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SUMMARY
Natural and experimental genetic variants canmodify DNA loops and insulating boundaries to tune transcrip-
tion, but it is unknown how sequence perturbations affect chromatin organization genome wide. We devel-
oped a deep-learning strategy to quantify the effect of any insertion, deletion, or substitution on chromatin
contacts and systematically scored millions of synthetic variants. While most genetic manipulations have lit-
tle impact, regions with CTCFmotifs and active transcription are highly sensitive, as expected. Our unbiased
screen and subsequent targeted experiments also point to noncoding RNA genes and several families of re-
petitive elements as CTCF-motif-free DNA sequences with particularly large effects on nearby chromatin in-
teractions, sometimes exceeding the effects of CTCF sites and explaining interactions that lack CTCF. We
anticipate that our disruption tracks may be of broad interest and utility as a measure of 3D genome sensi-
tivity, and our computational strategies may serve as a template for biological inquiry with deep learning.
INTRODUCTION

The human genome gives rise to its own organization in the nu-

cleus, where the folding of chromatin into intricate and hierarchi-

cal structures can be reflective and instructive of cell state.1

Sequence itself contains the information to create some chro-

matin features. Binding of CTCF proteins to DNA motifs blocks

the extrusion of DNA by motor proteins to create topologically

associating domains (TADs) spanning hundreds of mega-

bases.2–5 These dynamic structures permit interaction of ele-

ments within their boundaries and limit interaction with elements

outside to tune gene expression.6,7 However, recent reports

reveal that CTCF may not be the only factor involved because

some contacts remain after CTCF depletion, and interactions

acrossmegabases are not affected.8,9 How exactly sequence in-

forms structure ranging from the highest levels of genome orga-

nization—chromosome territories and compartments—to the

level of individual enhancer-promoter interactions still remains

unclear.

Current approaches relating genome sequence to folding

either leverage natural genetic variation or experimentallymanip-

ulate particular loci to test specific hypotheses. Applying chro-

matin capture to genetically diverse individuals has revealed sin-

gle nucleotide variants associated with loss or gain of chromatin

contact.10 Large structural variants are also rare at domain
C
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boundaries in healthy humans but not in patients with autism

or developmental delay.11 To understand the mechanisms un-

derlying these associations, experimental studies have engi-

neered chromatin contact in cells and mice with synthetic teth-

ering12 and CRISPR systems13–15 and measured their effects

on genome folding and expression of genes such as Hbb and

Vcan. Findings in these individual loci may not apply genome

wide and could overlookmechanismswithout known precedent.

Here, we propose combining the genome-wide power of popu-

lation genetics with the precision seen in experimental studies.

We develop a strategy that leverages deep learning to compre-

hensively screen the human genome for key regulators of 3D

genome folding.

Whereas previous machine learning approaches required

domain experts to select the most relevant features, deep

learning allows patterns to be learned directly from the data

without expert input. Deep learning models perform well in pre-

dicting enhancer activity,16,17 transcription factor binding,18

gene expression,19 and genome folding20,21 from sequence,

with newer models increasing scale and incorporating chromatin

immunoprecipitation sequencing (ChIP-seq) and ATAC-seq to

provide cell-type-specific context.22–24 The premise for our

study is that we can probe these models as computational ora-

cles to predict the behavior of DNA sequence at scales intrac-

table experimentally.25 Models have been applied to predict
ell Genomics 3, 100410, October 11, 2023 ª 2023 The Authors. 1
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the impact of structural variants on human genome folding,20,24

confirm the importance of CTCF through computational muta-

genesis,20 and resurrect the folding of Neanderthal genomes.26

These early reports show that many highly disruptive perturba-

tions lack CTCF or annotated regulatory elements, hinting that

there may be sequences left to uncover that encode information

needed for genome folding.

Here, we leverage Akita,20 a convolutional neural network

trained to predict genome folding from sequence, to perform un-

biased and targeted in silico mutagenesis experiments at scale.

Applying this approach to a human foreskin fibroblast cell line

(HFFc6) with high-resolution micro-C data for model training,

we discovered wide variability in how robust genome folding is

to sequence perturbations. Investigation of sensitive loci re-

vealed known motifs, like CTCF, and understudied modulators

of 3D genome folding, including transposon and RNA gene clus-

ters. These findings were replicated in a human embryonic stem

cell line (H1hESC) and supported by experimental Hi-C in loci

with human-specific repetitive elements. Thus, our genome-

wide screen revealed a diverse vocabulary of DNA elements

that collaborate with CTCF to orchestrate TAD-scale chromatin

organization.

RESULTS

Genome-wide deletion screen reveals high variability in
3D genome folding
Tomeasure sequence importance to chromatin organization, we

developed a deep learning scoring strategy to computationally

introduce modifications into the human reference genome and

predict their impact on genome folding with Akita.20 Given an

�1-megabase (Mb) DNA sequence, this model accurately pro-

duces a chromatin contact map at �2-kilobase (kb) resolution,

where TADs and DNA loops are visible. Akita has been used pre-

viously to perform sequence mutagenesis experiments ranging

from one nucleotide to thousands of base pairs.20,26 To build a

flexible in silico screening strategy based on Akita, we wrote

computationally efficient code that quantifies the impact of a

centered sequence variant, which we call disruption, as the

log-mean-squared difference between the predicted contact

frequency map for the 1-Mb sequence with a sequence alter-

ation compared with that of the reference sequence. If a variant

dramatically rearranges how the genome is predicted to fold,

then we infer that the altered sequence could regulate chromatin

contacts.

In this study, we used disruption scores to perform a variety of

genome-wide screens across millions of genetic perturbations,

including targeted and unbiased deletions, insertions, and sub-

stitutions ranging from 1–500,000 bp (Figure 1A). In contrast to

in vivo genetic perturbations, our approach enables precise

and flexible genome editing at scale. We first assessed all 5-kb

deletions tiled across the genome for their impact on folding in

HFFc6 cells (n = 574,187). Deletions are highly variable, and

around half produce changes to chromatin contact maps that

are noticeable by eye (Figure 1B). Some sequence deletions

completely rearrange the boundary structure of contact maps,

some result in small focal changes (e.g., gain or loss of a loop

anchor), and some produce no change at all, suggesting that
2 Cell Genomics 3, 100410, October 11, 2023
the chromatin structure is robust to sequence manipulation

(Figure 1C). As expected, regions of the genome with many

CTCF motifs are particularly sensitive, while regions with no mo-

tifs are perturbation resilient (Figure 1D), establishing that our

approach identifies known genome folding mechanisms.

Perturbing euchromatin disrupts genome folding
Disruption scores are also correlated with the chromatin com-

partment, as measured by the first eigenvector of the experi-

mental HFFc6 micro-C contact matrix (Pearson’s r = 0.522,

p < 1 3 10�300, n = 11,413; Figure 1E).27 The mean disruption

score within gene-rich and open A compartments is 14.6%

higher than in compact, inactive B compartments. Motivated

by existing work illustrating that gene-rich GC-rich regions fall

in A compartments, while GC-poor regions, like lamina-associ-

ated domains, are known to self-interact with each other

and other GC-poor regions across chromosomes, we next

directly evaluated the role of GC content in disrupting genome

folding.28 We observe that high gene density and GC content

are associated with peaks in disruption scores (Figures 1D

and S1A–S1C). Using HFFc6 total RNA sequencing (RNA-

seq),29 we quantified transcription in each 5-kb window and

observed a strong correlation with disruption scores (Pearson’s

r = 0.366, p < 1 3 10�300, n = 11,413). Other genomic features

associated with active chromatin are also more frequent in the

most sensitive sequences, including distal and proximal en-

hancers and promoters (Figures 2A, S1D, and S1E). 62.1% of

the most sensitive sequences (top decile of scores) fall within 5

kb of CTCF-bound distal enhancers compared with only 7.3%

of the most robust sequences (bottom decile of scores) (Fig-

ure 2A). In sum, it is difficult to perturb inactive chromatin and

easy to perturb active chromatin.

The correlation between many of these features reflects an

inherent challenge in disentangling which are causal and which

are reflective of genome folding (Figure S1C). Indeed, regions

that are in A compartments, contain CTCF binding sites, and

are actively transcribed are also the most sensitive (Figure 2B).

Some elements are overrepresented in A compartments, but

the effect of CTCF nonetheless holds in A and B compartments

(Figures S2A–S2C), indicating that it is directly associated with

sensitive 5-kb bins and not just a proxy for A compartments.

However, transcription and compartment are more impactful

individually than the presence of CTCF motifs, suggesting that

additional rules govern which CTCF sites are in use and which

are redundant or decommissioned in a given cell type. Overall,

our findings suggest that independent mechanisms at transcrip-

tionally active sites may collaborate to coordinate genome

folding.

Transcriptionally active regions modulate folding
alongside CTCF
Chromatin contact and transcription are correlated, but which

mechanistically precedes the other is currently an area of active

investigation. While transcription is classically thought to result

from enhancer-promoter interaction constrained by chromatin

structure, transcriptional machinery may help to scaffold local

chromatin structure as well.30 CTCF binding, for example, is

essential for boundary formation and may also influence the



Figure 1. In silico deletion screen indicates that the impact of sequence perturbation on 3D genome folding is highly variable

(A) We quantify how important DNA sequence is to genome folding by introducing whole-genome and targeted deletions, insertions, and point mutations and

comparing the predicted Hi-C contact maps with maps predicted from the reference sequence. We score disruption as the log-mean-squared difference of the

perturbed map relative to the reference map (MSE). Variants with high disruption scores are inferred to contribute to 3D genome folding.

(B) A genome-wide, tiled, 5-kb deletion screen produces a distribution of sequence importance with log(MSE) between �10 and �1 for the HFFc6 cell type.

(C) Genome-wide screens capture a range of disruption scores; some sequences do not change predicted genome folding (left), some produce small focal

changes (center), and others dramatically rearrange boundaries (right).

(D) The rolling average of disruption and compartment score across a 60-Mb region of chromosome 4. Peaks correspond to regions sensitive to perturbation,

while valleys indicate regions robust to perturbation. Yellow shading highlights genomic regions with relatively few CTCF motifs. These regions have low

disruption scores, suggesting that their perturbation has little effect on genome folding.

(E) Sensitivity to disruption correlates strongly with compartment score, as measured by the first eigenvector of HFFc6 micro-C.

See also Figures S1 and S4.
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activity of some promoters,8 and emerging work reveals that

RNA polymerase II and transcription may separately influence

3D genome folding.31,32 To test this hypothesis, we evaluated

all single-nucleotide mutations in the 300 bp on either side of

the transcription start site (TSS) of the 1,789 highest expressed

protein-coding genes in HFFc629 and compared disruption

scores with expression level in regions where CTCF motifs are

present or absent (Figure 2C). In regions flanking a CTCF motif,

we observed a strong peak in disruption directly upstream of

the TSS (Figures 2D and S3). The periodic pattern is more

detailed than underlying CTCF motifs and more precise than a

sum of CTCF ChIP-seq peaks around the TSS. Metaplots of

the average change in contact reveal that mutations weaken

boundaries at the TSS. Our analysis points to a presence of

CTCF at the promoters of highly expressed genes, where

some CTCF motifs are selectively bound and some are not.

We note that, when noCTCF is present, disruption is significantly

lower but still slightly elevated upstream of the TSS of highly tran-
scribed genes (Figures 2E and S3). Furthermore, disruption

scales with gene expression when CTCF is present and absent

(Figures 2F and 2G). These results are consistent with the hy-

pothesis that active transcription may provide an alternate

means of stabilizing DNA-DNA interactions in TSSs devoid of

CTCF sites through uncharacterizedmechanisms, like transcrip-

tional machinery, nascent RNA, or recruited regulatory RNA.

In silico screening approach validates across cell lines
To test the robustness of our approach and findings, we

repeated the above analyses in a second cell line. We selected

H1hESC because of the availability of micro-C data and the op-

portunity to compare a pluripotent cell line with a differentiated

one. Furthermore, H1hESC is one of the five cell lines for which

the Akita model predicts chromatin contacts, enabling us to

directly assess the effects of in silico disruptions on genome

folding patterns in H1hESC alongside HFFc6. This analysis

showed that all of the above trends observed in HFFc6, including
Cell Genomics 3, 100410, October 11, 2023 3



Figure 2. Transcription and CTCF are key modulators of 3D genome folding

(A) Overlap between the top 1% (most disruptive, dark blue) or bottom 1% (least disruptive, light blue) 5-kb sequence deletions and ENCODE candidate cis-

regulatory elements, quantified as the proportion of deletions with overlap. Each deletion may overlap with more than one regulatory element. See also

Figures S1, S2, and S4.

(B) Average disruption score across genomic regions overlapping with CTCF ChIP-seq peaks, A compartments, and/or actively transcribed sequences.

(C) Single-base-pair mutagenesis screen of a 600-bp segment surrounding the transcription start site (TSS) of the most highly transcribed genes in HFFc6

(n = 1,789).

(D and E) Average disruption score of each base at TSS regions with (E) and without (F) a CTCF motif overlap, stratified by expression decile (colors), along with

average CTCF motif density and CTCF ChIP-seq. Metaplots (top right) show the average change in contact for the 100 TSSs with the most significant disruption

scores. See also Figure S3.

(F and G) Mean disruption score of transcribed genes, stratified by expression level decile (colors), and separated into those whose TSS region overlaps (F) and

does not overlap (G) with CTCF sites.

The figures have different scales.
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disruptions scores being associated with CTCF motifs, tran-

scription, A compartments, GC content, and the deleted

sequence length, are consistent in H1hESC (Figures S4A–S4C).

Transposon clusters modulate genome folding
independent of CTCF
At the chromosome scale, our unbiased genome-wide screen

highlighted clusters of Alu elements and some other repetitive el-

ements alongside peaks in disruption scores, motivating us to

explore their role in 3D genome folding (Figure 3A). DNA and

RNA transposons replicate and insert themselves into DNA

and constitute over 50% of the human genome.33,34 They are

rich in transcription factor binding sites,35–37 suggesting that

some may have been evolutionarily repurposed as regulatory el-

ements. Growing evidence indicates that they provide a source

of CTCF motifs across the genome and serve as loop anchors

and insulators.38–40 To measure the impact of different families

of repetitive elements on 3D genome sensitivity, we compared

disruption of 5-kb windows containing repetitive elements

with those with none. Several families exhibit greater sensitivity

to perturbation than CTCF-containing regions (e.g., Alu, SVA,

small cytoplasmic RNA [scRNA], signal recognition particle

RNA [srpRNA]; Figure 3B). Disruption scores of repetitive ele-
4 Cell Genomics 3, 100410, October 11, 2023
ments are not correlated with mappability, indicating that poor

micro-C read mapping in model training data does not bias

this result (Figures S5A–S5F; STAR Methods). As with CTCF,41

regions with higher numbers of Alu elements are more disruptive

upon deletion; the disruption score of 5-kb windows with 5 or

more Alu elements is 9.88% higher than that of windows with

no elements (p < 1.54 3 10�291; Figure 3C). This clustering

effect holds acrossmany repetitive elements, includingmamma-

lian-wide interspersed repeat (MIR) and L2 long interspersed nu-

clear elements (LINEs), as well as across most small non-coding

RNA genes (Figure 3C). Many families, like L1 LINEs, show no

correlation at all, and trends are consistent across A and B com-

partments, hinting that clustering is family specific (Figures 3C,

S6A, and S6B).

To investigate the contribution of repetitive elements indepen-

dent of flanking sequence, we next individually deleted over 1

million elements in the RepeatMasker database (Figure 4A).

Overall, many elements create large-scale boundary shifts,

with some causing increases and others decreases in contact

frequency (Figure 4B). Deletions of almost all families are more

disruptive than random deletions, and deletions of families

such as Alu, small RNAs, SVA, and hAT-Charlie are on par with

or exceed deletions of CTCF sites across the genome



Figure 3. Regions with repetitive elements are sensitive to sequence perturbation

(A) Mean disruption scores of tiled 5-kb deletions across a 100-Mb region of chromosome 7. Tracks below the plot illustrate the density of CTCF motifs, genes,

and Alu elements.

(B) Mean difference in disruption scores between windows containing at least one repetitive element and windows containing none, stratified by family.

(C) Disruption scores of 5-kb deletions stratified by the number of Alu elements, tRNAs, L1 LINE elements, and CTCF motifs they contain.

See also Figure S6.
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(Figures 4C and S6C). Disruption is moderately correlated with

size, but many highly disruptive element families are relatively

small and cause unexpectedly large disruptions given their

length (Figures S7A, S7B, and 4C). For example, deletion of

tRNAs, scRNAs, srpRNAs, and small nuclear RNAs (snRNAs),

all under 130 bp on average, have a propensity to drastically alter

genome folding.

To experimentally validate these deep-learning-based predic-

tions, we leveraged the natural sequence differences between

humans and chimpanzees. Specifically, we examined loci with

human-lineage-specific repetitive elements in Hi-C data we

generated previously in human and chimpanzee neural progen-

itor cells.42 By comparing the experimental data with Akita pre-

dictions where the human-specific repetitive element is inserted

into the chimpanzee genome and conversely deleted from the

human genome, we find that Alu elements unique to humans

generate consistent changes to genome folding (Figures S8A–

S8C). Thus, experimental data validate our in silico screening

approach and support the importance of Alu and other repetitive

elements in genome folding.

We next explored possible mechanisms through which repet-

itive elements might influence genome folding. Causality is chal-

lenging to untangle because each repetitive element can contain

features with known associations to chromatin organization.

First, the lengths of repeat clusters are roughly similar to clusters

of CTCF motifs at TAD boundaries (Figure 4C). Second, several

repeat families are known to harbor CTCF motifs.43 Third, some
repeats have a strong GC bias (e.g., Alu GC% > 50%), poten-

tially allowing them to establish compartments.44,45 Finally, re-

petitive elements collectively account for a large amount of total

nuclear transcription.33 To dissect the contributions of CTCF

and active transcription versus other features of repetitive ele-

ments, we quantified overlap of these two annotations with re-

petitive elements that have the highest disruption scores. Only

5.86% of the 10% most disruptive elements contain a CTCF

motif, while 13.55% are actively transcribed (Figure 4D), so a

majority overlap neither. Disruptive repetitive element deletions

are enriched at distal enhancers that are not CTCF bound (Fig-

ure S9). These findings hint that repetitive elements may aid in

genome folding independently and in collaboration with CTCF

and transcription.

To understand the folding phenotypes of element deletions,

we next averaged the changes in contact frequency for the

top-scoring elements of each family (Figure 4E). Endogenous

retrovirus-K (ERVK) elements behaved like CTCF sites: their

deletion led to a strong and centered loss of a chromatin bound-

ary. Other repeat families created an off-diagonal gain in contact,

as seenwith Alu and hAT-Charlie; dispersed focal disruptions, as

with non-coding RNAs; and stripes, as with SVA elements. To

demonstrate that the model is internally consistent, we per-

formed a phenotypic rescue, where we deleted an individual

hAT-Tip100 element to produce a large change in contact and

attempted to restore the original folding pattern with a different

sequence (Figure 4F). While introducing random DNA or a
Cell Genomics 3, 100410, October 11, 2023 5
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CTCF motif did not recreate the original contact, inserting a

related MER91B hAT-Tip100 element did. We conclude that re-

petitive element families are associated with distinct chromatin

contact map features and that elements within a family are

generally functionally interchangeable.

Insertion of repetitive elements leads to distinct folding
phenotypes
Our deletion experiments do not distinguish between repetitive

elements that collaborate with CTCF to weaken or strengthen

nearby TAD boundaries and those that separately create chro-

matin contact. To isolate the effects of repetitive elements, we

next designed in silico insertion experiments.We first engineered

a ‘‘blank canvas’’ with no predicted structure by depleting a

randomly generated 1-Mb DNA sequence of all CTCF-like motifs

(Figures 5A and S10). We then inserted one or more copies of

any query sequence into this 1 Mb and quantified newly arising

chromatin contacts. We easily recreated a division closely

resembling a TAD boundary by inserting multiple copies of the

canonical CTCF motif (Figure 5B), validating this approach to

creating chromatin contact phenotypes.

After introducing the 1,000most disruptive repetitive elements

in our deletion screen into a blank canvas, we found that the ma-

jority also changed contact with insertion, including 80.3%of Alu

elements and 86.0% of ERVK elements (Figure 5C). Additional

copies strengthened the impact, and fewer copies were needed

to induce a chromatin boundary compared with the CTCF motif

(Figures 5D and S11). Clustering the insertionmaps revealed that

hAT/MIR insertions produced distinct folding patterns from ERV/

SVA element insertions (Figure 5E). Alu elements consistently

produced focal changes at the site of insertion that appeared un-

like CTCF-like boundaries. Curiously, repetitive elements seem

to produce two distinct modifications to 3D structure upon inser-

tion. Some elements create CTCF-like domain boundaries that

increase in strength as more elements are inserted (Figure 5F).

Other elements, like the Alu and SVA families, form a pattern

resembling a cross, with increased contact upstream and down-

stream of the insertion point. This cross-like pattern increases in

size with more element insertions. Insertions of tRNA genes did

not create new boundaries, suggesting that their effect on 3D

genome folding may be context dependent.

Some repetitive elements harbor CTCF motifs and overlap

with CTCF ChIP-seq peaks, strongly suggesting that the Akita

model predicted their importance because they contain CTCF

binding sites. To test this hypothesis, we performed saturation
Figure 4. Repetitive element deletions impact genome folding
(A) Strategy to individually delete over 1 million elements from the RepeatMaske

(B) Representative examples from chromosome 2, showing howdeletion of a hAT-

contact maps. Single elements are predicted to disrupt genome folding.

(C) Distribution of disruption scores across each repetitive element family (n = 1,1

control) and 100,000 100-bp random deletions (negative control) are shown in yel

on the right. See also Figure S6.

(D) The top 10% most disruptive elements across the screen by repetitive elem

transcribed in the HFFc6 cell line.

(E) Average changes in contact maps for the top 100 elements per family.

(F) Phenotypic rescue. We showcase a 138-bp MER91B hAT-Tip100 element wh

sequence and a CTCFmotif does not change the disturbed contact map, but intro

folding.
mutagenesis across a number of high-scoring repetitive ele-

ments (Figure 5D). Screening an ERVK element, for example, re-

vealed that the single nucleotides predicted to have the highest

importance for contacts lie directly at the center of a CTCF bind-

ing site (Figure 5D). Overall, the closer a sequence is to matching

the canonical CTCF motif, the larger the predicted impact of its

insertion (Figures S12A and S12B). Still, most of the elements

that produced contact changes had no CTCF overlap, and the

5- to 50-bpmotifs within these elements with the greatest impact

did not resemble CTCF motifs (Figures 5D, S12C, and S12D).

Therefore, insertions support the hypothesis that repetitive ele-

ments contain sequence determinants of 3D genome folding

beyond CTCF motifs.

Necessary vs. sufficient: A 60-bp segment of Charlie7 is
sufficient to induce a CTCF-like boundary
Mutating individual nucleotides can be enough to disturb protein

binding and profoundly impair 3D folding. By contrast, creating a

boundary, loop, or domain from scratch is more challenging, and

it is fundamentally unclear what minimum sequence is sufficient.

We next extended our screening approach to explore which sub-

sequences can produce the de novo contact of a full element.

First, we examined CTCF motifs. Fudenberg et al.20 mutated

all motifs in the JASPAR transcription factor database and deter-

mined that CTCF and CTCFL are most sensitive to sequence

perturbation. To complement this work, we inserted all motifs

into a blank map. We find that, regardless of motif spacing,

CTCF and CTCFL are the transcription factor motifs best able

to induce genome folding independent of any surrounding

genomic context, followed by HAND2, Ptf1A, and YY2

(Figures 6A and S13A). YY1 scores relatively lower, perhaps

because of its less stable binding or its binding with co-factors.46

Sampling and inserting motifs from the CTCF position weight

matrix, we found that the consensus sequence creates a stron-

ger boundary than 99.50% of CTCF variants (Figure 6B). Howev-

er, a small minority of CTCF ‘‘super-motifs’’ with a T at positions

8 and 12 outperformed the canonical motif, hinting that the most

common CTCF motifs may not be the most strongly insulating

ones. The super-motif sequences also produced stronger

boundaries in experimental Hi-C than the CTCF consensus

sequence (Figures S13B and S13C), and they are equally likely

to overlap CTCF ChIP-seq peaks (Figure S13D). These results

illustrate that Akita can be used to interpret the function of

CTCF and other transcription factor binding sites at single-nucle-

otide resolution.
r database.

Tip100 element, an ERV1 element, and an Alu element in silico significantly alter

64,108). The distributions of disruptions from 100,000 CTCF deletions (positive

low. The median size in base pairs of deleted elements for each family is shown

ent family. Most elements do not overlap a CTCF motif or a region actively

ose deletion produces a loss of a boundary. Inserting a random size-matched

ducing anMER91B element from the same family restores the original genome

Cell Genomics 3, 100410, October 11, 2023 7



Figure 5. In silico insertion screen reveals that repetitive elements can induce different boundary types

(A) Insertion screen strategy. For each of the 1,000 most disruptive elements, up to 100 individual copies (green) are inserted 100 bp apart, centered in a 1-Mb

random DNA sequence depleted of CTCF sites.

(B) The map predicted from the CTCF-depleted random sequence (left) provides a blank canvas against which we can measure the impact of insertions. A CTCF

site insertion into themiddle of the sequence produces boundaries in the predictedmaps (right). Disruption is measured as themean squared difference between

the blank map and the predicted post-insertion map. See also Figure S10.

(C) Distribution of disruption scores across repetitive element insertions (n = 14,514). The score distributions of 10,000 100-bp random insertions (negative

control) and of 10,000 CTCF motif insertions (positive control) are shown. See also Figure S12.

(D) We highlight three repetitive elements that are highly disruptive when deleted and inserted. We overlay overlapping annotated CTCF motifs and CTCF sites

confirmed by ChIP-seq in HFFc6 cells. We also show the disruption score of each nucleotide across the element following single-base-pair in silicomutagenesis,

highlighting the motif within the repetitive element responsible for the element’s high disruption score.

(E) t-SNE visualization of all predicted maps from repetitive element insertions with a disruption score above�5.5. Predictedmaps are colored by element family.

(F) We observe two primary classes of insertions. CTCF-like boundary insertions are common across ERVK and ERV1 elements, and cross-like insertions are

common across SVA and Alu elements.
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Next, we dissected Charlie7, a 367-bp AT-rich (29%GC) hAT-

Charlie element on chromosome 11. Deleting Charlie7 eliminates

chromatin interactions (Figures 5D and 6C). Inserting 20 tandem

copies of Charlie7 creates a CTCF-like boundary despite no sub-

sequence resembling a CTCF motif. This boundary could not be

reproduced by inserting a shuffled Charlie7 sequence or a

random sequence of the same length. We therefore shuffled in-

dividual 10-bp segments of Charlie7 to destroy local sequence

grammar before reinserting the element into the blank canvas.

Shuffling the final 60 bp had the same effect as shuffling the

entire element, revealing that this end of the element is neces-
8 Cell Genomics 3, 100410, October 11, 2023
sary for boundary creation (Figure 6D). We then created sliding

windows of 10 bp, 50 bp, and 100 bp along the element and in-

serted each subsequence into the blank canvas. No individual

subsequence was sufficient to reproduce the effect of the entire

element (Figure 6E). However, shuffling the first 307 bp while

maintaining the last 60 bp intact did create a strong boundary.

Because the GC content of Charlie7 is unusually low, we next re-

placed parts of the element with random GC-matched

sequence. A length-matched sequence with a GC content below

30% and the final 60 bp of the Charlie7 element was sufficient to

create a boundary (Figure 6F). Completely random insertions



Figure 6. In silico investigation of sequence features necessary and sufficient for repetitive element Charlie7 to create a boundary

(A). We insert every JASPAR motif into a CTCF-depleted random sequence, as well as 14,514 repetitive elements, and rank them according to their disruption

score. 85% of the most impactful insertions (score > �5.5) do not overlap a CTCF motif. See also Figures S12 and S13.

(B) We generate CTCF motif variants with frequencies sampled from the CTCF motif position weight matrix (PWM) and insert them into the random reference

sequence (n = 326,177), finding that 0.50% of motifs produce stronger predicted boundaries when inserted than the CTCF consensus sequence. These ‘‘super-

motifs’’ share Ts at positions 8 and 12.

(C) We investigate a 367-bp disruptive Charlie7 hAT-Charlie element that does not overlap a CTCF motif or ChIP-seq peak. Shown in the top row are the

experimental micro-C contact map around the locus of the Charlie7 insertion, themap of the locus predicted by Akita, and the predictedmap following deletion of

the entire element. Shown in the bottom row are the predicted maps after insertion into the reference, CTCF-depleted sequence of the Charlie7 element (left), a

version of the element with a shuffled sequence (center), and a random sequence of equal length (right).

(D) We shuffle each 10-bp subsequence along the element to determine which one is necessary to produce the boundary seen from introducing the whole

element.

(E) We introduce 100-bp segments scanning the entire element into the reference sequence and find that none is sufficient to produce a strong boundary.

(F) A DNA sequence matching the GC content of Charlie7’s first 307 bp combined with the last 60 bp is sufficient to recreate a boundary. Right: the first 307 bp of

Charlie7 were replaced with randomly generated sequence across a range of GC content.
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with a GC content below 30%and above 60%are also highly im-

pactful (Figures S14A and S14B). Based on these in silico exper-

iments, we conclude that GC content along with sequence syn-

tax could be critical for the insulating behavior of Charlie7.

Looking across all disruptive retrotransposons, we identify

several families with very extreme average GC content (Fig-

ure S14C), suggesting the intriguing hypothesis that abrupt shifts

in GC content resulting from repetitive element insertions into

genomic DNA contribute to genome folding.
DISCUSSION

In summary, we present a whole-genome, unbiased survey of

the sequence determinants of 3D genome folding using a flexible

deep learning strategy for scoring the effect of genetic variants

on local chromatin interactions. Our study utilized synthetic mu-

tations ranging from large deletions tiled across hundreds of

megabases down to single-nucleotide perturbations within

sequence motifs. Leveraging the high throughput of this in silico

screening strategy, we showed that sensitivity to 3D genome

disruption is associated with A compartments, extreme GC con-

tent, CTCF motif density, and active transcription. We identified

clusters of retrotransposons and RNA genes important for 3D

genome folding, as modulating their sequences disrupted chro-

matin contacts on par with or more than modulating CTCF sites.

Many of the repetitive elements with the largest effects on 3D

genome folding when deleted and inserted do not contain

CTCF and have not been implicated previously in chromatin ar-

chitecture, but they often have different GC content from the se-

quences into which they are inserted.

This study contributes to a growing body of evidence showing

that transposable elements modulate genome folding47 and

replication timing.48 It has long been hypothesized that transpo-

sons may have been evolutionarily co-opted as regulatory ele-

ments.36,37 Most transposable elements are decommissioned

by chromatin modifications,49 but functional escape can change

genome conformation.50 We observe loss and gain of contact

upon transposable element deletion, supporting the idea that

these elements can establish new boundaries by installing

CTCF-like motifs and inhibit ancient CTCF binding sites to block

contact.38 Our results are also consistent with previous findings

showing that specific MIR elements and tRNAs can serve as in-

sulators,51,52 while Alu and hAT provide loop anchors,53–55 and

hint that repetitive elements may work in tandem.44 Cao

et al.,56 for example, identified that many transposable element

families, but MIR short interspersed nuclear elements (SINEs)

and L2 LINEs in particular, are enriched for binding sites and

active chromatin marks, appear in the vicinity of tissue-specific

gene expression, and interact with each other extensively to

collaborate as enhancers or repressors. Liang et al.55 showed

that complementary RNAs from Alu sequences at enhancers

and promoters promote chromatin interactions. In future work,

it would be exciting to test coordination of transposable ele-

ments as shadow loop anchors, theorized by Choudhary

et al.38 to act as redundant regulatory material supporting

CTCF.38 We anticipate that comparing disruption with element

age and species divergence will help us to understand the evolu-
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tionary mechanisms of transposable element deprogramming

and selection in gene regulation.

Although we did not focus on CTCF specifically, a similar tar-

geted in silico approach could directly address why the majority

of CTCF motifs are not active57,58 and whether methylation

sensitivity of CTCF motifs containing CpGs tunes folding speci-

ficity.59 We also anticipate that future in silico experiments and

investigation of the model with activation maximization60 will

refine the spacing and orientation rules of neighboring and

redundant CTCF elements and reveal how CTCF coordinates

with flanking proteins and transposable elements.

Limitations of the study
It is important to emphasize that our in silico strategy, while

demonstrated here and previously to be highly accurate,20 is a

screening and hypothesis-generating tool. Model predictions,

especially those that implicate novel sequence elements or

mechanisms, will require further experimental validation. We

view this as a strength of our approach, not aweakness. Our abil-

ity to test millions of mutations efficiently and in an unbiased

manner enables us to develop hypotheses and prioritize

genomic loci that would not otherwise have been considered

for functional characterization. It is now a high priority to apply

massively parallel reporter assays, epitope devices, and genome

engineering to explore how hAT, MIR, ERV, and SVA elements

function in the context of 3D genome folding. We advocate for

deep learning as a powerful strategy for driving experimental

innovation that can be used iteratively with wet lab technologies

to accelerate discovery.

Our conclusions rest heavily on the Akita model, which only

considers a limited genomic window. Future work could apply

the approach presented here with other deep learning models

to test the robustness of our findings and potentially discover

additional sequence features missed in our work. Our method

scores the entire 1-Mb contact map and weights all regions

equally, which may be too insensitive to capture small changes

to specific loci. Filtering or weighting regions of the predicted

contact maps by overlap with functional genomic annotations

during score computations could also help to selectively test

specific hypotheses. Our study is further limited by the quality

of the hg38 reference genome, and we anticipate that extending

to the new telomere-to-telomere human genome assembly will

enable a better understanding of near-identical repetitive ele-

ments.34 Finally, to leverage the best-quality data currently avail-

able, we only made predictions across HFFc6 and H1hESC, but

features of the 3D genome can be cell type specific.61 As very

high-resolution and single-cell measurements of chromatin con-

tacts, gene expression, and accessibility are generated for more

cell types, it will be exciting to search for sequences that are

necessary and sufficient for chromatin contacts in each cell

type and to explore how variable these sequence determinants

are across cellular contexts.

To experimentally validate the importance of repetitive ele-

ments in 3D genome folding, one could use CRISPR interference

(CRISPRi) to acutely perturb select repetitive elements predicted

to be highly disruptive by our computational screen. One

could design guide RNAs targeting Alu elements predicted to

be highly disruptive upon deletion, SVA elements predicted to
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induce stripe-like patterns upon insertion, hAT-Charlie elements

computationally shown to be sufficient to induce boundaries,

and size- and chromosome-matched control repetitive elements

predicted to have minimal impact. Instead of repressing tran-

scription of targeted repetitive elements, one could alternatively

perform a CRISPR deletion to disentangle the effect of transcrip-

tion and other mechanisms. Significant disruption of contacts or

boundaries measured by Hi-C specifically at the Alu, SVA,

and hAT-Charlie elements targeted by CRISPRi or CRISPR

compared with control elements would provide strong experi-

mental support for the importance of these families of repetitive

elements in establishing local chromatin architecture.

Conclusions
In our investigation, we develop a toolkit of in silico experimental

strategies, including unbiased and targeted deletion screens,

phenotypic rescue, insertions into synthetic sequence, sampling

around known sequence motifs, and sequence contribution

tracks across tens of base pairs to megabases. We hope that

the variety of experiments profiled here may serve as a template

for foundational biological research with deep learning. We also

anticipate that our released disruption tracks will provide useful

annotations for genome sensitivity and yield further insights

into chromatin biology (Table S1). In sum, our work highlights

the potential of deep learning models as powerful tools for bio-

logical hypothesis generation and discovery in regulatory

genomics.
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ENCODE blacklist v2 Amemiya et al.58 https://github.com/Boyle-Lab/Blacklist/tree/

master/lists

Software and algorithms

Akita Fudenberg et al.20 https://github.com/calico/basenji/tree/master/

manuscripts/akita

bioframe Open2C et al.64 https://bioframe.readthedocs.io/en/latest/

matplotlib Hunter et al.65 http://matplotlib.sourceforge.net/; RRID:SCR_008624

MEME Bailey et al.66 https://meme-suite.org/; RRID:SCR_001783

numpy Harris et al.67 http://www.numpy.org/; RRID:SCR_008633

pandas Pandas development team68 https://pandas.pydata.org/; RRID:SCR_018214

pyJASPAR Khan69 https://zenodo.org/record/4509415

Python 3.7 Python Software Foundation https://www.python.org/; RRID:SCR_008394

seaborn Waskom et al.70 https://seaborn.pydata.org/; RRID:SCR_018132
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scipy Virtanen et al.72 https://scipy.org/; RRID:SCR_008058

seqlogo Bembom73 https://bioconductor.org/packages/release/

bioc/html/seqLogo.html

seqlogo, python port Sherman74 https://github.com/betteridiot/seqlogo

Disruption scoring code and screening

results

This paper https://github.com/keiserlab/3d-genome-

disruption-paper; https://doi.org/10.5281/zenodo.
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table.
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request.
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METHOD DETAILS

Akita model and datasets
Throughout this analysis, we use the published convolutional neural network Akita to predict log(observed/expected) chromatin con-

tact maps from �1 Mb (1,048,576 bp) of real, altered, or synthetic DNA sequence20 (https://github.com/calico/basenji/tree/master/

manuscripts/akita). All types ofmutations, including deletions, insertions, inversions and substitutions, may be scored as long as they

are smaller than 1 Mb. Akita’s predictions have been shown to mirror experimental results with deletions across scales of thousands

of base pairs (bp) to single nucleotides. Fudenberg et al. originally trained Akita across six cell-types simultaneously, and wemade all

predictions in this work in the cell-type with the highest resolution of training data, human foreskin fibroblasts (HFFc6).20 We find that

disruption in H1hESC is highly correlated (Figures S4 and S6C). The experimental Micro-C maps from HFFc627 are used in visuali-

zations. All chromatin and transcriptomic data were generated in HFFc6 and downloaded from public repositories. The source of all

public data, including Micro-C, ATAC-Seq, RNA-Seq, ChIP-Seq, and compartment calls, can be found in the key resources table. All

analyses use the hg38 genome build. We downloaded centromere locations from UCSC Table Browser.63

Computing 3D genome folding disruption scores
The location of deletions and insertions are centered such that the start position of the variant is always introduced halfway through

the 1-Mb sequence at 219 bp. For deletions, we pull additional sequence from the right to pad the input to 220 bp. We remove se-

quences from our analysis which overlap centromeres,64 ENCODE blacklisted regions,75 and regions with an N content greater

than 5%. Evaluating predictions on GPU (NVIDIA GeForce GTX 1080 Ti, NVIDIA TITAN Xp, NVIDIA GeForce RTX 2080 Ti) decreased

the time per variant from 1.58 s to 262 ms, on average.

We score disruption as the log of the mean squared error between reference and perturbed maps. Mean squared error captures

large-scale contact map changes, and has been used previously to rank predictions.20 Pearson/Spearman correlation is also an

appropriate choice.26

Mass deletion screens
Along with controls, we perform the following large-scale deletion screens.

1. 5 kb, whole genome (n = 562,743).

2. 10,000 (10k) random CTCF deletions. CTCF locations are pulled from JASPAR 2022.73

3. 10k 100-bp random deletions. Start locations are randomly sampled from the genome.

4. Randomly sized deletions, ranging from 1 bp to 100 kb (n = 41,207). Start locations are randomly sampled from the genome.

5. RepeatMasker database deletions (n = 1,164,107).74 RepeatMasker downloaded from UCSC Table Browser. We exclude

ambiguous elements (containing ‘?’ in the label). We initially sample 10,000 elements per family or up to the total number of

elements in the family, whichever is less. Thereafter, we randomly sample from the database.

6. TSS deletions. (n = 1,073,329 mutations across 1,789 genes).

A full summary as well as the location of these results can be found in Data Table S1.

Genomic tracks
We smoothed the disruption scores of 5-kb deletions with a rolling average of 50 bp to create disruption tracks (Figures 1D and 3A).

We additionally visualize the density of the following elements at 5-kb resolution.

1. Reference genes, hg38, GENCODE v39,69 downloaded from UCSC Table Browser.

2. ENCODE hg38 v3 candidate cCREs, ENCODE Project,29 downloaded from UCSC Table Browser.

3. CTCF motifs (MA0139.1), JASPAR 2022,73 downloaded from http://expdata.cmmt.ubc.ca/JASPAR/downloads/

UCSC_tracks/2022/hg38/.

4. ATAC-Seq peaks in HFFc6.72

5. Alu, L1, and L2 elements, RepeatMasker database, v. 4.1.2,74 downloaded from UCSC Table Browser.

Overlap with genomic annotations
We used pre-computed compartment scores generated from the HFFc6 Micro-C dataset originally employed for training Akita.27 To

calculate the overlap between disruption scores for 5-kb deletions and compartment scores generated at 50-kb resolution, we

merged both measures by genomic location, filled missing disruption values with linear interpolation, and calculated the overlap

across A compartments with a compartment score greater than 0 and B compartments with a compartment score less than 0.

We intersected deleted windows and transposable elements with ENCODE cCREs using bioframe66 to calculate the percentage

overlap. We use the same strategy to calculate overlap with JASPAR CTCF motifs, ATAC-Seq peaks, and transcribed elements.

When quantifying transcription of repetitive elements unannotated as genes, we calculated overlap with RNA-seq BigWigs, summed

across both strands.
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Mappability
Per nucleotidemappability wasmeasured using 24-kmermulti-readmappability, wheremappability is the probability that a randomly

selected read of length k in a given region is uniquelymappable.62Mappability trackswere downloaded from theHoffman lab (https://

bismap.hoffmanlab.org). In this study, mappability averaged across 5 kb deletions, repetitive element families, and Alu element types

in a 100 Mb subset of chromosome 1 from 100 Mb to 200 Mb.

In silico mutagenesis at the TSS
We examined behavior at the TSS using in silicomutagenesis. We individually randomlymutated each nucleotide 300 bp upstream to

300 bp downstream of the top 1,789 highest expressed protein coding genes via total RNA-Seq and quantified the MSE between

mutated and reference predicted maps. We observed that 1,015 genes fell in A compartments, while 63 fell in B compartments.

To produce tracks in Figures 2D and 2E, we averaged the disruption of each nucleotide by position and smoothed using a rolling

average of 20 bp. We used the same strategy across select repetitive elements to identify which nucleotides most contribute to

entire-element disruption scores (Figure 5D). To create metaplots, we selected the highest scoring nucleotide change for each

gene, and filtered all genes with a maximum disruption score above �7. We then averaged the difference between reference and

perturbed maps for these genes.

Repetitive elements
Repetitive element density was calculated as the number of elements across the entire RepeatMasker database overlapping each

5-kb genomic bin. We quantified enrichment as the log fold change of the mean disruption across 10% of genomic windows per

family compared to all windows. To create metaplots, we average the difference between maps for the top 100 repetitive element

deletions per family, along with CTCF deletions.

Phenotypic rescue
We profiled the following elements in our proof-of-concept phenotype rescue screen.

1. A MER91B hAT-Tip100 element at position chr2:98412915-98413053.

SWA score: 392, Divergence: 27%. Disruption from reference = �2.65.

2. A size-matched 138-bp random DNA sequence.

Disruption from deletion = �2.55.

3. The canonical CTCF motif (TGGCCACCAGGGGGCGCTA).

Disruption = �2.68.

4. A MER91B element at position chr12:51824097-51824219.

SWA score: 245, Divergence: 20.9%. Disruption = �5.28.

Insertion screens
CTCF depletion

We created a simulated Hi-C contact mapwithout structure as a blank canvas for insertion experiments. We first generated a random

DNA sequence of length 220 bp. By chance, predicted maps from random sequence will contain some above background contact

frequencies. To remove all structure, we incremented across this sequence one nucleotide at a time with a 12-bp sliding window. For

each position, we computed the edit distance to the consensus CTCFmotif. If the edit distance fell below a set threshold, we inserted

a random DNA sequence of length 12 until the subsequence was sufficiently different from CTCF. Experimenting with edit distances,

we found that a distance of 7 produces predicted maps which lack structure but do not result in artificial model predictions (Fig-

ure S10). We call this a ‘‘blank canvas’’ 1-Mb sequence.

CTCF insertion

We inserted the CTCF motif into the blank canvas and predicted expected contact frequencies with Akita. We quantify insertion

impact as the log mean squared error between the predicted maps of the blank canvas and the insertion. If more than one motif

was added, the insertions were centered and separated by an arbitrary 100 bp. To sample the CTCF motif, we drew frequencies

from the CTCF position weight matrix.73 To create a baseline, we inserted 5,000 CTCF motifs drawn from locations in the genome.

Sequence motifs were visualized with a python port of the seqLogo package.65,67

Repetitive element insertions

We selected the top 1,000 most disruptive repetitive elements per family by the deletion screen to insert back into the blank canvas

sequence. We inserted both the forward and reverse complement of each sequence, and selected the direction with the highest

score. For an initial screen, we inserted all elements 100x with 100-bp spacing. As an additional baseline, we inserted 1,000

201-bp randomly generated sequences, as the median repetitive element size in our insertion screen was 201 bp. To perform clus-

tering with t-SNE, we decreased the resolution of the 448x448 pixel maps to 100x100 pixels and flatten them to 1D vectors before

clustering.
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Additional genomic tracks

In Figure 5D, we visualized CTCF ChIP-Seq and CTCF motif locations in the element’s original genomic context. Along with deleting

the entire element, we performed mutagenesis to a random nucleotide across the length of the element to create a ‘disruption track’

of nucleotides most sensitive to perturbation. We highlight the most sensitive bases.

JASPAR insertions

We inserted the forward and reverse complement of each JASPAR motif73 into CTCF-depleted sequence with 100-bp spacing

(n = 842). JASPAR motifs were pulled and coordinated with pyJASPAR.68

Considering sequence mappability
One concern is sequence mappability potentially confounding model training. Repetitive elements are, by nature, highly conserved

and present inherent difficulties assigningmulti-mapped reads. Before training themodel, large gapswere excluded from the training

dataset and missing Hi-C bins were linearly interpolated.20 If repetitive elements were systematically removed or imputed, the model

may behave unreliably when predicting unseen repetitive element sequences.

To investigate this confounder, we examined how sequence mappability compares to disruption score (Figure S6). In general, we

observe no correlation between deletions of 5-kb windows and mappability, indicating that poorly mappable sequences do not have

unusually high or low disruption scores. Mappability of individual elements is also uncorrelated with disruption.

We do find that Alu elements have particularly low sequence mappability and particularly high predicted importance. Many Alu

elements are still active and recently inserted into DNA, and therefore have high sequence similarly, presenting a challenge in map-

ping. It is also possible that the highly conserved nature of recent Alu elements contributes to their utility in shaping the 3D genome.

The correlation with mappability is expected and may or may not indicate a bias; it is difficult to disentangle these two possibilities

easily. Relatively low negative correlation between disruption score and mappability for individual elements within the Alu class sug-

gests that many of the highly disruptive Alus are not in regions of low mappability.

QUANTIFICATION AND STATISTICAL ANALYSIS

Disruption score significance
Pearson correlation coefficient of disruption scores compared to several other genomic annotations was calculated using

scipy.stats.linregress (Figures 1E, 1D, and S1C).70 To assess if the relationship between disruption and additional annotations

was significant, we performed a two-sided Mann-Whitney-Wilcoxon test with compartment annotations (results, Figure 1E) and

transcription level using HFFc6 total RNA-Seq (results) in 5-kb genome windows genome-wide using scipy.stats. The number of

bins considered (n) and p values are provided in the results section. A two-sided test was performed because no directionality

was assumed. A two-sided Mann-Whitney-Wilcoxon test was also used to assess the significance of disruption between genomic

windows containing no Alu elements and windows with 5 or more (results, Figure 3C).

Motif significance
We evaluated the presence of CTCF in deleted and inserted transposable elements with overlap of CTCF ChIP-Seq, overlap of an-

notated CTCF motifs, and hamming distance to the canonical CTCF motif. Significance of a CTCF match was evaluated using FIMO

from the MEME suite.71
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