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Abstract

Fractional fluid models are usually difficult to solve analytically due to complicated mathe-

matical calculations. This difficulty in considering fractional model further increases when

one considers nth order chemical reaction. Therefore, in this work an incompressible nano-

fluid flow as well as the benefits of free convection across an isothermal vertical sheet is

examined numerically. An nth order chemical reaction is considered in the chemical species

model. The specified velocity (wall’s) is time-based, and its motion is translational into math-

ematical form. The fractional differential equations are used to express the governing flow

equations (FDEs). The non-dimensional controlling system is given appropriate transforma-

tions. A Crank Nicholson method is used to find solutions for temperature, solute concentra-

tion, and velocity. Variation in concentration, velocity, and temperature profiles is produced

as a result of changes in discussed parameters for both Ag-based and Cu-based nanofluid

values. Water is taken as base fluid. The fractional-order time evaluation has opened the

new gateways to study the problem into a new direction and it also increased the choices

due to the extended version. It records the hidden figures of the problem between the

defined domain of the time evaluation. The suggested technique has good accuracy,

dependability, effectiveness and it also cover the better physics of the problem specially

with concepts of fractional calculus.

1. Introduction

Natural convection process is that type of flow situation in which a liquid such as water as an

example of Newtonian fluid, in which the fluid motion is produced by an external source

instead by some parts of the fluid being heavier than other parts. More exactly, it is a specific

kind of self-persistent flow with a high-temperature gradient, as a natural convection flow.

This factor is then endorsed in order to get the non-uniform density. Because of changes in
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density and gravitational field, buoyancy effects promote current movement. The aforemen-

tioned occurrences occur often in nature and have been documented in a variety of technical

and engineering settings [1]. The most common model in convective flow models is natural

convection, which involves the movement of heat and mass near a moving sheet. The afore-

mentioned concept is often used in solar energy collectors, nuclear reactor architecture, and

electronic devices. Various writers discussed the wonders of natural convection with the trans-

fer of heat and mass, as well as the Newtonian/Non-Newtonian character of the fluid, due to

its wide range of possible uses. The effect of convection (or free convection) on the accelerating

plate in a perpendicular position was examined in [2], where they utilized the Laplace transfor-

mation technique (LTM) to examine the solution for two distinct circumstances, namely, the

constant heat flux and isothermal plate. Refer to [3] for a free-convection flow issue in which a

vertical plate is constructed in such a manner that it increases exponentially. Some of the pro-

spective information may be examined methodically in references [4–11].

Following the contribution of Choi [12], the discipline of fluid mechanics received valuable

concertation. Because he focused on thermal conductivity enrichment ideas related to fluids,

he created the nano-fluids discipline. He demonstrated that nanoparticles, which are micro-

scopic and small particles, may be put into fluids to convert them into nanofluids. The exten-

sive research and experimental results revealed that it improves the thermal characteristics of

the conventional fluid. As a result of this dramatic modernization, this area acquired consider-

able significance, and a large body of work is accessible in the literature. Sheikholelsami and

Ganji [13] investigated the convective heat transport of nanofluids. [14–32] provide a compre-

hensive examination of nano-fluids and applications from different perspectives.

Previously, the fractional calculus theory sparked widespread interest due to its wide range

of applications in physics and engineering [10]. This kind of research has made use of multidi-

mensional dynamics such as wave, viscoelastic, and relaxation activities. Because of the opera-

tors, we developed a straightforward method for introducing fractional ordered derivatives

into linear viscous models, which drew much attention to this area.

This research looked at the physical elements of the issue of fractional-order derivatives

between certain domains. The fractional calculus makes visible contributions to various tech-

nical and scientific circumstances, including neurology, capacitor theory, viscoelasticity, elec-

tro-analytical chemistry, and electrical circuits [33,34]. Several authors [35–39] suggested

several techniques for dealing with the nonlinearity of fractional differential equations. Despite

the fact that there is extensive research literature on fluid flows, numerous mathematical and

fluid models are developed and effectively solved using the fractional calculus method; see, for

example, some useful investigations in this direction [7,40–42].

The above literature shows that several investigations are done on convection heat transfer

using classical/fractional models [43–47] and [48–53]. However, in all these models, particu-

larly those they are involved with fractional derivatives, no attention is given to nth order

chemical reaction in species concentration and the free convection flow of viscous nanofluid

using fractional derivatives. Therefore, the main objective of this work is to fill this gap. More

exactly, in this article, water-based nanofluid is considered with Ag and Cu nanoparticles. The

fractional differential equations are used to express the governing flow, heat, and species con-

centration equations. The Crank Nicholson technique is used to generate numerical results

[54]. Variation in numerical implications of concentration, velocity, and temperature profiles

is shown as a result of variations in various parameters for both Ag-based and Cu-based nano-

fluid values. The collected findings demonstrate the suggested technique’s accuracy, depend-

ability, and effectiveness.
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2. Mathematical and geometrical analysis

Consider the mass and energy (heat) transmission performance of a nanofluid that is unsteady

free convection, incompressible, one dimensional, viscous, and radiative, and is limited among

specified plates that are parallel, filled with a porous material, and have distance d. Initially

(t = 0), the fluid and plates are assumed to be stationary, and T1 and C1 are the constant tem-

perature and constant concentration, respectively. For t> 0, the heat transfer process and sur-

face temperature are proportionate. The nth-order chemical reaction is taken into account.

Flow may be described using the following partial differential equations in light of the Boussi-

nesq approximation.

@u
@t
¼ nnf

@2u
@y2
þ
g
rnf

bnf T � T1ð Þ þ
1

rnf
J � Bð Þx �

nnf�m

k
u; ð1Þ

rCPð Þnf
@T
@t
¼ knf

@2T
@y2
�
@qr
@y

ð2Þ

@C
@t
¼ D

@2C
@y2
þ g C � C1ð Þ

n
; ð3Þ

Where u(y, t), T(y, t), C(y, t), g, νnf, ρnf, βnf, σnf, (CP)nf, knf are the velocity, temperature, concen-

tration gravitational acceleration, kinematics viscosity, density, heat transfer constant, electri-

cal conductivity, heat capacity, and thermal conductivity. J, D, γ, n and ϕm are the parameters

for current density, mass diffusion, rate of chemical reaction, order of chemical reaction, and

porosity, respectively.

nnf ¼
mnf

rnf
; mnf ¼

mf

1 � �ð Þ
2:5
; rnf ¼ rf 1 � �ð Þ þ �

rs
rf

 !

; rbð Þnf ¼ 1 � �ð Þ rbð Þf þ

� rbð Þs; snf ¼ sf 1þ
3 s � 1ð Þ�

sþ 2 � s � 1ð Þ�

� �

; s ¼
ss
sf
; knf ¼ kf

ks þ 2kf � 2� kf � ks
� �

ks þ 2kf þ � kf � ks
� � ð4Þ

Where in Eqs (1)–(4), ρf, ρs, βf, βs, μnf, μf, σnf, σf, σs, kf, ks and ϕ are density, the density of solid

particle, heat transfer constant, heat transfer constant for solid particle, viscosity, viscosity, vis-

cosity of solid particle, electrical conductivity, the electrical conductivity of solid, thermal con-

ductivity, thermal conductivity for solid, where the subscripts nf and f are for nanofluid and

fluid, respectively. The current density value is

J ¼ snf Eþ V � Bð Þ; ð5Þ

where E is the electric field. Cogley et al. shows that [30]:

@qr
@y
¼ 4 T � T1ð Þ

Z 1

0

klw
debl
dt

� �

w

dl; ð6Þ

Where kλ, ebλ, w are the absorption coefficient, plank function and value at the wall y = d.
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Substituting the values from Eqs (4–6) into Eqs (1–3), once obtained

@u
@t
¼ nnf

@2u
@y2
þ
g
rnf

bnf T � T1ð Þ �
snf B2

0

rnf
u �

nnf�m

k
u; ð7Þ

rcPð Þnf
@T
@t
¼ knf

@2T
@y2
� 4 T � T1ð ÞI; ð8Þ

@C
@t
¼ D

@2C
@y2
þ g C � C1ð Þ

n
; ð9Þ

where I ¼
R1

0
klw

debl
dt

� �

wdl:
The associated initial and boundary conditions for Eqs (7)–(9) are:

u y; 0ð Þ ¼ 0;T y; 0ð Þ ¼ T1;C y; 0ð Þ ¼ C1:

for t> 0, u 0; tð Þ ¼ u 1; tð Þ ¼ 0; @T
@yjy¼0 ¼ �

1

d T 0; tð Þ;T 1; tð Þ ¼ T1;C 0; tð Þ ¼ C1;C 1; tð Þ ¼ Cw:
To nondimensionalize the above system of PDEs let us consider the following transforma-

tions:

u ¼
nf

d
�u; y ¼ d�y; t ¼

d2

nf
�t;C ¼ C1�C þ C1;T ¼ T1�T þ T1;

Using the above transformation into (7–9), once obtained

@�u
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1
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Moreover A, B, C1, D1, E, F are just constants which introduced for simplicity and is given

by:
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rf
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Transformed form of IC and BC’s are given as:

�u y; 0ð Þ ¼ �T y; 0ð Þ ¼ �C y; 0ð Þ ¼ 0;

�u 0; tð Þ ¼ 0;
@ �T
@y

�
�
�
�
y¼0

¼ � �T 0; tð Þ � 1; �C 0; tð Þ ¼ 0; �u 1; tð Þ ¼ 0; �T 1; tð Þ ¼ 0; �C 1; tð Þ ¼ 1:

The Caputo time fractional form of Eqs (8) and (9) are explained as follow also replacing

�t; �y; �u; �T and �C by t, y, u, T and C:

Dat u y; tð Þ ¼
1

A 1 � �ð Þ
2:5

@2u
@y2
þ
BGr
A
T �

M2C1

A
u �

N
AD1

u; ð13Þ

EPrDat T y; tð Þ ¼ D1

@2T
@y2
� RT; ð14Þ

Dat C y; tð Þ ¼
1

Le
@2C
@�y2
þ dCn: ð15Þ

where Dat V y; tð Þ

1

Gð1 � aÞ

Z t

0

1

t � tð Þ
a

@Vðy; tÞ
@t

dt; 0 < a < 1;

@Vðy; tÞ
@t

; a ¼ 1:

8
>><

>>:

.

3. Finite difference scheme

Crank Nicolson method (CNM) is projected to construct the numerical solution of problem

(13–15) in this section. Consider the problem (13–15) for n = 1:

@a

@ta
u y; tð Þ ¼

1

A 1 � �ð Þ
2:5

@2u
@y2
þ
BGr
A
T y; tð Þ �

M2C1

A
u y; tð Þ �

N
AD1

u y; tð Þ; ð16Þ

E Pr
@a

@ta
T y; tð Þ ¼ D1

@2T
@y2
� RT y; tð Þ; ð17Þ

Dat C y; tð Þ ¼
1

Le
@2C
@�y2
þ dC y; tð Þ: ð18Þ

The boundary condition associated with above system given in above. In above 0� α� 1 is

Caputo derivative of fractional order. Consider that the above fractional-order system (16)–

(18) has sufficiently smooth and has unique. Assume that xj = jh, 0� j�M withMh = 1 and

tn = nτ, 0� n� N. Here h and τ indicate the space and time step length,M and N are repre-

sents the number of grids point. Fractional order derivate can discretize as [34]:

Dat Q y; tð Þ ¼
1

taG 2 � að Þ
Qnþ1

j � Q
n
j þ

Xn

i¼1
Qn� iþ1

j � Qn� ij
� �

iþ 1ð Þ
1� a
� i1� a

� �h i
þ O tð Þ;
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and the second-order derivative using Crank-Nicholson idea can be discretized as under:

@2

@y2
Q y; tð Þ ¼

1

2h2
Qnþ1

jþ1
� 2Qnþ1

j þ Q
nþ1

j� 1

� �
þ Qnjþ1

� 2Qnj þ Q
n
j� 1

� �h i
þ O h2ð Þ:

Using the above-discretized formulas, system (16)–(18) takes the following form:

� o~u~u
nþ1

jþ1
þ W~u þ 2o~uð Þ~unþ1

j � o~u~u
nþ1

j� 1

¼ o~u~u
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A
þ

N
1 � �ð Þ

2:5AD1

 ! !

~unj þ o~u~u
n
j� 1
þ
BGr
A

~Tnj

� W~u

Xn

i¼1
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j � ~un� ij
� �
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~Tnþ1

jþ1
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~Tnþ1

j� 1
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~Tnjþ1
þ W~T � 2o~T � Rð Þ~Tnj þ o~T

~Tnj� 1
� W~T

Xn

i¼1

~Tn� iþ1

j � ~Tn� ij
� �

bi;
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~Cnj� 1
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i¼1
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� �
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where o~u ¼
1

A 1� �ð Þ2:5
1

2h2 ; W~u ¼
1

taG 2� að Þ
;o~T ¼

1

2h2 D1; W~T ¼
EPr

taG 2� að Þ
;o~C ¼

1

Le
1

2h2 ;

W~C ¼
1

taG 2 � að Þ
; bi ¼ iþ 1ð Þ

1� a
� i1� a

� �
:

A1v
1 ¼ Bv0 þ

BGr
A

Cv0;

for n� 1,

Anþ1v
nþ1 ¼ Bnþ1v

n þ snþ1

1
vn þ snþ1

2
vn� 1 þ � � � þ snþ1

n v1 þ bnþ1v0 þ
BGr
A

Cvn:

In above Anþ1;Bnþ1; vn; snþ1
n ;C and bn+1 are represents the block matrices which are defined

as follow:

Anþ1 ¼

A~u
nþ1

O O

O A~T
nþ1

O

O O A~C
nþ1

2

6
6
4

3

7
7
5;Bnþ1 ¼

B~u
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O O

O B~T
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2

6
6
4
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7
7
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O I O

O O O

O O O

2

6
4

3

7
5; snþ1

n

¼

cTn O O

O dT
n O

O O eTn

2

6
4

3

7
5

nþ1
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u

T
C

2

6
6
4

3

7
7
5

n

; bnþ1
¼

bTn O O

O bTn O

O O bTn

2

6
6
4

3

7
7
5

nþ1

;

where the matrices A~u
nþ1
;A~T

nþ1
;A~C

nþ1
;B~u

nþ1
;B~T

nþ1
;B~C

nþ1
; cTn ; d

T
n ; e

T
n ; I and bT

n present in [33,34] and
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u and T are given as:

un ¼ un
1
; un

2
; un

3
; . . . ; unM� 2

; unM� 1

� �T
;

Tn ¼ Tn
1
;Tn

2
;Tn

3
; . . . ;TnM� 2

;TnM� 1

� �T
:

4. Discussion about numerical outcomes

The parametric study is provided to investigate the physics of the problem described in the

preceding section. The fractional finite difference technique is used to find a numerical solu-

tion. Figs 1–11 show dimensionless velocity, temperature, and concentration plotted against

the change of various parameters listed in Table 1.

Figs 1–5 depict the behaviour of velocity for water based nanofluid (with Prandtl number

Pr = 6.2) containing copper (Cu) and silver (Ag) nanoparticles) for various values of fractional

parameter α, as well as Hartmann number (M), porosity parameter (N), Grashof number (Gr),
time (t) and solid volume fraction (ϕ) [43]. At time t = 0.3, the decreasing behaviour of velocity

for Hartmann number (M2) and fractional parameter α is shown in Fig 1.

M arises in the problem as a significance of substantial magnetic field effects, as is well

known. As a consequence, magnetic forces working against the flow process become stronger,

resulting in a decrease in velocity. Normally, this parameter causes the temperature to rise and

the collision process to accelerate, which has a noticeable influence on the velocity, as seen in

Fig 1. The fractional parameter stores the time evaluation values of velocity fluids, indicating

that the velocity is steadily decreasing and nearing the fractional parameter’s integer value. As

a result, the fractional parameter traces the location of the fluid particles.

Fig 2 illustrates the effect of changing numerical values N and on velocity at t = 0.3. As the

value of the porosity parameter is increased, the velocity impact diminishes (N). Increased

porosity implies an increase in the degree of resistance. That is why the velocity of nanofluid

decreases as the porosity parameter increases (N).

Fig 1. Variation in u(y, t) against M for Pr = 6.2, Gr = 0.9, N = 0.9, ϕ = 0.2, R = 0.9.

https://doi.org/10.1371/journal.pone.0261860.g001
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The effect of Gr on flow velocity is seen in Fig 3, which demonstrates that velocity increases

as the size of Gr increases. As seen in the preceding section, the Grashof number is inversely

related to the viscosity μ. Increased values of the Grashof number indicate that the viscosity is

reducing, which explains why the velocity function is growing. Generally, an increase in any

buoyancy-related parameter such as the Grashof number in the present case, causes an

increase in the wall temperature, which weakens the bond(s) between the fluids, reduces inter-

nal friction pressure, and makes gravity stronger (i.e. makes the specific weight appreciably dif-

ferent between the immediate fluid layers adjacent to the wall). For detailed analysis of

Fig 2. Variation in u(y, t) against N for Pr = 6.2, Gr = 0.9, M = 0.9, ϕ = 0.2, R = 0.9.

https://doi.org/10.1371/journal.pone.0261860.g002

Fig 3. Variation in u(y, t) against Gr for Pr = 6.2 R = 0.9, M = 2, N = 0.2, ϕ = 0.2.

https://doi.org/10.1371/journal.pone.0261860.g003
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Grashof number and its effect on the fluid motion, three different scenarios (transport phe-

nomenon) are discussed, namely: when (a) Grashof number is greater than 1, (b) Grashof

number is less than 1, and (c) Grashof number is small (Gr = 0.01). In this first case, it is

observed that velocity increases with increasing value of temperature-dependent viscosity

parameter when Grashof number is greater than 1. In the second case, the observation showed

that velocity decreases with increasing values of temperature-dependent viscosity parameter

when Grashof number is less than 1. The third case examines the flow situation when the

Fig 4. Variation in u(y, t) against R for Pr = 6.2 R = 0.5, Gr = 0.5, M = 2, N = 0.9.

https://doi.org/10.1371/journal.pone.0261860.g004

Fig 5. Variation in u(y, t) against t for Gr = 0.5 R = 0.5, M = 2, N = 0.9, ϕ = 0.2, Pr = 6.2.

https://doi.org/10.1371/journal.pone.0261860.g005
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when Grashof number is moderately small i.e. Gr = 0.01. The above observation shows that

the Grashof number in convection flow plays and important role (Fig 3) [44,45].

Volume fraction is often used in solid materials science and engineering to refer to the con-

centration of a given phase, that is, the ratio of the volume of the particular phase to the total

volume of the sample. Here in our study, ϕ shows the solid volume fraction of nanofluid. Addi-

tionally, Fig 4 has been displayed for various numerical values. As seen in Fig 4, velocity

decreases as the numerical value of for nanofluid increases. In Fig 5, the velocity behaviour for

changing t has been illustrated, demonstrating that flow velocity steadily increases with time.

Fig 6. Behavior of T(y, t) against R for Pr = 6.2 ϕ = 0.1.

https://doi.org/10.1371/journal.pone.0261860.g006

Fig 7. Behavior of T(y, t) against ϕ for Pr = 6.2.

https://doi.org/10.1371/journal.pone.0261860.g007
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The temperature performance of nanofluids (based on copper (Cu) and silver (Ag)) has

been presented in Figs 6–9 for various numerical parameter values and fractional parameter

values. Fig 6 demonstrates that the temperature of the nanofluid decreases as the radiation

effects N increase, indicating that the nanofluid is radiative in nature and radiates energy. As a

result of this, radiation (in the form of electromagnetic waves) wastes energy, reducing the

thickness of the thermal boundary layer and therefore the temperature. The temperature

increases as the value of the solid volume fraction (ϕ) disclosed in Fig 7 which is increased. In

Fig 8, a similar response of the temperature of the nanofluid was seen when the numerical

Fig 8. Variation in T(y, t) against t for R = 0.1 ϕ = 0.1, Pr = 6.2.

https://doi.org/10.1371/journal.pone.0261860.g008

Fig 9. Behavior of C(y, t) against Le for δ = 0.9.

https://doi.org/10.1371/journal.pone.0261860.g009
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values t and α were changed. Moreover, as seen in Fig 8, nano fluids based on silver have a

greater temperature than nano fluids based on copper.

Enactment of concentration of solute is presented on Figs 9–11 for diverse values of param-

eters. Figs 9 and 10 show the performance of concentration of solute for upsurging numerical

values of Lewis number (Le) and δ. Fig 9 shows that concentration and concentration bound-

ary layer thickness is decreeing as we are increasing the magnitude of Le. The motive behind is

that when the Le increases, the diffusion process decreases because of the inversely propor-

tional relationship between Le and diffusion. As the diffusion process decreases, the

Fig 10. Variation in C(y, t) against δ for Le = 1.

https://doi.org/10.1371/journal.pone.0261860.g010

Fig 11. Behavior of C(y, t) against t for δ = 0.9 Le = 2.

https://doi.org/10.1371/journal.pone.0261860.g011
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concentration of solute is also decreased. On the other hand, the response rate parameter

exhibits the inverse relationship. In this situation, we can readily assert that the rate of chemi-

cal reaction rises as the reaction rate parameter increases. This becomes the cause for the grow-

ing behaviour of the solute’s concentration. In Fig 10, the concentration of solute increases

with increasing δ and decreases with increasing fractional parameter. In the last Fig 11, the

concentration of solute increases with the passage of time and with the decreasing values of the

fractional parameter (α).

5. Conclusion

The viscous, incompressible, and convection-free fluidic flow near an isothermal vertical plate

is theoretically investigated in this article. The plate’s velocity varies with time, and its motion

is translational. The fractional differential equations are used to express the governing flow

equations (FDEs). A mixture of finite difference and Crank Nicolson techniques is used to

find numerical solutions for solute concentration, velocity, and temperature. As a result, the

following is the main summary of our research:

• The outlines of temperature, velocity, and concentration reduced, while the total numerical

values of parameter α decreased.

• Values for velocity and temperature for the case of Ag-based nanofluid is more than Cu-

based nanofluid

• Ordinary fluid flow is more leisurely than fractional fluid flow.

• The velocity, temperature, and concentration profiles all showed declining behaviour as time

passed.
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54. C. Çelik, M. D.-J. of computational physics, and undefined 2012, “Crank–Nicolson method for the frac-

tional diffusion equation with the Riesz fractional derivative,” Elsevier.

PLOS ONE Crank Nicholson scheme to examine the fractional-order unsteady nanofluid flow of viscous fluids

PLOS ONE | https://doi.org/10.1371/journal.pone.0261860 March 1, 2022 16 / 16

https://doi.org/10.1140/EPJP/I2017-11651-1
https://doi.org/10.4236/ojfd.2015.52013
https://doi.org/10.1007/s10973-021-10550-7
https://doi.org/10.1007/s10973-021-10550-7
https://doi.org/10.1038/s41598-021-81417-y
http://www.ncbi.nlm.nih.gov/pubmed/33479309
https://doi.org/10.1038/s41598-017-01358-3
https://doi.org/10.1038/s41598-017-01358-3
http://www.ncbi.nlm.nih.gov/pubmed/28550289
https://doi.org/10.3390/app7030271
https://doi.org/10.3390/app7030271
https://doi.org/10.1038/s41598-018-37964-y
http://www.ncbi.nlm.nih.gov/pubmed/30718893
https://doi.org/10.1186/s11671-015-1144-4
http://www.ncbi.nlm.nih.gov/pubmed/26698873
https://doi.org/https%3A//doi.org/10.1140/epjp/i2014-14046-x
https://doi.org/https%3A//doi.org/10.1140/epjp/i2014-14046-x
https://doi.org/10.1371/journal.pone.0261860

