity measurements has allowed

researchers to explore deep learning. Briefly, a deep neural network

consists of multiple layers of non-linear transformations that extract

and combine information from data to develop sophisticated rela-

tionships between the input and the output. One of the main advan-

tages of deep learning is that it allows for the reduction of feature

engineering: the model learns to extract features as a natural conse-

quence of the process of fitting the model’s parameters to the avail-

able data. It is clear that choosing the representation of the input

data has a profound impact on the predictive power of a model.

Currently, there is a lot of effort in the field to incorporate feature

extraction directly into the ML model. In such an approach, a

learnable molecule representation replaces classical descriptors and

fingerprints and becomes the first part of the model. Then, this rep-

resentation is trained together with the predictive part of the model

to extract features that are useful in solving a specific task. With

such a design, it is therefore theoretically possible to find and quan-

tify relationships and/or mechanisms that have not yet been discov-

ered or are unknown to the experts (Nketia et al., 2017; Zhang

et al., 2017).

Deep learning has been relatively widely used by the bioinfor-

matics (Alipanahi et al., 2015; Jiménez et al., 2017; Jurtz et al.,

2017; Leung et al., 2014; Park and Kellis, 2015) and computational

biology community (Angermueller et al., 2016). Several promising

examples of deep learning methods have also been shown for

computer-aided drug design (CADD). In what follows, we first focus

on ligand-based methods, which are in general more established,

and then we continue with structure-based models.

The simplest deep models in ligand-based design use molecular

fingerprints as feature vectors and fully-connected (dense) neural

networks built on top of them. Such approaches were proven suc-

cessful; they outperform other ML methods in predicting bioactivity

(Lenselink et al., 2017) and other properties of small molecules, like

aqueous solubility (Lusci et al., 2013) or toxicity (Xu et al., 2015).

Additionally, neural network model allows to easily create

multi-task classifiers or regressors, predicting, for example, activities

against multiple targets at once. It has been shown that such QSAR

models perform better than single-task networks (Dahl et al., 2014;

Lenselink et al., 2017; Ma et al., 2015; Ramsundar et al., 2017; Xu

et al., 2017), as they benefit from more training data, but also be-

cause they are able to ‘share’ internal representations between tasks,

and therefore learn to recognize more general patterns in the data.

As mentioned previously, neural networks allow for more flexi-

bility in terms of how the data are provided to the model, so that it

might learn the best representation for its purpose. One approach to

achieve this is to use convolutions on the molecular graph, allowing

relevant patterns in this graph to be identified (Duvenaud et al.,

2015; Kearnes et al., 2016). Another way is to use a recurrent neural

network on directed acyclic representations of the molecular graph

(Lusci et al., 2013), or even apply natural-language processing

techniques to molecules encoded with SMILES strings (Jastrzȩbski

et al., 2016).

Application of deep models to de novo ligand design has also

been explored. There are several examples of models which use

autoencoders and/or recurrent neural networks that are able to pro-

pose new molecules with desired properties (Ertl et al., 2017;

Gómez-Bombarelli et al., 2017; Olivecrona et al., 2017; Segler et al.,

2017). Using autoencoders also allows to represent molecules

with short, real-valued vectors (extracted from the bottleneck layer),

which facilitates exploration of the chemical space (Gómez-

Bombarelli et al., 2017).

Although deep learning is more readily used in ligand-based

regimes, there are currently a couple of interesting examples of

structure-based neural networks. In AtomNet (Wallach et al.,

2015), input—molecular complex—is discretized to a 3D grid and

fed directly into a convolutional neural network. Instead of data pre-

processing, the model uses a learnable representation to recognize

different groups of interacting atoms. AtomNet is a classification

method that yields 1 if the ligand is active and 0 otherwise. Another

similar model was created by Ragoza et al. (2016) and trained to

perform two independent classification tasks: activity and pose pre-

diction. However, with classification methods, we lose information

about the strength of the interaction between the protein and the

ligand.

Since neural networks are also suitable for regression, Gomes

et al. (2017) created a model predicting the energy gap between a

bounded protein–ligand complex and an unbounded state. In their

work, radial pooling filters with learnable mean and variance were

used to process the input. Such filters enabled the production of a

summary of the atom’s environment and a representation that was

invariant to atom ordering and the orientation of the complex.

Taking into account the current findings and aforementioned

approaches, we have developed Pafnucy (pronounced ‘paphnusy’)—

a novel deep neural network tailored for many structure-based

approaches, including derivative prioritization and virtual screening.

Similar to Ragoza et al. (2016), the input structure is represented

with a 3D grid, and a combination of convolutional and dense layers

is used; however, our model tries to predict the exact binding affin-

ity value. Pafnucy utilizes a more natural approach to atom descrip-

tion in which both proteins and ligands have the same atom types.

This approach serves as a regularization technique as it forces the

network to discover general properties of interactions between

proteins and ligands. Additionally, the design of Pafnucy provides

insight into the feature importance and information extraction that

is done during learning and the final prediction of binding affinity.

The network was implemented with TensorFlow (Abadi et al.,

2015) using Python API and trained on the PDBbind database (Liu

et al., 2017). The source code, trained model and usage instructions

are available as a git repository at http://gitlab.com/cheminfIBB/

pafnucy.

2 Materials and methods

2.1 Data
2.1.1 Representation of a molecular complex

Three-dimensional structures of protein–ligand complexes require

specific transformations and encoding in order to be utilized by

a neural network. In our approach, we cropped the complex to a

defined size of 20-Å cubic box focused at the geometric center of a

ligand. We then discretized the positions of heavy atoms using a 3D

grid with 1-Å resolution (see Supplementary Fig. S1). This approach
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allowed for the representation of the input as a 4D tensor in which

each point is defined by Cartesian coordinates (the first 3 dimen-

sions of the tensor) and a vector of features (the last dimension).

In Pafnucy, 19 features were used to describe an atom:

• 9 bits (one-hot or all null) encoding atom types: B, C, N, O, P, S,

Se, halogen and metal
• 1 integer (1, 2, or 3) with atom hybridization: hyb
• 1 integer counting the numbers of bonds with other heavyatoms:

heavy_valence
• 1 integer counting the numbers of bonds with other heteroatoms:

hetero_valence
• 5 bits (1 if present) encoding properties defined with SMARTS

patterns: hydrophobic, aromatic, acceptor, donor and ring
• 1 float with partial charge: partialcharge
• 1 integer (1 for ligand, -1 for protein) to distinguish between the

two molecules: moltype

The SMARTS patterns were defined the same way as in our pre-

vious project (Stepniewska-Dziubinska et al., 2017). The partial

charges were scaled by the training set’s standard deviation in order

to get a distribution with a unit standard deviation, which improves

learning. In case of collisions (multiple atoms in a single grid point),

which rarely occur for a 1-Å grid, features from all colliding atoms

were added.

2.1.2 Dataset preparation

The network was trained and tested with protein–ligand complexes

from the PDBbind database v. 2016 (Liu et al., 2017). This database

consists of 3D structures of molecular complexes and their corre-

sponding binding affinities expressed with pKa (�log Kd or �log Ki)

values. PDBBind complexes were divided by Liu et al. into 3 over-

lapping subsets. The general set includes all available data. From

this set, the refined set, which comprises complexes with higher

quality, is subtracted. Finally, the complexes from the refined set are

clustered by protein similarity, and 5 representative complexes are

selected from each cluster. This fraction of the database is called the

core set and is designed as a high-quality benchmark for structure-

based CADD methods.

To properly employ PDBbind information and prevent data

leakage, we have split the data into disjoint subsets, i.e. the refined

set was subtracted from the general set, and the core set was sub-

tracted from the refined set so that there are no overlaps between

the three subsets. Next, we have discarded all protein–protein, pro-

tein–nucleic acid, and nucleic acid–ligand complexes from these new

datasets. Finally, in order to evaluate our model with the CASF-

2013 ‘scoring power’ benchmark (Li et al., 2014), we needed to ex-

clude all data that overlap with the 195 complexes used in CASF-

2013. We therefore excluded a total of 87 overlapping complexes (5

were part of the general set, and 82 were part of the refined set)

from the training and validation sets. For the list of excluded struc-

tures see Supplementary Table S1.

All complexes used in this study were protonated and charged

using UCSF Chimera (Pettersen et al., 2004) with Amber ff14SB for

standard residues and AM1-BCC for non-standard residues and

ligands. No additional improvements nor calibration was performed

on the complexes; this default protocol was chosen to be in line with

(Li et al., 2014) to be able to compare Pafnucy to other methods

tested on the CASF-2013 ‘scoring power’ benchmark.

The remaining complexes of the PDBbind v. 2016 dataset were

divided as follows: (i) 1000 randomly selected complexes from the

refined set were used in validation, (ii) the whole core set (290

complexes) was used as an external test set, (iii) all other complexes

(remainder of the refined set and the general set, 11906 in total)

were used as the training set. In summary, the general and refined

sets were used to train the model and select the hyperparameters,

while the core set was used as an external test set that was unknown

to the model during training and validation. The scheme illustrating

relationships between the subsets and dataset partitioning is avail-

able in Supplementary Figure S2.

Atomic features were calculated using Open Babel (O’Boyle

et al., 2011), and the complexes were transformed into grids. Helper

functions used to prepare the data and Jupyter Notebook with all

preprocessing steps are available at http://gitlab.com/cheminfIBB/

pafnucy.

As an additional external test set, we used 73 complexes from

the Astex Diverse Set (Hartshorn et al., 2007). This dataset, al-

though substantially smaller than PDBbind subsets, provides

Pafnucy with structures from an independent source, and can help

in detecting generalization problems related to database-specific

artefacts. Of 85 complexes in the Astex Diverse Set, we excluded

those without binding affinity (11 complexes) and those present in

the PDBbind database (a single complex, PDB ID: 1YVF, was pre-

sent in the general set). The remaining structures were prepared the

same way as the PDBbind database. This dataset was used in order

to test Pafnucy on structures from a different source.

2.2 Network
2.2.1 Architecture

The architecture used in Pafnucy is a deep convolutional neural net-

work with a single output neuron for predicting the binding affinity.

The model consists of two parts: the convolutional and dense parts,

with different types of connections between layers (see Fig. 1).

Convolution, from which the name ‘convolutional’ stems, is a math-

ematical operation that mixes two functions together. Most neural

network libraries actually substitute the convolution operation with

cross-correlation (Goodfellow et al., 2016), which has a more intui-

tive interpretation and measures the similarity of two functions. The

model discovers patterns that are encoded by the filters in the convo-

lutional layer and creates a feature map with spatial occurrences for

each pattern in the data.

Pafnucy’s input—molecular complex—is represented with a 4D

tensor and treated like a 3D image with multiple color channels.

Each position of an input (x, y and z coordinates) is described by a

vector of 19 properties (see Section 2.1.1), which is analogous to

how each pixel of an image (x and y coordinates) is described by a

vector of intensities of three basic colors.

First, the input is processed by a block of 3D convolutional

layers combined with a max pooling layer. Pafnucy uses 3 convolu-

tional layers with 64, 128 and 256 filters. Each layer has 5-Å cubic

filters and is followed by a max pooling layer with a 2-Å cubic

patch. The result of the last convolutional layer is flattened and used

as input for a block of dense (fully-connected) layers. We used 3

dense layers with 1000, 500 and 200 neurons. In order to improve

generalization, dropout with drop probability of 0.5 was used for all

dense layers. We also experimented with 0.2 dropout and no drop-

out and achieved worse results on the validation set.

Both convolutional and dense layers are composed of rectified

linear units (ReLU). ReLU was chosen because it speeds up the

learning process compared with other types of activations. We also

experimented with Tanh units and achieved a very similar prediction

accuracy, but learning was much slower.
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2.2.2 Training

The initial values of the convolutional filter weights were drawn

from a truncated normal distribution with 0 mean and 0.001 stand-

ard deviation and corresponding biases were set to 0.1. The weights

in the dense layers were initialized with a truncated normal distribu-

tion with 0 mean and a standard deviation of 1=
ffiffiffi
n
p

, where n is the

number of incoming neurons for a given layer. The corresponding

biases were set to 1.0.

The Adam optimizer was used to train the network with a 10�5

learning rate and 5 examples per mini-batch (The training set con-

tains 11906 complexes; therefore, the last batch actually consisted

of 6 complexes instead of 5.). Larger batch sizes (10 and 20 exam-

ples) were also tested but resulted in worse performance. Training

was carried out for 20 epochs, and the model with the lowest error

on the validation set was selected (in the case of the network

described in this work, it was after 14 epochs of training).

To reduce overfitting, we used the dropout approach mentioned

earlier and L2 weight decay with k ¼ 0:001. Using a higher value

(k ¼ 0:01) decreased the model’s capacity too much and resulted in

higher training and validation errors. In addition to providing

regularization, L2 allows us to investigate feature importance. If a

weight differs from 0 considerably,

information it transfers must be important for the model to

make a prediction (see Section 4).

An important part of our approach was to develop a model that

was not sensitive to ligand–receptor complex orientation. Therefore

every structure was presented to the network in 24 different orienta-

tions (i.e. all possible combinations of 90
�

rotations of a cubic box),

yielding 24 different training examples per protein–ligand complex.

By using systematic rotations of complexes during training, we

anticipated that the network would learn more general rules about

protein–ligand interactions and lead to better performance on new

data. Indeed, in our experiments, we observed a much worse per-

formance of models trained on single orientations regardless of the

hyperparameters used to define a particular network.

3 Results

The error on training and validation sets was monitored during

learning (see Supplementary Fig. S3). Although the model was

trained on 24 different rotations of each complex, the RMSE (root

mean square error) was calculated for the original orientation only

in order to speed up the computations.

After 14 epochs of training, the model started to overfit, and the

error on the validation set started to slowly yet steadily increase.

The best set of weights of the network, obtained after 14 epochs of

training, was saved and used as the final model. Model performance

was evaluated on all subsets of the data (see Table 1 and Fig. 2). For

each complex in the dataset, affinity was predicted and compared to

the real value. Prediction error was measured with RMSE and MAE

(mean absolute error). The correlation between the scores and ex-

perimentally measured binding constants was assessed with the

Pearson’s correlation coefficient (R) and the standard deviation in

regression (SD). SD is a measure used in CASF (Li et al., 2014) and

is defined as follows:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

½ti � ayi þ bð Þ�2
vuut

where ti and yi are the measured and predicted affinities for the ith

complex, whereas a and b are the slope and the intercept of the re-

gression line between measured and predicted values, respectively.

As expected, the network achieves the lowest error on the train-

ing set (Fig. 2c), which was used to find the weights of the network.

More importantly, Pafnucy also returns accurate predictions for the

Fig. 1. Pafnucy’s architecture. The molecular complex is represented with a

4D tensor, processed by threee convolutional layers and three dense (fully-

connected) layers to predict the binding affinity
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two test sets (Fig. 2a and b), which were unknown to the model dur-

ing training and validation. The results on the CASF-2013 ‘scoring

power’ benchmark (PDBbind v. 2013 core set), although substan-

tially worse than for other subsets, are still better than those for any

other scoring function tested by Li et al. (2014)—the best-

performing X-Score had R¼0.61 and SD¼1.78, while our model

achieved R¼0.70 and SD¼1.61 (see Table 2). To our knowledge,

the only scoring function with better performance published so far is

RF-Score v3, which achieves R¼0.74 and SD¼1.51 on CASF-2013

[results were calculated with ODDT (Wójcikowski et al., 2015)].

We also compared Pafnucy to X-Score on the Astex Diverse Set

(Table 3). This experiment provides Pafnucy with a test set com-

pletely separate from the data provided by Liu et al.

Both methods have comparable errors to those obtained on the

PDBbind data. As expected, Pafnucy outperforms X-Score on the

Astex Diverse Set, regardless of which measure is used. The observed

correlation, however, is lower for both methods. This effect is par-

tially due to the fact that the Astex dataset contains only 73 com-

plexes, and therefore, correlation is much more sensitive to small

changes in the predictions than for bigger subsets.

4 Discussion

4.1 stability of the results with respect to input rotation
One of the biggest challenges of this project was to properly handle

the orientation of a molecular complex. This problem occurs also in

image recognition—the input looks differently when an object is

shown from a different angle, yet it contains the same information

about the underlying real object. There are two main approaches to

(a) (b)

(c) (d)

Fig. 2. Predictions for two test sets (core sets from PDBbind v. 2016 and v. 2013), training set and validation set

Table 1. Pafnucy’s performance

Dataset RMSE MAE SD R

Test (v. 2016 core set) 1.42 1.13 1.37 0.78

Validation 1.44 1.14 1.43 0.72

Training 1.21 0.95 1.19 0.77

Note: Prediction accuracy for each subset was evaluated using four differ-

ent metrics (see main text).
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dealing with this issue: by using a representation invariant to the

complex position (e.g. molecule-level features or internal coordi-

nates), or by creating a model that would be robust to the input

orientation. The model presented in this work uses the latter ap-

proach, similarly to how 2D convolutional neural networks are used

in image recognition. Therefore, to generalize well, the model

needed to learn to extract information from differently presented in-

put. In order to achieve this, we augmented the dataset with system-

atic rotations of the input data. If Pafnucy was trained correctly, it

should return similar predictions regardless of the orientation of the

complex.

To test the model’s stability we selected the PDE10A protein, a

cAMP/cGMP phosphodiesterase important in signal transduction

and recently linked to neuropsychiatric disorders (MacMullen et al.,

2017). PDE10A is complexed with 57 different ligands in the

PDBBind database (41 complexes in the training set, 6 in the valid-

ation and 10 in the test set). Each of the complexes was presented to

the model in 24 different rotations, and the distribution of returned

predictions was analyzed. As anticipated, the variability of the pre-

dicted binding constants is low (see Supplementary Fig. S4).

Additionally, the variability does not depend on the value of the pre-

diction nor the subset the molecule belongs to.

4.2 How Pafnucy sees and processes the data
Neural networks are often deemed harder to analyze and interpret

than simpler models and are sometimes regarded as ‘black-boxes’.

The worry is that a model can yield good predictions for the wrong

reasons (e.g. artefacts hidden in the data) and therefore will not gen-

eralize well for new datasets. In order to trust a neural network and

its predictions, one needs to ensure that the model uses information

that is relevant to the task at hand. In this section, we analyze which

parts of the input are the most important and have the biggest im-

pact on the predictions.

In the case of random forests, for example, there is an established

way to calculate feature importance based on the impurity decrease

(Breiman et al., 1984). With neural networks, there is no such con-

sensus, as the interpretation of the model’s parameters may differ

considerably between networks with different architectures.

In the case of Pafnucy, which was trained with L2, we can esti-

mate feature importance by looking at the distributions of weights

associated with the convolutional filters in the first hidden layer.

Their initial values were close to 0 (see Section 2.2.2 for more

details). During training, the weights tend to spread and form wider

ranges, as weights with higher absolute values pass more informa-

tion to the deeper layers of the network. Because Pafnucy was

trained with L2 regularization, only crucial weights were likely to

have such high absolute values.

The input was represented using 19 channels, some of which

were expected to be of low relevance for the model (e.g. the boron

atom type). As we can see in the Figure 3, the feature with the widest

range is the moltype—feature distinguishing the protein from the lig-

and. This result implies that Pafnucy learned that binding affinity

depends on the relationship between the two molecules and that rec-

ognizing them is crucial. Additionally, the weights for selenium and

boron atom types (Se and B, respectively) barely changed during

training and are close to 0. This result can be interpreted in two

ways: either the network found other features of protein–ligand

complexes more important for binding affinity, or due to infrequent

occurrence of these atom types in ligands the network was not able

to find any general patterns for their influence on binding affinity.

To further inspect how the network utilizes the input, we ana-

lyzed the impact of missing data on the prediction. To inspect this,

we selected one of the PDE10A complexes with a benzimidazole

inhibitor (complex PDB ID: 3WS8; ligand PDB ID: X4C). The ex-

periment was carried out as follows: we produced 343 corrupted

complexes with some missing data and predicted the binding affinity

for each. The missing data were produced by deleting a 5-Å cubic

box from the original data. We slid the box with a 3-Å step (in every

direction), thus yielding 73 ¼ 343 corrupted inputs. Next, we

rotated the complex by 180� about the X-axis and followed the

same procedure, thus yielding another 343 corrupted inputs. Then,

for each of the two orientations, we took 10 corrupted inputs that

had the highest drop in predicted affinity (Fig. 4). We wanted to find

which atoms’ absence caused the highest drops in the predictions.

As we can see in Figure 4a and b, for both orientations, we iden-

tified the same region containing the ligand and its nearest neigh-

bourhood. The boxes contain the amino-acids participating in the

interactions with the ligand, i.e. Gln726, which forms a hydrogen

bond, and Phe729, which forms a p� p interaction with the ligand

(Fig. 4c).

Additionally, if we considered 15 corrupted complexes with the

highest drop in predictions, we find other amino-acids interacting

Table 3. Predictions accuracy on the Astex Diverse Set

Method RMSE MAE SD R

Pafnucy 1.43 1.13 1.43 0.57

X-Score 1.55 1.22 1.48 0.52

Fig. 3. Range of weights for each input channel (feature). Outliers are not

shown

Table 2. Results on the CASF-2013 ‘scoring power’ benchmark

(PDBbind v. 2013 core set)

Pafnucy X-Score ChemScorea ChemPLPb PLP1c G-Scorea

SD 1.61 1.78 1.82 1.84 1.86 1.87

R 0.70 0.61 0.59 0.58 0.57 0.56

Note: Only the five best performing scoring functions are presented, for

full results see (Li et al., 2014).
aSYBYL.
bGOLD.
cDiscovery Studio.
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with the ligand: Tyr693, which forms a hydrogen bond, and

Met713, which forms hydrophobic contacts with the ligand. The

methodology presented above can be applied to other complexes in

order to elucidate specific ligand–receptor interactions with the

most profound effect on the prediction.

Going back to the uncorrupted input, we wanted to investigate

how Pafnucy managed to give almost identical predictions for two

different orientations of the complex (the second rotated about the

X-axis by 180
�
). For this inquiry, we analyzed the activations of the

hidden layers for the two inputs.

In Figure 5, we can see that the first hidden layer has very differ-

ent activation patterns for the two orientations of the input. Pafnucy

gets very different data and needs to use different filters in the first

convolutional layer to process them. However, the closer we get to

the output layer, the more similar the activations become. We can

clearly see that our model learned to extract the same information

from differently presented data.

5 Conclusions

In this work we presented a deep neural network, Pafnucy, which

can be used in structure based ligand discovery campaigns; as a scor-

ing function in virtual screening or affinity predictor for novel mole-

cules after a complex is generated. Pafnucy can be also utilized

directly during the docking procedure to guide ligand pose optimiza-

tion. The model was tested on the CASF-2013 ‘scoring power’

benchmark and outperformed all 20 state-of-the-art scoring func-

tions tested by the CASF-2013 authors. The results obtained and the

careful analysis of the network show that Pafnucy makes reliable

predictions based on relevant features.

Predicting the impact of small molecules on diverse biologically im-

portant protein targets has long been sought by researchers. Pafnucy

can be either applied to test multiple compounds against a single pro-

tein, or to test multiple proteins against a single compound. It can there-

fore help in discovering new potential drugs, but also in investigating

side effects of bioactive molecules. By anticipating the potential impact

of new drugs on the biology of the cell, Pafnucy may contribute to such

disciplines as systems medicine and systems biology.

The approaches used in the analyses presented in the

‘Discussion’ are general and can be applied to other predictive

Fig. 4. The most important parts of the input. Regardless of the complex

orientation, the same region of the input had the highest impact on the pre-

diction. Note that the second plot is rotated back about the X-axis to ease the

comparison. (a) Original orientation. (b) Rotated by 180� about the X-axis.

(c) Protein–ligand interactions. Graphic was generated with Poseview

(Stierand and Rarey, 2010)

Fig. 5. Activations on the hidden layers for two orientations of the PDE10A

complex (PDB ID: 3WS8). Darker colors indicate higher values. Cosine distan-

ces (d) between the activation patterns for each layer are provided

3672 M.M.Stepniewska-Dziubinska et al.



models for drug discovery. Finding the most important features and

parts of a molecular complex can help researchers to design better

compounds, but also to better understand and improve their

models.

Because Pafnucy is a neural network, it is also possible to calcu-

late and analyze its gradients. During training, gradients are used to

optimize model parameters. However, they can also be calculated

for the input and point to beneficial changes in a molecule’s con-

formation (finding optimal pose during docking) or composition

(lead optimization).

Pafnucy and its source code, together with the Jupyter Notebooks

used to prepare the data and analyze the results, are freely available at

http://gitlab.com/cheminfIBB/pafnucy. Usage examples and scripts are

also available to facilitate the most common use-cases: preparing the

input data, predicting binding affinity and training a new network.

We hope that these features will make Pafnucy easily applicable and

adaptable by other researchers. In addition, we are working on a

more flexible implementation of the model, that will allow the user to

easily manipulate network parameters and molecular complex repre-

sentation, with minimal programming knowledge.

Preparing the environment with all needed dependencies and

using the model for the new data can be done with minimum effort:

git clone https://gitlab.com/cheminfIBB/pafnucy

cd pafnucy

conda env create -f environment_gpu.yml

source activate pafnucy_env

python prepare.py -l ligand.mol2 -p pocket.mol2 -o data.hdf

python predict.py -i data.hdf -o predictions.csv
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Gómez-Bombarelli,R. et al. (2017) Automatic chemical design using a

data-driven continuous representation of molecules. ACS Cent. Sci., 4,

268–276.

Goodfellow,I. et al. (2016) Deep Learning. MIT Press, Cambridge, MA.

Hartshorn,M.J. et al. (2007) Diverse, high-quality test set for the validation of

protein–ligand docking performance. J. Med. Chem., 50, 726–741.
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