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In the aging population, the decrease on osteogenic differentiation resulted into a significant reduction in
bone formation. Bone tissue engineering has been a successful technique for treatment of bone defects. It
is reported that adipose-derived stem cells (ADSCs) have pluripotency to differentiate into adipocytes
and osteoblasts. However little is revealed about the effect of the herbal medicine Asperosaponin VI (ASA
VI) on ADSCs differentiation. In our study, we isolated and identified ADSCs from rats. We examined the
effect of different concentrations of ASA VI in ADSCs on alkaline phosphatase (ALP) activity, calcium
deposition, the expression of bone-related proteins and the release of inflammatory cytokines. Flow-
cytometry assay showed ADSCs were highly expressed CD44 and CD105, but hardly expressed CD34 and
CD45, suggesting ADSCs were successfully isolated for follow-up experiments. ALP activity examination
and Alizarin red (AR) stain showed that ASA VI enhanced the ALP activity and promoted matrix
mineralization in ADSCs. In addition, bone-related protein OCN and RUNX2, and Smad2/3 phosphory-
lation was upregulated after ASA VI treatment in ADSCs. ELISA results showed that ASA VI blocked the
release of TNF-a, IL-6 and IL-1f in ADSCs. Considering this results, we concluded that ASA VI promotes
osteogenic differentiation of ADSCs through inducing the expression of bone-related proteins. These
findings enriched the function of ASA VI as a regenerative medicine and shed new light for the treatment
of bone defects in clinical research.

© 2019, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

1. Introduction

Bone is a specialized type of connective tissue composed of two
different cells named as osteoblasts and osteoclasts [1]. Extensive
bone defect results in delayed or impaired bone healing [2]. Some
surgical procedures, including the Masquelet and Ilizarov tech-
nique, partly reconstruct some bone defects [3]. Bone remodeling is
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ADSCs, adipose-derived stem cells; RUNX2, runt-related transcription factor 2;
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a dynamic metabolic process directed by the balance between
bone-forming osteoblasts and bone-resorbing osteoclasts [4]. Bone
constructs produced by tissue engineering technique has been
introduced as a new strategy for treatment of bone defects [5].
Mesenchymal stem cells (MSCs) are multipotent cells with the
potentials to differentiate into various tissues, such as osteoblasts
and adipocytes [6], and are most frequently isolated from bone
marrow and adipose tissues [7]. Adipose-derived stem cells
(ADSCs) have been proposed as an ideal source for cell-based
therapies to support bone regeneration due to due to its wide
distribution through the body, easy access, less morbidity and a low
risk of tumorigenesis [8].

Dipsaci Radix (Chinese named Xu Duan) is the dried root of a
kind of perennial herb Dipsacus asper Wall growing in moist fields
and mountain in China [9]. Previous studies showed that Dipsaci
Radix contains triterpenoid saponins [10] and iridoid glucosides
[11]. Asperosaponin VI (ASA VI, also named Akebia Saponin D) is a
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typical bioactive triterpenoid saponin from D. asper Wall [12]. It is
reported that ASA VI exerts apoptosis-inducing activity through the
activation of apoptosis-related p53 and Bax expression [13]. Phar-
macological study demonstrated that ASA VI promotes MC3T3-E1
and primary rat osteoblasts proliferation and enhanced the for-
mation of bone nodules in osteoblast cells [14]. Some reports
illustrated that stimulating factors are able to induce osteogenic
differentiation of ADSCs [15]. However whether ASA VI could
induce osteogenic differentiation of ADSCs remains elusive.

In our study, we isolated ADSCs from rat adipose tissues and
performed surface antigen identification and differentiation po-
tential analysis of ADSCs. We examined the application of ASA VI at
different concentrations on ALP activity, calcium deposition, and
the expression of bone-related proteins and the levels of inflam-
matory cytokines. Our results showed that ASA VI promotes bone-
related gene expression to stimulate osteogenic differentiation of
ADSCs, which provides a new strategy for the treatment of bone
disorders. In addition, ASA VI increases the anti-inflammatory effect
of ADSCs and is involved in calcification-inducing mechanism in
ADSCs.

2. Materials and methods
2.1. Animal culture

A total of 20 SPF grade Sprague—Dawley (SD) rats, 4—6 months
old, weighing 170—210 g were provided by Department of medi-
cine, Nanchang University. Rats were kept at standard laboratory
conditions at 18—25 °C with 12 h light: 12 h dark. Standard rodent
feed and water were available ad libitum. All procedures were
performed according to the Guide for the Humane Use and Care of
Laboratory. This study was approved by the Animal Care Committee
of Henan Luoyang Orthopedic Hospital (No. [2014] 036).

2.2. Isolation and culture of ADSCs

SD rats were anaesthetized with pentobarbital sodium
(40 mg/kg). The fresh adipose tissues (about 1.5 mL) were iso-
lated from SD rats in a sterile way, and minced into small pieces.
After being digested with collagenase type I (1 g/L) at 37 °C for
75 min, the samples were filtered through 200 mesh filter net
and centrifuged at 1200 rpm for 5 min. The supernatant was
discarded and the resultant cell pellet was washed with sterile
phosphate-buffered saline (PBS) to eliminate any contaminants.
Cells were resuspended in Dulbecco's Modified Eagle Medium/
Nutrient Mixture F-12 (DMEM/F12, 1:1, catalog: 1861453, GIBCO,
USA) containing 10% fetal bovine serum (FBS, SKU: 04-007-1A,
Biological Industries, Israel) and seeded into 25 cm? flask in an
incubator at 37 °C with 5% CO,. Fresh medium was added into
cells twice a week. At the density of 80%—90%, ADSCs were
digested with 0.25% trypsin for 3 min and passaged according to
1:2 ratios. ADSCs between passages Il and V were used for the
follow-up experiments.

2.3. Alizarin red (AR) stain analysis of ADSCs

ADSCs were seeded into a 6-well plate at the density of
3 x 10* cells/well in DMEM/F12 with 10% FBS for mineralization
assay with AR Staining Kit (catalog: KGA363-1, KeyGEN BioTECH
company, Nanjing, China). After 48 h, ADSCs were incubated with
osteogenic induction medium (catalog: RASMD-90021, Cyagen
biotechnology company, Suzhou, Jiangsu, China) containing 10 nM
dexamethasone, 10 mM B-glycerophosphate, 50 pM ascorbate
phosphate and 10% FBS. After 14 d, cells at the density of 90% were
washed with PBS and fixed with 70% ethanol at room temperature

for 1 h. After being washed with PBS, cells were incubated with 1%
alizarin red solution at 37 °C for 1 h and captured. For the precip-
itation of alizarin red, these slides were incubated with 10% cetyl-
pyridinium chloride for 30 min at room temperature. The calcium
deposition was determined with a microplate spectrophotometer
(SPECTRO star Nano, BMG Labtech, Germany) at the wavelength of
570 nm.

2.4. Oil red O staining

ADSCs were seeded into a 6-well plate at the density of
5 x 10% cells/well in DMEM/F12 with 10% FBS. After 48 h, cells
were cultured with adipogenic induction medium containing 2%
FBS, 1% antibiotic solution, 0.5 mM isobutyl-methylxanthine,
1 mM dexamethasone, 10 mM insulin and 200 mM indometh-
acin. After 14 d, cells were washed with PBS and fixed with 10%
formalin for 5 min at room temperature. After washes, cells
were incubated with Oil Red O staining solution (0.3%, Sigma,
USA) for 15 min at room temperature. Images were observed
with an inverted microscope Eclipse TS100 (Nikon, Tokyo,
Japan).

2.5. Surface antigen identification of ADSCs

ADSCs were digested with 0.25% trypsin and suspended with
PBS at the density of 2 x 10° cells/mL. A total of 50 pL cells were
incubated for 20 min at 4 °C in the dark with 20 pL of the following
antibodies: anti-CD105-phycoerythrin (PE; catalog: 550546), anti-
CD44-PE (catalog: 561860), anti-CD34-PE (551387) and anti-CD45-
phycoerythrin/CyChrome (PE/Cy5, catalog: 559135) (Becton, Dick-
inson and Company, USA). Then Cells were washed with flowcy-
tometry buffer and analyzed with a Cyflow Space flowcytometer
(Partec, Miinster, Germany).

2.6. Detection of cell proliferation

The effect of ASA VI on the proliferation of ADSCs was evaluated
using cell counting Kit-8 (CCK-8, Dojindo, Kyushu Island, Japan)
according to the manufacture's protocol. ADSCs were seeded into
96-well plates at the density of 1 x 10> cells/well containing
DMEM]/F12 or asperosaponin VI (ASA VI, catalog: SA8570, Solarbio
life sciences, Beijing, China) at various concentrations (10~7, 107,
107>, 104 or 0 M), with 6 replicate cells for each concentration.
After 3, 7 or 14 d, each well was added 10 uL of CCK-8 solution and
incubated in dark for 1 h at 37 °C. OD value was detected by a
microplate reader (SPECTRO star Nano, BMG Labtech, Germany) at
the wavelength of 450 nm.

2.7. Detection of alkaline phosphatase (ALP) activity

ADSCs were seeded into 96-well plates at the density of
1 x 10% cells/well and were randomly divided into six groups:
Control, 0 M, 10~7 M, 10~% M, 10~> M and 10~* M for ALP activity
assay. Cells in Control group were incubated with DMEM/F12
containing 10% FBS for 3 d, 7 d, 14 d or 21 d, respectively. Cells in
0M, 10"’ M, 10~ M, 10~ M or 10~* M groups were cultured with
osteogenic medium and 0 M, 10~7 M, 106 M, 10~ M or 10~* M ASA
VI, respectively. At the density of 80%—90%, cells were lysed with
0.1% Triton X-100, and OD values were detected at the wavelength
of 520 nm according to the manufacturer's protocol of ALP assay kit
(catalog: A059-2, Nanjing Jiancheng Bioengineering Institute,
Nanjing, China). ALP activity (U/gprot) = (ODtest/ODstandard)
*(enzyme content)standard/(protein concentration )gest.
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2.8. Enzyme-linked immuno sorbent assay (ELISA)

The levels of OCN were determined by rat Osteocalcin/Bone gla
protein ELISA assay kit (catalog: ml002883, mlbio elisakit pro-
ducers, Shanghai, China) according to the manufacturer's protocol.
Samples were diluted with phosphate buffered saline (PBS). The
diluted sample was added into polystyrene plate at the density of
50 pL/well and incubated at 37 °C for 30 min. After being washed
with wash buffer, the plate was incubated with fresh enzyme-
labeled antibody for 1 h at 37 °C. After washes, the plate was
incubated with chromogenic agents to develop color at 37 °C for
10 min in the dark. OD values were detected with a NanoDrop-2000
spectrophotometer at the wavelength of 450 nm with the blank
control having an OD of zero.

2.9. Quantitative real-time polymerase chain reaction (qQRT-PCR)

ADSCs were seeded into 6-well plate at the density of
1 x 10° cells/well. Cells in Control group were incubated with
DMEM/F12 containing 10% FBS. Cells in 0M, 10~" M, 10~ M, 10> M
or 10~% M groups were cultured with osteogenic medium with 0 M,
107 M, 1076 M, 107> M or 10~4 M ASA VI, respectively. At the
density of 80%—90%, total RNA was extracted from different groups
using Trizol buffer (catalog: CW0580S, CWBIO, Beijing, China). The
quality of RNA was determined by agarose electrophoresis, and the
concentration was measured with a NanoDrop-2000 spectropho-
tometer at the absorbance of 260 nm and 280 nm. 0.5 ug RNA was
reverse transcribed into cDNA with HiFiScript cDNA Synthesis Kit
(catalog: CW2569M, CWBIO, Beijing, China) according to the in-
struction. The relative expression of target genes was detected in
the Step-One real-time PCR system (Invitrogen, USA) using Ultra-
SYBR Mixture (catalog: CW0957M, CWBIO, Beijing, China). The
parameters for PCR were as follows: 95 °C for 5 min, followed by 40
cycles at 95 °C for 20 s and then at 60 °C for 20 s. The relative
expression of RUNX2 and OCN was normalized to the internal
control glyceraldehyde-phosphate dehydrogenase (GAPDH) using
the 2722CT method [16]. The primers for PCR were as follows:
RUNX2 forward primer: 5’-caacttcctgtgctccgtg-3/, reverse primer:
5’-aagtgaaactcttgcctcgtc-3’; OCN  forward primer: 5'-ggtgca-
gacctagcagacacca-3/, reverse primer: 5-aggtagcgccggagtctattca-3’;
GAPDH forward primer: 5'-caatgaccccttcattgacc-3/, reverse primer:
5’-gagaagcttcccgttctcag-3'.

2.10. Western blot

ADSCs were seeded into a 6-well plate at the density of
1 x 10° cells/well. Cells in Control group were incubated with
DMEM/F12 containing 10% FBS. Cells in 0 M, 10~ M, 107 M,
107> M or 10~* M groups were cultured with osteogenic medium
with 0 M, 1077 M, 10~® M, 10~> M or 10~% M ASA VI, respectively.
After 14 d, proteins were extracted from different groups using
RIPA buffer. The concentration was calculated with a bicinchoninic
acid kit (Pierce, Germany) according to the manufacturer's proto-
col. An equal amount of protein was subjected onto SDS-PAGE and
transferred to a polyvinylidene fluoride membrane (Millipore,
Boston, MA, USA). After being blocked with 5% non-fat milk in Tris-
buffered saline with 0.05% Tween 20 (TBST) for 1 h at room tem-
perature, the membrane was incubated with rabbit polyclonal
antibodies against OCN (1:800, catalog: A6205), RUNX2 (1:1,000,
catalog: A6214) (Abclonal technology, USA), Smad2/3 (1:500, cat-
alog: ab63672) and Smad2/3 (phospho T8) (1:1,000, catalog:
ab63399) (Abcam, USA) at 4 °C overnight. The next morning, the
membranes were washed with TBST and probed with the corre-
sponding horseradish peroxidase-conjugated secondary antibody
(1:10,000) for 1 h at room temperature. The signals were

developed with an electrochemiluminescence solution (Pierce,
Germany). The relative expression of RUNX2 and OCN were
calculated by the normalization to GAPDH using Quantity One
software v4.2 (Bio-Rad, USA).

2.11. Statistical analysis

All data were expressed as means + standard deviation of
three independent experiments. Statistical analysis was per-
formed with SPSS software v17.0 (Chicago, IL, USA). Statistical
correlation between two groups was performed using student
t-test. The data were considered statistically significant when
P < 0.05.

3. Results
3.1. ADSCs were successfully isolated from adipose tissues

As shown in Fig. 1A, ADSCs in primary culture displayed long
spindle or fibroblast-like morphology. AR and oil O red staining
showed that ADSC has pluripotency of osteogenic differentiation
and adipose differentiation (Fig. 1B and C). Flow cytometry analysis
of ADSCs showed that ADSCs positively expressed stem cell-
associated markers CD44 (95.67%) and CD105 (96.88%), but
weakly expressed hematopoietic cell marker CD34 and leukocyte
marker CD45 (Fig. 1D—G). These data indicated that ADSCs were
successfully isolated from adipose tissues and were capable of
multi-lineage differentiation.

3.2. ASA VI did not affect ADSCs proliferation

In order to explore the effect of ASA VI on the proliferation of
ADSCs, we incubated ADSCs at various concentration of ASA VI and
performed CCK-8 assay. In Fig. 2, after 3 d incubation of ASA VI,
there was no significant difference on OD value among Control, 0 M,
107 M, 107% M, 10> M and 10~* M groups (P > 0.05). The similar
results were observed after 7 and 14 d induction of ASA VI. There
data showed that ASA VI at these concentrations had no effect on
ADSCs proliferation.

3.3. ASA VI enhanced the ALP activity and calcium deposition

In order to explore the function of ASA VI on the osteogenic
differentiation of ADSCs, we performed ALP activity assay and AR
staining. In Fig. 3A, there was no significant difference among
Control, 0 M, 1077 M and 10°% M groups after 3 d of ASA VI in-
duction (P > 0.05); Compared with 0 M, ASA VI at the concentration
of 1073 M and 10~4 M of ASA VI significantly promoted the ALP
activity (P < 0.05). At 7 d, 14 d and 21 d of induction, compared with
Control group, ALP activity in 0 M group was significantly improved
(P < 0.05). And the ALP activity at 10-7 M, 107 M, 10~> M and
10~* M groups was higher than that in 0 M group (P < 0.05) with
the trend of 107" M <10°°*M <10 °M < 107 M.

We employed AR stain to detect the effect of ASA VI on calcium
deposition after 14 induction in Fig. 3B and C. Compared with
Control group, the number of mineralized nodules marked in red in
0 M group was significantly increased in Fig. 3A (P < 0.05). The
continuous treatment of ASA VI at 10~/ M, 10-® M, 10~> M and
10~* M obviously increased the number of mineralized nodules,
with the trend: 1074 M > 10> M > 10" M > 10~ M (P < 0.05). The
similar results were observed in the content of calcium deposition
in Fig. 3C. These data showed that ASA VI enhanced ALP activity and
calcium deposition in ADSCs.
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Fig. 1. ADSCs were successfully isolated from rat adipose tissues. A. ADSCs displayed fibroblast-like spindle shape. B. ADSCs were stained with AR. C. ADSCs were stained with Oil
O red. Scale bar = 100 um. B. ADSCs were highly expressed CD44 and CD105, but hardly expressed CD34 and CD45 detected by flowcytometry.

3.4. ASA VI promoted the expression of RUNX2 and OCN

We examined the level of OCN in ASA VI-induced ADSCs in
Fig. 4A. No significant difference was observed among Control, 0 M,
107 M and 10~® M groups at 3 d (P > 0.05). Compared with 0 M, the
incubation of ASA VI at 10> M and 10~ M enhanced the levels of
OCN (P < 0.05). However, at 7 d, 14 d, and 21 d, the levels of OCN in
0 M were significantly higher than those in Control group
(P < 0.05). And the addition of ASAVIat 10~7 M, 10~ M, 10~ M and
10~* M obviously increased the levels of OCN. These data showed
that ASA VI incubation promoted the expression of OCN.

We further investigated the mRNA and protein levels of RUNX2
and OCN after ASA VI induction. In Fig. 4B, the mRNA expression of
OCN and RUNX2 in 0 M group was significantly higher than those in
Control group (P < 0.05). And the addition of ASA VI at 1077 M,
10~®M, 10~> M and 10~* M improved the mRNA levels of OCN and
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Fig. 2. ASA VI did not affect the proliferation of ADSCs. ADSCs were randomly
divided into six groups: Control, 0 M, 10~7 M, 10-® M, 10> M and 10~% M. Cells in
Control group was incubated with DMEM/F12 containing 10% FBS or different con-
centrations of ASA VI (0 M, 1077 M, 107% M, 10™> M or 10~ M). OD value at the
wavelength of 450 nm was detected with CCK-8 kit after 3, 7 or 14 d induction.

RUNX2 (P < 0.05). The similar trends on the protein levels of OCN
and RUNX2 were detected in Fig. 4C and D. These results showed
that ASA VI enhanced the expression of OCN and RUNX2 in ADSCs.

3.5. ASA VI blocked the release of pro-inflammatory cytokines in
ADSCs

We examined the levels of TNF-a, IL-6 and IL-1f after the in-
duction of ASA VI in ADSCs. In Fig. 5A—C, compared with 0 M group,
the addition of ASA VI significantly blocked the levels of TNF-a, IL-6
and IL-1B (P < 0.05), suggesting that ASA VI exerted the anti-
inflammatory effect in ADSCs. To explore the -calcification-
inducing mechanism of ASA VI in ADSCs, we examined the effect
of ASA VI on Smad2/3 phosphorylation. In Fig. 5D, no significant
difference was observed between Control and 0 M groups
(P > 0.05). However, compared with 0 M group, the application of
ASA VI significantly increased Smad2/3 phosphorylation, suggest-
ing that ASA VI promotes Smad2/3 phosphorylation in ADSCs.

4. Discussion

In the aging population, osteogenic differentiation of MSCs de-
creases, leading to a significant reduction in bone formation [17]. In
addition, alterations in bone mass and quality caused by osteopo-
rosis and obesity are major health problems worldwide [18]. Bone
tissue engineering has developed a new strategy for treatment of
bone disorders [3].

Bone remodeling is a result of the balanced bone formation
by osteoblasts and bone resorption by osteoclasts [19]. MSCs
have the potentials to differentiate into chondrocytes, adipocyte
and osteoblasts and are introduced as a suitable candidate for
bone regenerative techniques [20]. ADSCs can be induced to
differentiate into mesenchymal lineages, such as adipocytes,
osteoblasts and chondrocytes [21]. Previous study revealed that
extremely low frequency pulsed electromagnetic fields im-
proves osteogenic differentiation of human ADSCs [3,22,23],
indicating the potential of ADSCs differentiation into
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Fig. 3. ASA VI enhanced ALP activity and calcium deposition in ADSCs. ADSCs were randomly divided into six groups: Control, 0 M, 10~ M, 10~% M, 10~> M and 10~ M. Cells in
Control group was incubated with DMEM/F12 containing 10% FBS. Cells in 0 M, 10~7 M, 10~ M, 10> M or 10~# M were cultured with osteogenic medium containing ASA VI at the
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compared with Control group; *P < 0.05, compared with 0 M group.
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proteins were collected for western blot. *P < 0.05, compared with Control group; *P < 0.05, compared with 0 M group.
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osteoblasts. ADSCs have attracted much interest in the field of
tissue engineering because of their easy access, less discomfort
and great number of stem cells [24]. In our study, we found
calcium deposition and lipid droplets via AR analysis and oil red
O stain in Fig. 1B and C, which indicated the capacity of ADSCs to
differentiate to osteoblast and adipocyte lineages. CD44 and
CD105 displayed positive and CD34 and CD45 displayed nega-
tive in Fig. 1D—G. Thus, ADSCs displayed fibroblast-like
morphology but have the capacity of differentiation, which
provided a good model for our research.

Specific transcription factors such as RUNX2 is involved in the
regulation of osteogenic differentiation, and controls the expres-
sion of bone extracellular matrix proteins by binding to various
bone-specific targets such as ALP and OCN [29,30]. OCN acts as
the most abundant glycoprotein in bone extracellular matrix via
binding to calcium ions and regulates the mineralization of bone
matrix [31]. ALP activity is a phenotypic marker for the early and
mature osteoblasts [25]. The formation of mineralized nodules is
one of the markers of osteoblastic maturation [26]. ASA VI is the
main pharmacologically active constituent derived from Dipsacus
asper Wall [12], which has long been used as a tonic and anti-
inflammatory agent in traditional Chinese medicine for the
therapy of bone fractures [27,28]. In our study, we found that
different concentrations of ASA VI incubation in ADSCs signifi-
cantly enhanced the ALP activity and the content of calcium
deposition. In addition, ASA VI upregulated the mRNA and protein
levels of OCN and RUNX2 in ADSCs. Considering these data, we
concluded that ASA VI promotes the osteogenic differentiation of
ADSCs via inducing the expression of bone-related proteins such
as RUNX2 and OCN. In addition, we found that the application of
ASA VI significantly blocked the release of pro-inflammatory cy-
tokines such as IL-6 and IL-1, indicating that ASA VI exerted anti-
inflammatory effect in ADSCs. These data provided new evidence
about ASA VI used as anti-inflammatory agent [27,28]. Previous
study showed that ADSCs exerts regenerative effect by anti-
inflammatory effect [29]. That's to say, the application of ASA VI
in ADSCs increases the anti-inflammatory effect of ADSCs and
promotes the regenerative effect.

ASA VI has been developed as a new drug to treat osteoporosis
and granted a Chinese patent by Zhejiang Dier Pharmaceutical Co.
Ltd [30]. It is reported that Dipsacus asper Wall induced osteo-
blastic differentiation through a bone morphogenic protein-2/
mitogen-activated protein kinase/SMAD/1/5/8-dependent runt-
related transcription factor 2 signaling pathway [31]. It is also
indicated that ASA VI promotes MC3T3-E1 and primary rat osteo-
blasts proliferation and enhanced the formation of bone nodules in
osteoblast cells [14]. Smad2/3 is the major component of trans-
forming growth factor-B (TGF-B) and is closely associates with the
regulation of bone formation [32]. In our study, we found that the
addition of ASA VI increased the Smad2/3 phosphorylation, which
is in agreement with the previous study. These data showed that
ASA VI might promote osteogenic differentiation of ADSCs via TGF-
B/smad pathway. However, more experiments need to be per-
formed to explore the exact mechanism.

Although the potential of ADSCs and the function of ASA VI on
osteoblasts were reported separately, little was referred to the ef-
fect of ASA VI on ADSCs differentiation. In our study, we combined
ASA VI and ADSCs and found that the addition of ASA VI signifi-
cantly promoted the osteogenic differentiation of ADSCs. Based on
the attractive characteristics of ADSCs for clinical application and
the widespread of ASA VI, our findings provided a new insight for
bone modeling with higher efficacy, less side effects and lower
costs.

5. Conclusion

In our study, we found that ASA VI had no effect on cell prolif-
eration, enhanced the ALP activity and calcium deposition, upre-
gulated the levels of RUNX2 and OCN, blocked the release of TNF-a,
IL-6 and IL-1B, but promoted the phosphorylation of Smad2/3 in
ADSCs. These data showed that ASA VI stimulated osteogenic dif-
ferentiation of ADSCs through inducing the expression of RUNX2
and OCN. These findings enriched the function of ASA VI and pro-
vided a new insight for bone modeling with higher efficacy, less
side effects and lower costs. We also found that ASA VI affected the
expression of inflammatory cytokines and the phosphorylation of
Smad2/3 in ADSCs, however, more extensive investigations need to
be carried out to explore the underlying mechanisms of ASA VI
promoting ADSCs osteogenic differentiation.
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