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Why was PERV not transmitted 
during preclinical and clinical 
xenotransplantation trials and after inoculation 
of animals?
Joachim Denner*

Abstract 

Porcine endogenous retroviruses (PERVs) are present in the genome of all pigs, they infect certain human cells and 
therefore pose a special risk for xenotransplantation using pig cells, tissues and organs. Xenotransplantation is being 
developed in order to alleviate the reduced availability of human organs. Despite the fact that PERVs are able to infect 
certain human cells and cells from other species, transmission of PERVs has not been observed when animals (includ-
ing non-human primates) were inoculated with PERV preparations or during preclinical xenotransplantations. The 
data indicate that PERVs were not transmitted because they were not released from the transplant or were inhibited 
by intracellular restriction factors and innate immunity in the recipient. In a single study in guinea pigs, a transient 
PERV infection and anti-PERV antibodies were described, indicating that in this case at least, the immune system may 
also have been involved.
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Xenotransplantation: the need, the problems 
and the progress
Xenotransplantation using pig cells, tissues and organs 
is being developed in response to the steadily decreas-
ing availability of human organs and due to an increased 
need by the aging human population [1]. In the US, 
114,965 people are in desperate need of a lifesaving organ 
transplant (total waiting list candidates) and of those, 
74,816 people are active waiting list candidates [2]. In 
contrast, only 2853 transplantations were performed in 
January 2018. On average, 20 people die each day while 
waiting for a transplant. Xenotransplantation using pig 
islet cells may be also the most effective solution for the 
treatment of diabetes. In 2015, 30.3 million Americans, 
or 9.4% of the population, had diabetes, among them 1.25 
million American children and adults with type 1 dia-
betes [3]. Although type 1 diabetes can be treated with 
insulin, complications including limb amputations and 
blindness due to poor patient compliance are the main 

cost factors when treating the disease. Pig islet cells pro-
ducing insulin under biological regulation may therefore 
be the better solution.

Pigs, for several reasons including similar physiol-
ogy, size, low costs as well as the ability to be cloned and 
easily genetically modified, are the most suitable donor 
animals. Pig insulin was used for decades to treat diabe-
tes until recombinant human insulin became available. 
Although there are several barriers to successful clinical 
xenotransplantation including immunological rejection, 
physiological incompatibility and the risk of transmis-
sion of porcine microorganisms to the human xenotrans-
plant recipient, significant progress has been made in 
recent years [4, 5]. The problem of immunological rejec-
tion can be solved by multiple genetic modifications in 
the pigs and a more effective immunosuppression [6, 7]. 
As a result, the recently measured survival times of pig 
organ transplants in non-human primates are impressive: 
pig islet cells can maintain insulin-independent normo-
glycemia for up to 950 days in diabetic monkeys [8] and 
the best survival time for the heterotopic transplanta-
tion of pig hearts to non-human primates has increased 
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to 945  days [9]. Kidney transplantats have survived for 
6-months [10–12] and a maximum survival of 90  days 
in orthotopic heart transplantation has been reported 
recently [13].

However, there is still the risk of transmission of por-
cine microorganisms to the human recipient. Some 
potentially zoonotic viruses have been well studied, and 
sensitive detection methods as well as elimination pro-
grams have been developed. Among these viruses are 
the porcine cytomegalovirus (PCMV, for review see [14, 
15]), the hepatitis E virus (HEV, for review see [16, 17]), 
the porcine lymphotropic herpesviruses [18, 19] and the 
porcine circoviruses [20, 21]. An analysis of the porcine 
virome revealed many other viruses [22]. PCMV was 
shown to reduce significantly the survival time of pig 
kidney transplants in non-human primates (NHP) [15, 
23, 24]. HEV is a well-known zoonotic virus which can 
be transmitted to humans by undercooked pork meal 
or contact with pigs. HEV induces chronic infections in 
immunosuppressed patients and severe liver diseases in 
patients with pre-existing liver failure [16, 17].

Porcine endogenous retroviruses (PERVs)
Whereas most porcine viruses, bacteria and fungi can 
be eliminated by selection of negative animals, vaccina-
tion, treatment, early weaning, Caesarean delivery or 
embryo transfer, this is impossible in the case of PERVs 
[25–27]. PERV-A and PERV-B are integrated as DNA 
copies (proviruses) in the genome of all pigs and PERV-
C is found in most but not all pigs [28]. PERV-A, -B, 
and -C are gammaretroviruses, the porcine endogenous 
betaretroviruses are not well studied [29, 30]. PERV-A, 
-B, and -C are closely related to the murine leukaemia 
virus (MuLV), the feline leukaemia virus (FeLV) and the 
koala retrovirus (KoRV) [28]. The related MuLV, FeLV 
and KoRV like many other retroviruses induce tumours 
and immunodeficiencies associated with opportunis-
tic infections in the infected host (for review see [31–
33]). Therefore the transmission of PERV to the human 

xenotransplant recipient could result in tumours and/or 
an immunodeficiency.

Pig cells can release virus particles able to infect cells 
from different species including humans (Table  1) [28, 
34–46]. The number of PERV proviruses is different in 
different pig breeds, ranging from one to over a hundred 
(for review see [47]. There is evidence for de novo infec-
tions and/or transpositions of PERVs in the pig, leading 
to different copy numbers in different organs of an indi-
vidual pig [47]. In addition, recombinations between 
PERV-A and PERV-C have been described in pigs and 
such PERV-A/C recombinants are similar to PERV-A in 
their ability to infect human cells but were shown to have 
a higher replication rate compared with PERV-A [48]. 
PERVs-A/C were found integrated in somatic pig cells, 
but not in the germ line. PERV-C is an ecotropic virus 
infecting only pig cells.

Conditions of PERV infection in cell culture
As mentioned above, PERV-A and PERV-B are polytropic 
viruses able to infect human cells and cells of other spe-
cies (Table 1) [28, 34–43]. To understand the risk posed 
by PERV it is important to analyse which cells can be 
infected and under which conditions and whether this 
infection is productive, e.g., whether the virus replicates 
in the infected cells.

Two multi-membrane-spanning receptors have been 
described for PERV-A in humans initially named human 
porcine endogenous retrovirus A receptor 1 and 2 
(huPAR-1, huPAR-2) [49]. Two similar receptors were 
also found in pigs [49]. These were subsequently shown 
to be members of the human riboflavin transporter fam-
ily, hRFT3 and hRFT1, respectively, although they have 
since been renamed and classified as members of the 
solute carrier family 52A [50]: SLC52A1 corresponds 
to huPAR2 and SLC522 to huPAR1. Glycosylation of 
huPAR2 is not necessary for the PERV-A receptor func-
tion, but three cysteines play a critical role during infec-
tion [51].

Table 1  PERV infection experiments using cultured cells of different species

a  Release of more virus particles than used for infection
b  Release of less virus particles than used for infection
c  Absence of provirus integration
d  Using human-adapted PERV

Type of infection Species References

Productive infection with replicationa Immortalised human cells (e.g., 293 cells), cat, mink [28, 34–39]

Infection without replicationb Primary human cells (e.g., PBMCsd, PAEC), rhesus monkey, baboon, gorilla, chimpanzeed [28, 35, 37–43]

Absence of infectionc Mouse, rat, rabbit, cotton rat, horse, pig-tailed macaque, African green monkeys, cynomolgus 
monkeys

[28, 38, 44–46]



Page 3 of 9Denner ﻿Retrovirology  (2018) 15:28 

HuPAR1 is fully functional as a viral receptor on 
human cells, but a variant receptor PAR1(109Ser-Leu) 
was found in NHP (baboons, rhesus monkeys, cynomol-
gus macaques), allowing only a limited infection [49, 52]. 
Although the receptor in African green monkeys is not 
different from the human receptor at position 109, PERV 
infection is still poor. The receptor in marmosets is also 
equal to that of humans but it is unknown whether it is 
functional [53]. The receptor on murine cells is also a var-
iant and is not functional [54]. In the case of rat cells the 
amount of the receptor on the cell surface is normally too 
low to facilitate infection, although copies increasing the 
receptor density by transfection rendered the cell permis-
sive [54]. Transgenic mice expressing the human PERV-A 
receptor huPAR2 have been generated and after inocula-
tion with infectious supernatant, viral DNA, RNA, pro-
tein and virus particles were detected in their organs, 
indicating productive viral infection [55]. However, 
follow-up studies showing a pathogenic effect of PERV 
infection have been not published.

The absence of infection in some cells can therefore be 
easily explained by the absence of a functional receptor 
[49, 52, 54] or by a suboptimal density of the receptor on 
the cell surface [54]. PERV-A and PERV-B easily infect 
human embryonic kidney 293 cells and this is a produc-
tive infection with the virus replicating and producing 
excess virus particles. Other human cells such as C8166, 
can also be infected, although it is unclear whether the 
infection is productive, i.e., whether virus particles were 
produced, because only provirus integration was dem-
onstrated [40]. 293 cells are immortalised cells which 
have been shown to express a reduced number of intra-
cellular restriction factors such as the apolipoprotein B 
mRNA editing enzyme catalytic (APOBEC) protein fam-
ily [56]. Since human primary cells contain functional 
restriction factors (see below) it was difficult to infect 
them with PERV. Infection of human PBMCs was only 
achieved, when human cell-adapted viruses were used 
[57]. Human adapted viruses had been generated either 
from PERV-A/C recombinants isolated from pig lympho-
cytes or from PERV-A by serial passage on human 293 
cells. Human cell-adapted viruses are characterised by 
an increased replication rate and genetic modifications in 
the long terminal repeats [40, 46, 58]. Other human pri-
mary cells [endothelial cells, vascular fibroblast, mesan-
gial cells and porcine aorta endothelial cells (PAEC)] 
were successfully infected with PERV released directly 
from PK-15 cells [59], a pig kidney cell line producing low 
amounts of PERV particles. In that report it was shown 
that the infection was productive, as reverse transcriptase 
activity was observed in the supernatant of infected cells. 
Recently, infection of human umbilical vein endothelial 
cells (HUVEC) has been reported [60], although in this 

case it remains unclear whether this was a productive 
infection, or whether only the integrated provirus or even 
unintegrated proviral DNA was detected by PCR.

PERVs and cellular restriction factors
As shown above, cellular restriction factors play an 
important role in preventing PERV infections. This is 
nicely demonstrated by the fact that 293 cells, which 
are most susceptible to PERV infection, do not express 
APOBEC3G. In contrast, primary cells expressing 
APOBEC3G and other restriction factors are difficult to 
infect [57]. APOBEC proteins are cytidine deaminases 
that disrupt viral DNA during synthesis. These deami-
nases cause G-to-A hypermutation in nascent retroviral 
DNA strands during reverse transcription. PERV trans-
mission from virus-producing pig PK-15 cells to human 
cells was significantly reduced when human APOBEC3G, 
but not the porcine APOBEC3G, was expressed in PK-15 
cells [61]. This inhibition did not require the DNA deami-
nase activity of APOBEC3G. Other studies showed that 
both human and porcine APOBEC3 are inhibitors of 
PERV [62]. Porcine and human APOBEC3 (A3) could 
inhibit PERV replication, thereby reducing the risk of 
infection of human cells by PERV [63]. The replication 
of PERVs in cells co-expressing human APOBEC3 s was 
reduced by 60–90% compared with PERV-only con-
trol [64]. PERV-B is severely inhibited by huA3G and 
porcine A3Z2-Z3 (poA3F) and PERV-C infectivity was 
strongly inhibited by poA3Z2-Z3, which did not mark-
edly reduce PERV-B infectivity [65]. When in addition to 
APOBEC3G two other major classes of retroviral restric-
tion factors, tetherin, and TRIM5α, were analysed, the 
antiviral activity of human tetherin was slightly weaker 
than that of human APOBEC3G (hA3G) [66]. A combi-
nation of tetherin and hA3G was more potent than each 
individual restriction factor. TRIM5a is a member of the 
tripartite motif (TRIM) protein family involved in diverse 
cellular processes. Although TRIM5a is highly effective 
in inhibiting HIV-1 and other retroviruses, PERV-A and 
PERV-A/C were insensitive to restriction by TRIM5a in 
feline cells expressing TRIM5a from humans, African 
green monkeys, rhesus macaques, squirrel monkeys, rab-
bits or cattle [67]. Tetherin is a type I interferon-induc-
ible molecule that blocks release of retroviruses from 
infected cells. Overexpression of either human or porcine 
tetherin on pig cells significantly reduced PERV produc-
tion [68]. Another restriction factor inhibiting PERV 
infection of human cells is sterile alpha motif and histi-
dine-aspartate domain 1 containing protein (SAMHD1), 
a cellular enzyme with phosphohydrolase activity, con-
verting deoxynucleoside triphosphates (dNTPs) to inor-
ganic phosphate (iPPP) and a 2′-deoxynucleoside (i.e., 
deoxynucleosides without a phosphate group). SAMHD1 
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depletes the pool of dNTPs available to a reverse tran-
scriptase for viral cDNA synthesis and thus prevents viral 
replication [69]. SAMHD1 was shown to inhibit infec-
tion of primary human monocytes, monocyte-derived 
dendritic cells and monocyte-derived macrophages with 
a human-cell adapted PERV-A/C (Al-Shehabi, H., Fiebig, 
U. Denner, J., Bannert N., Hofmann, H., in preparation).

Recently novel cellular restriction factors implicated in 
HIV-1 replication have been described [70] and it has to 
be analysed whether these proteins or other factors still 
unknown may also inhibit PERV.

Absence of PERV transmission after inoculation 
of small laboratory animals and non‑human 
primates
In order to establish an animal model system to study 
transmission and potential pathogenic effects, PERV 
infection experiments in small laboratory animals as well 
as in NHP were performed (Table 2) [39, 41, 42, 71]. In 
all but one of these experiments the failure to detect viral 
genomes by PCR and the lack of PERV-specific antibod-
ies indicated that no infection has occurred. In agree-
ment with the in vitro infection data (Table 1), mice, rats 
and NHP could not be infected due to an incompatible 
receptor that only allows a limited infection or because 
of the low density of a functional viral receptor. The 
absence of antibodies in these experiments indicated 
that there was either no infection at all or an infection at 
a level insufficient to induce an antibody response. This 

supports the suggestion that either the virus load was too 
low to overcome intracellular restriction factors or that 
other mechanisms of innate immunity were predomi-
nantly involved in the prevention of infection. In only a 
single case was a transient infection observed in Guinea 
pigs, with provirus being detected in different organs but 
disappearing after 16 weeks [71]. Either tightly controlled 
suppression of virus replication or a potent host clear-
ance mechanism against PERV may explain the reduced 
levels of viral DNA detected at later time points. The lat-
ter interpretation is supported by the durable humoral 
immunity observed in these animals during the time-
course of the experiment (16 weeks) [71].

Absence of PERV transmission in preclinical 
transplantations of different pig organs 
into non‑human primates
In a recent review the setting and the results of seven 
preclinical trials involving 101 different non-human pri-
mates and transplanting pig hearts, kidneys, skin, islet 
cells and livers were analysed in detail (see [28]). None 
of the animals were infected with PERV. In the mean-
time, additional preclinical trials have been performed 
and analysed and these also show the absence of PERV 
transmission either by PCR or by Western blot analysis 
(Table  3) [53, 78–82]. However, keeping in mind, that 
the PERV receptor in NHP is not fully functional and the 
infection of NHP cells in vitro is not productive, this lack 
of infection in vivo is not surprising.

Table 2  PERV inoculation experiments into small animals and NHP

Nt not tested
a  Reports showing that SCID mice were infected with PERV [74, 75] were the result of an artefact based on pseudotyping between PERV and endogenous murine 
retroviruses [76, 77]

Recipient Virus source Immuno-suppression, 
treatment

PERV testing References

PCR analysis Antibody detection

SCID micea Human cell-adapted PERV None Negative nt Irgang et al. [45]

Transplantation of pig 
PBMCs

None Negative nt Kuddus et al. [72]

Rats Supernatant PK-15 cells, 
supernatant PERV-
infected 293 cells, human 
cell-adapted PERV

Cyclosporine A, cobra 
venom factor

Negative Negative Denner et al. [73]

Mink Supernatant PERV-infected 
293 cells, human cell-
adapted PERV

None Negative Negative Specke et al. [39]

Guinea pigs Supernatant PK-15 cells, 
supernatant PERV-
infected 293 cells

None Negative Negative Specke et al. [44]

PERV-NIH None Transient positive Positive Argaw et al. [71]

Rhesus monkeys, pig-tailed 
monkeys, baboons

Human cell-adapted PERV Cyclosporine A, everolimus 
(RAD), methyl-predni-
solone

Negative Negative Specke et al. [41, 42]
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Absence of PERV transmission in clinical 
transplantations to humans
Several clinical trials have been performed in the past, 
transplanting islet cells for the treatment of diabetes, 
performing ex vivo perfusion using pig spleens or livers 
and transplanting neuronal cells (more than 200 cases, 
for review see [28]). PERV transmission has not been 
observed in any of the patients. However it is important 
to note, that in these trials no immunosuppression (or 
only a weak immunosuppression in the case of combined 
allogenic kidney and porcine islet cells transplantations 
[82]) was applied.

Recently, two clinical trials have been performed using 
pig islet cells to treat diabetes in humans in New Zealand 
and Argentina. In all cases a positive medical effect was 
observed [83, 84], and neither PERVs nor other porcine 
viruses under investigation were transmitted [85, 86]. 
Islet cells from Auckland island pigs were used for these 
studies. These animals were well characterised [87] and 
had been used in a prospective preclinical trial in cyn-
omolgus monkeys during which PERV transmission was 
also not observed in this trial [88]. In addition, no phar-
maceutical immunosuppression was applied because 
the islet cells were encapsulated. It has been shown that 
encapsulation prevents PERV release [89] and, further-
more, there is evidence that pig islet cells do not release 
PERV particles [90].

Conclusion and perspectives
PERV transmission has not been observed in any of the 
many preclinical and clinical xenotransplantation trials 
performed so far, and not in any of the numerous experi-
mental PERV infection experiments. Most of the clinical 
trials performed involved transplantations of pig cells, 
mainly encapsulated islet cells, in most cases without 
pharmaceutical immunosuppression. Due to the lack of 
functional PERV receptors in the NHP and small animal 
recipients, most of these experiments are not relevant for 
evaluating the potential risk to humans.

The risk posed by PERVs during xenotransplantation 
of pig tissues and organs is therefore difficult to evaluate 
based on these results. Transplanting vascularised large 
organs requires a strong immunosuppression, the organ 
cannot be encapsulated and usually cells of the blood and 
immune system will also be transmitted. Unfortunately, 
there is no way to definitively and reliably assess the risk 
posed by PERV experimentally: only long-term follow up 
of actual xenotransplant recipients will provide the answer.

To prevent PERV transmission after xenotransplanta-
tion, a range of different strategies have been developed, 
including selection of PERV-C free animals to prevent 
recombination between PERV-A and PERV-C [91, 92], 
selection of animals with a low expression of PERV-A and 

PERV-B [93], generation of transgenic pigs expressing a 
PERV-specific small-interfering (si) RNA that reduces 
the expression of PERV [94–98], development of a vac-
cine based on neutralising antibodies against the enve-
lope proteins of PERV [99–102] and finally gene editing 
to inactivate all proviral copies in the genome using 
either a zinc finger nuclease [103] or the CRISPR/Cas9 
technology [104, 105].

The successful generation of live piglets in which 
PERVs are inactivated using the CRISPR/Cas9 technol-
ogy [60] will reduce the risk of PERV transmission to zero 
and raises the question of whether all donor pigs used for 
xenotransplantation should be derived from such a stock 
[60, 106–108].
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