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Abstract

Single and collective cell dynamics, cell shape changes, and cell migration can be conve-

niently represented by the Cellular Potts Model, a computational platform based on minimi-

zation of a Hamiltonian. Using the fact that a force field is easily derived from a scalar energy

(F = −rH), we develop a simple algorithm to associate effective forces with cell shapes in

the CPM. We predict the traction forces exerted by single cells of various shapes and sizes

on a 2D substrate. While CPM forces are specified directly from the Hamiltonian on the cell

perimeter, we approximate the force field inside the cell domain using interpolation, and

refine the results with smoothing. Predicted forces compare favorably with experimentally

measured cellular traction forces. We show that a CPM model with internal signaling (such

as Rho-GTPase-related contractility) can be associated with retraction-protrusion forces that

accompany cell shape changes and migration. We adapt the computations to multicellular

systems, showing, for example, the forces that a pair of swirling cells exert on one another,

demonstrating that our algorithm works equally well for interacting cells. Finally, we show

forces exerted by cells on one another in classic cell-sorting experiments.

Author summary

Cells exert forces on their surroundings and on one another. In simulations of cell shape

using the Cellular Potts Model (CPM), the dynamics of deforming cell shapes is tradition-

ally represented by an energy-minimization method. We use this CPM energy, the Hamil-

tonian, to derive and visualize the corresponding forces exerted by the cells. We use the

fact that force is the negative gradient of energy to assign forces to the CPM cell edges,

and then extend the results to approximate interior forces by interpolation. We show that

this method works for single as well as multiple interacting model cells, both static and

motile. Finally, we show favorable comparison between predicted forces and real forces

measured experimentally.

Introduction

From embryogenesis and throughout life, cells exert forces on one another and on their sur-

roundings. Cell and tissue forces drive cell shape changes and cell migration by regulating cell
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signaling and inducing remodeling of the cytoskeleton. Along with progress in experimental

quantification of cellular forces, there has been much activity in modeling and developing

computational platforms to explore cellular mechanobiology. In some platforms, among them

vertex-based and cell-center based simulations, the shape of a cell is depicted by convex poly-

gons, ellipsoids or spheres.

The Cellular Potts Model (CPM) is a convenient and relatively popular computational plat-

form for modeling dynamic, irregular and highly fluctuating cell shapes [1–3]. An advantage

of the CPM is its high resolution description of cell shapes compared with polygonal cells in

vertex-based computations [4]. The CPM can easily accommodate cell detachment or reat-

tachment from an aggregate, and a range of cell-cell adhesion, where vertex-based simulations

are less suitable. The CPM also captures stochastic aspects of cell movement and deformation.

At the same time, since CPM computations are based on a phenomenological “energy” (the

Hamiltonian), it has often been criticized as non-physical, or, at least, as devoid of Newtonian

forces. For a detailed rebuttal of this issue, see the recent work of [5].

In their review of models for cell migration, Sun and Zaman [6] point to the need to coordi-

nate results between force-based and energy-based models, indicating that this is a “challeng-

ing but significant” problem. Here we devise a map between the CPM Hamiltonian and an

explicit vector-field of forces associated with the dynamics of cell shape. Our approach con-

trasts with that of [7, 8] who used the CPM to describe cell shape, but who assumed phenome-

nological force-fields unrelated to the underlying Hamiltonian. In [9, 10], analytical

expressions for forces obtained from a specific Hamiltonian function were employed. While

CPM forces were discussed in detail in [5], those forces were quantified explicitly for simple

geometries, such as circular or spherical cells. The algorithm we describe here computes force-

fields that are consistent with an arbitrary Hamiltonian and cell shapes, links those forces to a

typical internal signaling computation, and generalizes to multiple interacting cells. We illus-

trate the computation of the force field for single cells exerting traction forces on a 2D sub-

strate, for pairs of cells pulling/pushing one another, and for larger clusters of cells interacting

through adhesion and through internal signaling.

In the Cellular Potts model, each “cell” configuration σ, consists of a collection of connected

lattice site, assigned a unique index (“spin number”). Parts of the domain containing no cells

are indexed 0 by convention. For a single CPM cell surrounded by medium, the typical Hamil-

tonian is given by

HðsÞ ¼ HA þ HP þHJ; ð0:1Þ

where σ is the cell configuration and

HA ¼ laðA � aÞ2; HP ¼ lpðP � pÞ2; HJ ¼ Jð0; 1ÞP: ð0:2Þ

Here HA is an energetic cost for expansion or contraction of the area, A, away from a constant

“rest area”, a, of the cell. HP is an energetic cost for deviation of the cell perimeter P from its

“rest perimeter” p. HJ is an energy associated with the cell-medium interface (generalized later

to include cell-cell or cell-medium adhesive energies.) The factors λa, λp, J(0, 1) set the relative

energetic costs of area changes, perimeter changes, and changes in the contact with the

medium. In a typical CPM simulation, cell shapes are highly deformable. At each simulation

step (Monte Carlo Step, MCS) every boundary pixel of each cell may “protrude” or “retract”.

Due to the historical connection to the Ising model [11], these changes are sometimes called

“spin-flips”. The pixel changes are accepted or rejected with some probability that depends on

the change in H and on a user-defined “temperature” T, as described in Materials and

Methods.

Computing forces in the Cellular Potts Model
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There are many realizations of the Potts Model with additional terms, or variations of such

terms. In the Discussion, we summarize the numerous ways that CPM cell shape computations

were linked to force calculations external to the CPM formalism itself (and including, among

others, finite element methods).

Since the Hamiltonian associates an “energy” with each cellular configuration, theoretically

we can relate forces to the negative gradient of the Hamiltonian, i.e.

~F ¼ Fx; Fy

� �
¼ � rH ¼ �

@H
@x

;
@H
@y

� �

: ð0:3Þ

In practice, the computations are all carried out on a finite grid, so partial derivatives in (0.3)

are approximated by finite differences. Viewing cells on a 2D substrate from above, for exam-

ple, we calculate the small change in the Hamiltonian when the cell boundary is extended in

the x or y directions by a small step Δx or Δy, as illustrated in Fig 1. This is repeated at each

point along the edge of the cell.

Although the CPM can only directly prescribes forces on the edge of the cell, we use interpo-

lation to approximate the force field in the the interior of the cell region (i.e., to visualize puta-

tive traction forces created by the cellular “footprint” on its substrate or extracellular matrix).

In the absence of additional model refinements (e.g. model of evolving sites of focal adhesions,

internal structures and/or actin stress fibers), we do so by simple linear interpolation from the

cell edge to the cell centroid. This is a rough approximation that can be adapted or modified in

future studies. The interpolation is validated against experimental data. (We compared linear,

quadratic, and exponential fits to experimental data, showing that they lead to similar results,

S5 Fig). The workflow then entails 1) calculating the force along the cell perimeter, 2) reducing

the grid effect in the force field, 3) interpolating the force-field to the interior of the cell.

Visualizing the interior force field can serve several purposes. First, it is useful in modeling

experimental cell traction forces, as we show further on. Second, it can be used in computa-

tional studies where such forces are linked to feedback between cell mechanics and intracellu-

lar signaling. Our method could provide a useful companion to computations in [7, 8], where

the CPM was linked to a finite element model of cell-substrate forces, or to [12], where feed-

back between traction forces, cell shape and adhesions were modeled. This generic computa-

tion can be extended to forces of multiple interacting cells (in a cell sheet or aggregate). The

implementation of this idea is described in the Materials and Methods, with further details in

the Supporting Information S1 File.

Results

Forces associated with static cell shapes

We computed the force-fields associated with the CPM Hamiltonians of single static cells with

circular (A), elliptical (B), and irregular shapes (C,D). Results of the complete algorithm

(including smoothing and interior forces) are shown in Fig 2(A)–2(D). Intermediate calcula-

tions (forces on the cell boundary without and with smoothing, and without interior smooth-

ing) can be found in S6–S8 Figs.

Whether forces point inwards or outwards depends on the values of the area A and perimeter

P relative to their target values a, p and the relative weights of the energetic cost or area and

perimeter changes. For parameters given in Fig 2, forces point inwards all along the boundary of

the circular and elliptical cell shapes. We find forces directed approximately normal to the bound-

ary, with magnitudes that decay towards the centroid, as a consequence of our interpolation.

In more irregular shapes (Fig 2C and 2D), forces can point either inwards or outwards at

different points along the boundary. For the irregular cell with given configuration and

Computing forces in the Cellular Potts Model
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Fig 1. Schematic diagram: Deriving forces from a Cellular Potts Model Hamiltonian. The Hamiltonian represents

an energy, so~F ¼ � rH. We compute a discrete approximation to the components of the force (Fx, Fy) at each point~x
on the cell boundary. Centered finite differences are used to approximate the derivatives −(@H/@x, @H/@y) of the

Hamiltonian as in Eq (0.5). Here we illustrate the idea for the x component of the force, Fx. From a given initial CPM

cell configuration σ (top row), we numerically compute the difference in the Hamiltonian at a point~x on the right cell

boundary when the cell retracts or extends (second row). We show the same idea for the left cell boundary (last two

rows). The force field computed along the boundary is then smoothed and interpolated to the cell interior, as described

in Materials and Methods.

https://doi.org/10.1371/journal.pcbi.1007459.g001
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Hamiltonian parameters, we found that at convex sites, the forces point inwards, while at con-

cave sites, the forces point outwards. This is also in line with expectations based on local (posi-

tive or negative) curvature of the boundary. Even for the most irregular cell shape, the forces

are fairly smooth and continuous.

Dynamic cell shapes and evolving forces

We next tracked the evolution of forces that accompany dynamic changes in shape of a CPM

“cell”. To do so, we initiated a CPM computation with a circular cell with perimeter smaller

than the rest-length p and area greater than the rest area, a. We also assumed λp> λa, so that

the energetic cost of the perimeter term dominated the energetic cost of the area term in the

Hamiltonian.

A time sequence of cell shapes and accompanying forces is shown in Fig 3. At MCS step 1,

the cell is far from its preferred configuration, and large forces are seen all along its edge. (Note

that these forces are mostly directed outwards, with notable exceptions in non-convex regions

of the boundary.) As the sequence of cell areas and perimeters evolves, (indicated in the cap-

tion), we find that the cell quickly obtains its target perimeter, and then the forces point

inwards and the cell starts to shrink to obtain its target area. The irregular force directions and

Fig 2. Forces predicted for several cell shapes. Force fields predicted by our complete method (smoothing and

interpolation) for four simulated cell shapes in the CPM. (A) Circular cell (area A = 401, perimeter P = 74,

diameter = 23). (B) Elliptical cell (area A = 629, perimeter P = 101, axes lengths 21 and 41). (C) Irregular cell shape

(area A = 301, perimeter P = 118). (D) Highly irregular cell shape (area A = 400, perimeter P = 146). Parameter values

were a = 300, λa = 10, p = 100, λp = 10, J(0, 1) = 3000, ξ(r) = 18, and r = 3 for all neighborhood calculations. We used a

grid of 50 by 50 lattice sites with Δx = 1. See also Supplementary Figures S6–S8 Figs for intermediate steps in the

calculation of forces.

https://doi.org/10.1371/journal.pcbi.1007459.g002
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large magnitudes rapidly decline, so that by MCS 3, the force-field is more regular, and

directed “inwards”. The cell becomes highly ramified, with thin protrusions so as to satisfy

both area and perimeter constraints. After a few more MCS, starting around 7 MCS, the cell

shape has equilibrated, and forces decrease to very low levels.

Active forces from internal signaling

Several models have proposed signaling kinetics inside cells that result in forces of protrusion

or retraction (powered by actin assembly or actomyosin contractility). There are many such

models, at multiple levels of detail [13–16]. Among these is the simple “wave-pinning” model

[17]. The model tracks the spatio-temporal distribution of a single GTPase in active and inac-

tive forms, with interconversion, positive feedback to the activation rate, and distinct rates of

diffusion of the two forms. We asked how internal signaling could be linked explicitly to forces

on the cell edge in the CPM formalism. To address this question, we used the wave-pinning

model as a prototype and benchmark (which is clearly replaceable by other signaling systems

of interest, e.g. see [18, 19], and many other examples.) Accordingly, we set up a reaction-diffu-

sion calculation in the interior of the CPM cell, as described in the Material and Methods to

display the evolution of the internal GTPase activity field in parallel with the CPM force calcu-

lations. We assumed that a single signaling protein in two states (analogous to active and inac-

tive forms of the GTPase RhoA) participates in reaction-diffusion kinetics inside the

deforming “cell” and leads to edge contraction.

Regions of high Rho activity contiguous to the cell edge are shaded light green in Fig 4A.

The internal chemistry leads to a force of protrusion, modeled by an additional term, ΔHu,

superimposed on the Hamiltonian change. We assume ΔHu = ±βu, where β> 0 is a constant,

and u the local signaling activity level. We assume that the signal promotes contraction, so that

ΔHu is negative for retractions and positive for protrusion.

Results are shown in Fig 4A–4C as a time sequence of cell deformations from left to right.

In Fig 4A, we see that chemical polarization is maintained, as described in previous studies [3,

13, 20, 21]. Contraction of the cell rear leads to the expansion of other cell edges based on

the CPM area constraint. In Fig 4B and 4C, the total force field and the protrusive forces

Fig 3. Dynamics of cell shape and the evolution of forces. Time series from 1 to 10 MCS. The cell achieves force balance by decreasing its

area towards the rest area a and increasing its perimeter towards the rest perimeter p. Parameters were a = 200, λ = 8, p = 100, λp = 2000, J(0,

1) = 3000, T = 10. The sequence of cell areas A at each of the above Monte Carlo steps decrease as follows: A = 397, 364, 332, 299, 280, 250, 232,

219, 213, 208, and the sequence of cell perimeters first increases and then fluctuates: P = 74, 94.8, 98.2, 100.1, 99, 99.2, 99.1, 98.9, 99, 99.4.

https://doi.org/10.1371/journal.pcbi.1007459.g003
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respectively are shown. Due to high signaling levels at the left edge of the cell, a contractile

force pointing towards the right develops (Fig 4C). At the right side of the cell, forces due to

the area and perimeter constraints point outwards. All in all, these forces result in migration of

the cell to the right.

Fig 4. Active contractile forces from internal signaling. Shown is a time sequence (left to right, at 57, 107 and 157 MCS) of a moving cell whose

shape changes in response to a polarizing internal signal (e.g. Rho GTPase). (A) The internal GTPase field (bright green at high values) based on the

Wave-Pinning model. High levels of activity are assumed to create large local inwards contraction. (B) Total forces given byrH + dHu along the

perimeter of the deforming cell. (C) Forces due to the active contraction term (dHu). Forces are shown without smoothing or interpolation.

Parameter values for CPM were: λa = 10, a = 4000, λp = 0, J(0, 1) = 5000, T = 50; parameter values for internal signaling: β = 40 (for dHu), the

numerical redistribution radius was r = 3 (active rho), r = 75 (inactive rho). Parameters for internal reaction-diffusion system, and details for the

numerical method are provided in the Supporting Information S1 File.

https://doi.org/10.1371/journal.pcbi.1007459.g004
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Comparison with experimental force fields

Single cells can apply significant forces that remodel the extracellular matrix. In traction force

microscopy, beads are embedded into a soft elastic substrate on which cells adhere. By tracking

bead displacements, cell traction forces can be inferred. Such inverse methods quantify and

reveal very detailed force fields. Traction forces are roughly aligned with the direction of the

cell’s centroid, are highest in protruding regions and decline towards the cell’s centroid [22–

26]. Via cell-cell adhesions, cells also apply forces on neighbouring cells and these forces can

propagate through tissues [27].

We asked how the predictions of the CPM-based force fields compare with data for actual

traction forces observed in real cell experiments. Consequently, we utilized data kindly pro-

vided by the authors of [26] for two cancer cell lines. Several steps were needed to arrive at a

shared grid, to select CPM parameters, and to compare magnitudes on a similar range, and

adjust smoothing. Details are described in Methods and in the Supporting Information S1

File. Two examples are shown in Figs 5 and 6. Interestingly, our predicted force field looks

quite similar to the force field predicted by a detailed rheological model of actin tension

described in the same paper [26].

Figs 5A and 6A show observed (blue) and CPM predicted (magenta) force fields superim-

posed on the same grid. Overall, we find surprisingly good qualitative agreement, given the

simplicity of the method. Experimental and predicted forces point roughly in the same direc-

tion for much of the cell shape. The concordance is particularly good for the round cell, where

Fig 5. Comparing predicted forces to experimental data for a round cell. (A) Predicted CPM force fields (magenta

arrows) and experimental data (blue arrows) (B) Difference of CPM force field and experimental force field (C)

directional deviation (angle between predicted and experimentally observed force vectors), dark blue means forces

align well. (D) relative magnitudes of the force fields, green means similar magnitude. Parameter values are given in

Table S1 Table. See also S11 and S15 Figs.

https://doi.org/10.1371/journal.pcbi.1007459.g005
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our approximation for centroid-pointing internal forces appears to be quite good. For the

polarized cell in Fig 6, this agreement is less accurate, as two distinct “foci” appear to organize

the force field in the experimental data. Figs 5B and 6B show the difference, Fexp − FCPM. As

expected, there are regions in each cell where localized internal forces (not captured by CPM)

result in significant deviation between experiments and predictions.

We compared directions of predicted and experimental forces at corresponding points.

Results are shown in Figs 5C and 6C, with dark blue for points where observed and predicted

forces are aligned, and yellow-orange for points at which the predicted direction deviates

strongly from its observed value. Within a range of the cell edge, the model captures the direc-

tion of the forces reasonably well. This correspondence is quantified in S14(A), S14(C),

S14(D), S15(A), S15(C), S15(D), S16(A), S16(C) and S16(D) Figs, showing an overall reason-

able fit in terms of direction of forces. In the interior of the cell, force magnitudes are so small

that directions carry large errors, and we cannot judge accuracy of the predictions. At the right

side of both cells, predicted forces point inwards while observed forces point outwards. In the

basic CPM Hamiltonian forces along the boundary can switch from pointing outwards to

inwards only if the local curvature changes suddenly (see for instance Fig 2B and 2C), which

does not happen in those regions in the two experimental cells.

We also compared relative force magnitudes, by plotting |FCPM|/|Fexp| in Figs 5D and 6D.

We find some regions of deviation, notably at the top right corner of the spindle-shaped cell.

Figures S14B, S15B and S16B Figs, show overall deviation of the force magnitudes. CPM forces

appear to be greater than the experimental forces. This stems from the fitting procedure: the

linear interpolation in the interior is based on an assumption that forces decline towards the

centroid. However, experimentally measured forces have local “hot spots” of large magnitude,

so the fitting procedure adjusts the predicted CPM forces to be elevated overall, and, in partic-

ular, at the boundary of the cell.

Fig 6. Comparing predicted forces to experimental data for a polarized cell. (A) Predicted CPM force fields

(magenta arrows) and experimental data (blue arrows) (B) Difference of CPM force field and experimental force field

(C) directional deviation (angle between predicted and experimentally observed force vectors), dark blue means forces

align well. (D) relative magnitudes of the force fields, green means similar magnitude. Parameter values are given in

Table S2 Table. See also S12, S13 and S16 Figs.

https://doi.org/10.1371/journal.pcbi.1007459.g006
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We tested a variety of CPM parameter values, including those that provide optimal L2

norm fits of predictions to experimental data (See Tables S1 and S2 Tables). A comparison of

results for distinct CPM parameters is shown in S11 and S12 Figs. The ‘optimal’ CPM parame-

ter values vary over a much larger range for the round cell than for the polarized cell experi-

mental data. There are many parameters λa, λp, A, P and J(0, 1) that determine the overall

magnitude of the force, so it is not surprising that a good fit is obtainable with different values.

(Interestingly, the target area in the top five parameter sets are all smaller than the experimen-

tal cell area, while the target perimeters are larger than the the actual experimental cell

perimeters).

Finally, we also display a time series of cell movement in S13 Fig comparing the CPM force

field with the experimental data for the polarized cell. During active cell motion, large traction

forces are built up for translocation (long blue arrows) in the protrusive front of the cell in

S13C and S13D Fig. The entire time series for the two cells can be viewed in S1 Movie (round

cell) and S2 Movie (polarized cell). Throughout these evolving cell shapes, the predicted forces

are reasonable. The direction of the forces only deviate from experimental forces in select

regions (such as protruding fronts) and, as expected, regions of elevated forces are beyond the

predictive power of the basic CPM. On one hand, the difference Fexp − FCPM provides an esti-

mate for spatially distributed active forces of protrusion/contraction in a motile cell. At the

same time, such deviation suggests how to refine CPM models by inclusion of the cytoskeleton

or adhesion distribution [13, 28], or by decomposing the single cell into subregions that repre-

sent focal adhesions or force-bearing internal structures.

Interacting cells and adhesion forces

Forces between interacting cells are not easy to measure directly. However, they have been

inferred from high-resolution traction-force measurements, for example by [29] using a force-

balance principle and thin-plate FEM analysis.

Here, we asked whether our algorithm would predict intercellular forces in two or more

cell that interact by adhesion. To investigate this question, we considered two scenarios,

including simple adhesion and signaling-regulated motility in a pair of cells. Results are given

below. Note that in the CPM, a high adhesive energy cost J, corresponds to low cell-cell adhe-

sion. See [5, 30, 31] and references therein.

Varying adhesion strength. For the adhesion experiment, we set λp = 0, to omit the

perimeter constraint, and used only the target area and adhesive energy in the Hamiltonian.

We explored several values of the adhesive energy J(1, 2) between cells, keeping both cells

equally adherent to the ‘medium’, J(0, 1) = J(0, 2) = constant. Results are shown in Fig 7. Com-

paring forces at cell-cell interfaces for the three adhesive energies (centered black circles at

1MCS), we find that the force at a cell-cell interface is lowest in A, and highest in C. This is

consistent with Eq (0.8). We find that highly ‘sticky’ cells (J(1, 2)< 2J(0, 1)) remain attached

with a wide contact region, as shown in Fig 7A. For neutral cell-cell adhesion (J(1, 2) = 2J(0,

1)) in Fig 7B, the cells remain attached on a smaller contact interface. In this case, the round

green cell initially (at 1 MCS), applies the same force magnitudes at every interface (note cir-

cled regions on the lower left and right of the green cell in Fig 7B). Finally, in Fig 7C, with J(1,

2)> 2J(0, 1), the energetically favored configuration is detached cells.

Two motile cells with internal signaling. We next asked how internal signaling in each

of two interacting CPM cells would affect their mutual adhesive forces. To explore this ques-

tion, we assumed the wave-pinning signaling, as before, in each of the cells, starting initially

with uniform signaling activities except for elevated activity along the left edge of each cell.

Results are shown in Fig 8. The reaction-diffusion (WP) equations lead to rapid polarization of

Computing forces in the Cellular Potts Model
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signal activity inside the cells, as before. High signal strength was associated with local contrac-

tion of the cell edge, and the area constraint then led to net motion. The two moving cells

maintained contact due to their assumed high adhesion (low energy of cell-cell interfaces).

While initially cells moved in roughly the same direction, at some later point, they started to

rotate. This trend continued during the simulation. We show the internal signal distribution

in Fig 8A, the total force computed from the CPM Hamiltonian in Fig 8B, and the active force

due to the Rho-like signal in Fig 8C. It is apparent from the latter that forces cause a torque,

leading to the observed rotation.

Fig 7. Forces due to cell-cell adhesion. Two CPM interacting cells in a time sequence from left to right. (A) cells

adhere strongly J(1, 2)< 2J(0, 1), (B) neutral adhesion of cells to medium and to one another J(1, 2) = 2J(0, 1), (C)

cells de-adhere, J(1, 2)> 2J(0, 1); CPM parameters used were λp = 0, λa = 8, a = 300, J(1, 0) = 1800, T = 300. We used

J(1, 2) = 1800 (for the adhesive), 3600 (for the neutral) or 7200 (for the repulsive) cases.

https://doi.org/10.1371/journal.pcbi.1007459.g007
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Dynamic force fields in large multicellular aggregates

Finally, we sought to test our methods on simulations of larger cell aggregates. We asked

whether the known dynamics of cell sorting, e.g. [1, 32–34], would correlate well with force

fields that can now be directly visualized. For this purpose, we adopted the cell-sorting bench-

mark test cases, where dynamics are well-established. That is, we considered three typical

cases, with two cell types and three distinct relative heterotypic and homotypic adhesions, lead-

ing to the classic checkerboard, separation, and engulfment scenarios.

Fig 9 shows a time sequence of the model cell aggregate for the “separation” case. Initially,

cells are randomly mixed. Zooms of the cell configurations and forces inside the square regions

can be seen in S18 Fig. Here, J(AA) = J(BB) = 900, J(AB) = 9000 (where A are green and B are

grey cells), so that a relatively high energetic cost results from interfaces of unlike cell types

(heterotypic interfaces). This means that the adhesive forces between green and grey cells are

high and repulsive. Evident from Fig 9 are high forces that build up at heterotypic interfaces.

(See zoomed regions shown in S18 Fig). By Monte-Carlo step 400, we find regions where cells

have separated. Cell boundaries continue to adjust for some time, accounting for fluctuations

between outwards and inwards-pointing forces in a given cell during these transients. By 1000

MCS, many of the separated boundaries have equilibrated to a large extent, and localized

forces on those boundaries have relaxed. A few remaining cells are still compressed or

stretched away from their preferred rest area and perimeter, and are seen to experience signifi-

cant forces. Later, (5000 MCS, S19 Fig) separated clusters round up. Interestingly, these static

Fig 8. Edge forces in two adhering cells with internal signaling. (A) The level u of signaling activity (colors range from blue (low levels), to green, to

red (high levels)), (B) total force exerted by each cell, (C) mutual forces due to signaling contraction alone. The cells polarize and circulate about one

another. Parameters for the CPM are λa = 2, a = 2500, λp = 0, J(1, 0) = 30000 = J(1, 2), T = 200, β = 80 (for dHu). Parameters for the reaction-diffusion

system are provided in the Supporting Information S1 File. High signaling activity (red) leads to local edge contraction. The configurations are shown

at MCS 80, 180, 280, 380 and 480.

https://doi.org/10.1371/journal.pcbi.1007459.g008
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images, in combination with the force-map allow for easy visualization of parts of the aggre-

gate that are still actively deforming.

We show two related scenarios in the Supporting Information. A checkerboard cell-sorting

case is illustrated in S20 and S21 Figs. The engulfment case is shown in S22 and S23 Figs.

Discussion

Computational cell modelling promises to be a useful tool in testing hypotheses in single and

collective cell behavior. A range of platforms is used, including force-based simulations of cells

as self-propelled particles, points, spheres, or ellipsoids obeying Newtonian physics. A number

of geometric cell models, including vertex-based (polygonal) cell simulations [4, 35] are based

on energy minimization [36, 37] or on explicit springs and damping forces. One advantage of

the Cellular Potts formalism, is that cell shape can be modelled in greater detail, is highly

dynamic, and captures fluctuations seen in real cells.

Like any model, the CPM has its limitations, as described by [38]. Among these is the

absence of an actual time scale in the “Monte Carlo Step”, mandating a definition of time scales

by other methods (see, e.g., [5, 39, 40]). It is also argued that the CPM is based on phenomeno-

logical assumptions that may or may not be justified, or that it does not correspond to real

biology. To some extent, this is true of any model of a cell, whether based on springs, solid

objects, finite elements, or viscoelastic fluid. At the same time, the link between known bio-

physical properties of cells and CPM parameters has been firmly established by [5]. Here we

Fig 9. Separation cell sorting simulation with force visualization. Parameter values were a = 300, λa = 1000, p = 67, λp = 20, J(0, grey)

= 1800, J(0, green) = 1800, J(grey, grey) = 900, J(green, green) = 900, J(grey, green) = 9000, ξ(r) = 18, and r = 3 for all neighborhood

calculations. The cellular temperature T was set to 600. Zooms of the cells and forces inside the black squares can be viewed in S18 Fig.

See also S19–S23 Figs.

https://doi.org/10.1371/journal.pcbi.1007459.g009
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have addressed a second common criticism of the CPM, namely that it bears no relationship

to cell forces and mechanics. We have devised an explicit algorithm that links the Hamiltonian

(a scalar energy) to a force-field that is consistent with that Hamiltonian.

Previous authors have combined classic CPM with external methods of tracking forces.

Lemmon and Romer [25] assumed that a cell acts as a contractile unit resulting in a ‘first

moment of area’ representation for the force distribution. Rens and Merks [7, 8] adopted this

same method. Such a model produces reasonably realistic force fields, but are not necessarily

consistent with the CPM Hamiltonian, as these forces are assigned independently of the

assumed form of H. Albert and Schwarz [9] went in the opposite direction, devising a CPM

Hamiltonian consistent with an arbitrary analytical expression for force on the cell edge. Their

formula for the force was based on the curvature of the cell edge. (They approximate the curva-

ture and normal direction along the pixellated cell edge to calculate force vectors. They then

applied a smoother to distribute those forces in a region near the cell edge).

A brief mention of forces in simulations based on the CPM have previously appeared, e.g.

in [10, 41, 42]. Some of these hint at the relationship to the CPM Hamiltonian. The most com-

prehensive and explicit of these is Magno et al. [5] who used the link between forces and gradi-

ents of potential energy (~F ¼ � rH) to write down the tension (γ), the pressure (P), and the

total force~F for the basic CPM Hamiltonian,

g ¼
@H
@p

P ¼ �
@H
@a

~F ¼ � rH ¼ ~FP þ
~F g ¼ Pra � grp:

The authors used these relationships to derive a dynamical system for the size of a spherical

cell, and to map cell size dynamics onto a 2-parameter plane with composite parameters. Our

paper has taken motivation from their ideas to devise an algorithm for numerically computing

forces directly from the CPM Hamiltonian for an arbitrary cell shape, and for multiple cells.

The group of Roeland Merks (Leiden U, formerly in part at Centrum Wiskunde & Informa-

tica in Amsterdam) has longstanding efforts to link forces to the CPM Hamiltonian. Koen

Schakenraad, a PhD student of Merks worked with one of us (EGR) and Merks on the idea of

determining a Hamiltonian corresponding to forces postulated by Lemmon and Romer [25].

As the Lemmon and Romer forces are not necessarily gradient forces, finding such a Hamilto-

nian was not in general feasible. A second idea, also explored was to derive forces along the

edge of a CPM cell from virtual work. A precursor to our paper is the thesis [43] of D.S. Laman

Trip, also a student of Roeland Merks. In his simulations of tissue folding in that thesis,

Trip displayed edge forces of CPM cells using a sum of virtual work done by spin flips in all

directions at points on cell edges. The same idea of using virtual work is also mentioned in

Appendix A of the PhD thesis [28] by one of us (EGR), though the thesis itself employed

phenomenological calculations of cell forces other than those we propose. In contrast to the

above, here we have chosen to connect CPM forces directly to finite difference approximations

of the gradient of the Hamiltonian. While the above approaches are related, to our knowledge,

our work is the first to provide a detailed algorithm that computes force components on the

CPM cell edges, extends the field to the cell interior, reduces effects of the CPM grid by

smoothing, and validates the predictions against experimental data.

While the CPM Hamiltonian predicts forces at cell edges, simple interpolation and smooth-

ing to decrease grid effects were adopted. We showed that this approximation for the forces

gives reasonable results for a range of cell shapes. Importantly, the most basic CPM Hamilto-

nian reproduces forces that are qualitatively consistent with experimental data and similar to

detailed rheological models based on the same data [26]. Our algorithm applies not only to sin-

gle cells but also to multicellular simulations. The computed force-fields provide insights to
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cell deformations accompanying three typical cell sorting experiments, where some but not all

cells equilibrate with their neighbors. In such simulations, force fields within the clusters help

track and understand the global and local dynamics of the cell collective. From the force-fields

we can appreciate simulated cell motions and a more tangible connection between the Hamil-

tonian and cell behavior.

The approach is an approximation and has limitations that we summarize here. First, the

classic Hamiltonian approximates a cell as an elastic element tending to retract/expand

towards a specified rest area and rest-length circumference, which is a grossly simplified view

of a cell. This feature is shared with other energy-based simulation platforms, e.g. [4, 35].

Moreover, in matching CPM predictions to experimental data, we find multiple sets of CPM

parameters that give rise to very similar qualitative agreement. Improved calibration of the

Hamiltonian to cells of given type would require more specific experimental data. These aims

are beyond the scope of this paper.

A second issue is that the CPM Hamiltonian only changes for cell edge displacements, and

so, only prescribes a force-field restricted to the cell edge pixels. We have assumed simple

interpolation, with zero force at the cell centroid, but this is, to some extent, arbitrary. As seen

in the experimental data in Fig 6, a polarized cell can have multiple points at which the force

vanishes. Hence, the internal force field should not be over-interpreted. The basic Hamiltonian

describes cell shape but not internal structures, so the derived force field is not appropriate for

predicting localized regions of high internal forces. So, a second limitation is the attribution of

forces to cell shape alone, neglecting active and heterogeneous structures (stress fibers, focal

adhesions, cytoskeleton anisotropy, etc.). Some cell types (keratocytes, neutrophils) do not

form focal adhesions, so experiments with these could be used to test the basic CPM predic-

tions. Moreover, it is easy to extend the CPM to incorporate many more intracellular details.

For example, in previous work, Mareé et al [13] assembled a more detailed internal signaling

CPM model for a single motile cell that included actin filament orientation and pushing

barbed ends (regulated by active Cdc42, and Rac), as well as edge contraction (due to GTPase

Rho, as in our simple examples in Figs 4 and 8). Such details can be added for greater consis-

tency with motile cells. Alternatively, incorporating other Hamiltonian terms such as direc-

tional polarity, or heterogenous, space-dependent, Hamiltonian terms, or representing a cell

by a collection of CPM subdomains with distinct properties (“focal adhesions”, see also [12])

could be used to generalize these ideas. Each subdomain could have unique values of parame-

ters λa, λp, J etc., leading to a refinement of the representation of a single cell by a collection of

intracellular structures.

Another issue with CPM computations is that Monte Carlo steps are not scaled to actual

time. This can be resolved by scaling the motion or cell cycle of CPM cells to real cell speeds or

cycle times. Based on typical cell size, typical forces cells produce, and typical values of viscos-

ity, one could also use the relationship v� F/ξ to devise a time scale. (See also [39, 40].) Simi-

larly, units of force could be assigned by calibrating the model against measurement of actual

forces. In the data we obtained [26], all forces were nondimensionalized, which prevented an

absolute force magnitude to be assigned.

We have carried out partial validation of the method against single-cell experimental data.

Traction force microscopy has also been used to quantify patterns of stress in multicellular

aggregates [29]. Stress is usually localized at the periphery of a cluster of cells, while at cell-cell

interfaces the stress is lower [44], suggesting that the cluster acts as a single contractile unit.

Inside the cluster, forces are highly dynamic and localized forces can occur due to cell prolifer-

ation or rotating motion [45]. Great progress has been made in visualizing force fields, and it

is likely that modeling and computation will contribute to an understanding of how traction
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force are precisely regulated and what are consequences of the force dynamics on single and

collective cell behavior.

Materials and methods

Cellular Potts Model

In the basic Cellular Potts model (CPM), each “cell” consists of a collection of connected lattice

sites, assigned a unique index. Parts of the domain containing no cells are indexed 0 by con-

vention. At each Monte-Carlo Step (MCS), and every edge pixel, the cell can either expand

outwards by a pixel or retract inwards. (Formally, in the Ising terminology, “a spin flip copies

the spin value of a source lattice site (~xs) to a target site (~xt)”.) This reconfiguration is typically

carried out in a Moore neighborhood (one of eight nearest-neighbor pixels). The configuration

change (sð~xsÞ ! sð~xtÞ) results in a change ΔH, in the Hamiltonian.

Our Hamiltonian is given by Eq (0.2) Many “spin flips” are attempted, but each is accepted

with probability

PðDHÞ ¼

(
1 if DH þH0 < 0

e� ðDHþH0Þ=T if DH þH0 � 0:
ð0:4Þ

where the “temperature” T� 0 governs the magnitude of random fluctuations and H0, is a

yield energy to be overcome. (Typically H0 = 0.) The CPM favors changes that decrease the

energy of the configuration, while allowing fluctuations. We apply a connectivity constraint to

avoid a cell fragmenting into two or more pieces.

We note that the CPM code used herein has been assembled, validated, and used by EGR,

while a PhD student in the group of R. Merks (The Netherlands). That code has been refined

over time to improve computation speed, number of cells that can be simulated, flexibility,

and robustness. Nevertheless, we make no claims as to the relative merits of this CPM code.

Other software platforms, such as CHASTE (U Oxford) or CompuCell3D (U Indiana, Bloom-

ington) or any custom CPM code can be substituted for the one used in this paper.

Approximating forces at points along cell boundaries

We discretize the gradient of the Hamiltonian, from Eq (0.3) as follows. Let h = Δx = Δy be the

given grid size in 2D. For each point~x on the border of a cell of configuration σ, consider a

small local change, protrusion or retraction (Fig 1). The local “spin flip” at~x produces a small

change in the Hamiltonian. We can compute the force components Fxð~xÞ and Fyð~xÞ at~x using

a centered difference approximation to the first partial derivative (accurate to 2nd order):

� Fxð~xÞ �
@H
@sð~xÞ

�
@sð~xÞ
@x

�
1

2h
Hðsþ dxsð~xÞÞ � Hðs � dxsð~xÞÞð Þ; ð0:5Þ

and similarly for the component � Fyð~xÞ.
This algorithm defines forces at boundary points of every isolated cell. In the Supporting

Information S1 File, we discuss other simplifications, refinements, and special cases. We

implement steps to (1) improve accuracy and reduce grid effects (2) interpolate boundary

forces to the cell interior, (3) generalize the idea to multiple cells and (4) compare predictions

to measured force fields for real cells.
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Reducing the grid effects in perimeter calculations

As shown later in (0.8), it is known theoretically that forces associated with the Hamiltonian

should be normal to the cell edge. Because the CPM approximates cell shape with pixels, the

direction of forces from the above calculations before smoothing (S5 Fig) have a grid-effect.

To obtain a better approximation of the normal vector and reduce this grid artifact, we employ

smoothing using enhanced CPM neighborhood calculations inspired by [5]. Briefly, at each

boundary site we define a weighted average of forces with weights given by “local cell perime-

ter” as computed using neighborhood summation. (We use a neighborhood radius r = 3 and ξ
(r) = 18 [5] for rescaling the perimeter.) We find that this correction results in forces that are

roughly orthogonal to the (refined) cell boundary. In the Supporting Information S1 File, we

provide details and discuss how accuracy is affected by neighborhood radius. We also show

that smoothing improves the agreement with the data (see also S10 Fig). For a discussion of

additional effects, e.g. of grid direction and lattice anisotropy, see [46]. We have not corrected

for such effects here.

Phenomenological force fields in the interior

The methods described so far only provide a representation of the force field associated with

the cell perimeter. We use simple interpolation from boundary sites to a point in the cell inte-

rior, typically the centroid of the region. This phenomenological choice, following [8, 9, 28],

leads to a 2D force field.

Intracellular reaction-diffusion system and protrusive forces

As a simple prototype to represent intracellular signaling that affects cell shape, we imple-

ment the wave-pinning reaction-diffusion (RD) model of [17] in the 2D cell interior, and

compute the evolution of the RD system (with no-flux boundary conditions at the evolving

cell boundary). Methods for our numerical computation, analogous to those of [13] are

described in the Supporting Information S1 File. To link the internal chemical profile to

forces on the cell boundary, we assume a Rho-like edge contractility: the “Rho activity”, u,

close to the cell edge, is assumed to augment the local Hamiltonian changes by additional

terms dH of the form ±βu for protrusions/retractions. In this way, the distribution of u can

locally affect the probability of movement of the cell edge. After the cell edge moves, u is

redistributed locally to avoid numerical mass loss, as described in the Supporting Informa-

tion S1 File.

Comparison with experimental data

We obtained traction force microscopy (TFM) data from Jocelyn Etienne and Claude Verdier

for two cancer cell lines (T24 and RT112) as described by [26]. The authors plated cells on

polyacrylamide gels containing fluorescent beads, and computed traction forces from bead dis-

placements and known gel rheology [47]. We interpolated from their triangular to our rectan-

gular grid (S8 Fig), and optimized the CPM parameters with respect to experimental data at

one time point using a Latin Hypercube sampling method [48] (see Supporting Information

S1 File and Tables S1 and S2 Tables). The CPM and experimental force fields are then dis-

played on the same grid, and their difference, directional deviation, and relative magnitudes

are computed and displayed for comparative purposes.
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Generalization to multiple cells

For a system of multiple cells, we decompose the total Hamiltonian into contributions Hi

made by each cell,

HðsÞ ¼
Xn

i¼1

Hi
A þHi

P þHi
J �

Xn

i¼1

Hi; ð0:6Þ

where Hi
A and Hi

P are as in Eq (0.2) for cell i and HJ is generalized to accommodate cell-cell

adhesion energies,

Hi
J ¼ Jð0; tðiÞÞP0i þ

1

2

Xn

j¼1

JðtðiÞ; tðjÞÞPij: ð0:7Þ

Here n is the number of cells, τ(σ) the cell type of cell σ, P0i is the boundary length of cell i in

contact with the medium and Pij is the length of the cell i- cell j interface. (The factor 1

2
corrects

for double-counting of each interface.) The finite difference computation of forces along inter-

faces then follows from the single cell case. (See also the Supporting Information S1 File).

It has been shown elsewhere, e.g. [9], that force exerted by each cell can be reduced to the form

~Fið~xÞ ¼ 2lðA � aðiÞÞ~n þ 2lpðP � pðiÞÞk~n þ kJ~n; ð0:8Þ

where κ is the curvature,~n is the unit normal vector, and J is either J(0, 1) or J(i, j)/2.

Supporting information

S1 File. Details of methods. Technical details of calculations of CPM forces, smoothing, inter-

polation to cell interior, intracellular reaction-diffusion solver, comparison to experimental

data, and multicellular force calculations.

(PDF)

S1 Fig. Neighborhoods for perimeter calculations. Neighborhoods Nð~x; rÞ of various orders

with radii r = 3, 5, 10 around a lattice site~x (shown in red).

(EPS)

S2 Fig. Spin flips. Examples of four possible spin flips used to compute Fx based on our algo-

rithm.

(EPS)

S3 Fig. The effect of the neighborhood radius used for smoothing the cell boundary forces

for ellipsoidal cells. (A) Sum of square errors (SSE) between normalized CPM force vectors

and true unit normal vector (−b cos(θ), −a sin(θ)) to an ellipse with axes 10 and 20. The error

is minimized at r = 14. (B) True normal vectors (green) to an ellipse with axis 10 and 20, com-

pared to CPM forces smoothed with radius r = 3 (blue). (C) Neighborhood radii r correspond-

ing to minimal SSE for ellipses with various axes lengths between 5 and 50. (D) Same as (B)

but with smoothing radius r = 14.

(EPS)

S4 Fig. Interpolation used to compute force in cell interior. Interpolation is used to compute

the force at a site~x inside a CPM cell based on the centroid~xC and the force predicted by the

CPM at a boundary site~xM along the ray connecting the centroid and the given site. The ray

was determined by minimizing α in SI Eqn. (0.14).

(EPS)
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S5 Fig. Comparison of interpolation methods. Magnitude of experimental forces vs the dis-

tance to the center of mass of the experimental cell. (A) round cell (B) polarized cell. We fitted

a linear (red), quadratic (yellow) and exponential (purple) function to the data, obtaining simi-

lar lines.

(EPS)

S6 Fig. Cell edge forces without smoothing. (A) A circular cell with an area of 401, perimeter

of 74, and a diameter of 23. (B) An elliptical cell with an area of 629, perimeter 101, and short

and long axis 21 and 41. (C) An irregular shape with area 301 and perimeter 118. (D) A highly

irregular cell shape with area 400 and perimeter 146. Parameter values were a = 300, λa = 10,

p = 100, λp = 10, J(0, 1) = 3000, ξ(r) = 18, and r = 3 for all neighborhood calculations. We used

a grid of 50 by 50 lattice sites with Δx = 1.

(EPS)

S7 Fig. Cell edge forces with smoothing. As in S6 Fig but with smoothing applied to the

boundary forces. The radius r = 3 was used for all neighborhood calculations.

(EPS)

S8 Fig. Interior forces. Interior forces computed with no smoothing for the cell shapes shown

in S6 Fig.

(EPS)

S9 Fig. Mesh transformation from experimental data to CPM. Triangular mesh on which

cell traction experimental data from [26] was supplied, and the corresponding CPM cell (spin

value = 1).

(EPS)

S10 Fig. Comparison of experimental data and CPM force predictions. Force fields from

experimental data (blue) and CPM (magenta) using initial arbitrary CPM parameters for the

round cell (A-B) and polarized cell (C-D). Radius of smoothing used was (A,B) r = 3, (C, D)

r = 10. Regions of large deviation are circled.

(EPS)

S11 Fig. Effect of fitted CPM parameters on agreement with experimental data (round

cell). Fitting CPM parameters: Experimental data (blue) and CPM (magenta) force fields for

the round cell using the second (A), third (B), fourth (C) and fifth (D) best CPM parameter

values. Parameter values are given in S1 Table.

(EPS)

S12 Fig. Effect of fitted CPM parameters on agreement with experimental data (polarized

cell). As in S10 Fig but for the polarized cell using the second (A), third (B), fourth (C) and

fifth (D) best CPM parameter values in S2 Table.

(EPS)

S13 Fig. Forces computed over time during cell motion. A time sequence of cell motion and

force fields from [26] showing experimental data (blue) and CPM (magenta) force fields. The

CPM parameters were as in S11 Fig and row 1 of S2 Table.

(EPS)

S14 Fig. Comparison of directions and magnitudes of forces from experimental data and

from CPM predictions. Correspondence between experimental data and CPM predicted

forces. Boxplots showing distributions of (A) the directional deviation (angle between experi-

mental and model forces), (B) relative magnitudes of forces (C) deviation of x components
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and (D) y components of the forces.

(EPS)

S15 Fig. Scatter-plots comparing experimental and CPM predicted forces for the round

cell. (A) angle of the force, (B) magnitude of the force, (C) x component of the force, (D) y
component of the force.

(EPS)

S16 Fig. Scatter-plots comparing experimental and CPM predicted forces for the polarized

cell. As in S15 Fig but for the polarized cell.

(EPS)

S17 Fig. Force calculations for multiple cells. Spin-flips used to approximate the force

exerted by the grey cell at cell-cell interfaces (A) CPM spin-flip modeling extension of the grey

cell, shifting the cell-cell interface to the right (B) CPM spin-flip modeling a retraction of the

grey cell, shifting the cell-cell interface to the left.

(EPS)

S18 Fig. Zooms of the separation cell-sorting simulation. A magnification of the square

regions in Fig 9 of the main text. Parameter values were a = 300, λa = 1000, p = 67, λp = 20, J(0,

grey) = 1800, J(0, green) = 1800, J(grey, grey) = 900, J(green, green) = 900, J(grey, green) = 9000,

ξ(r) = 18, and r = 3 for all neighborhood calculations. The cellular temperature T was set to 600.

(PNG)

S19 Fig. A separation cell-sorting simulation at 5000 MCS. Parameter values were a = 300,

λa = 1000, p = 67, λp = 20, J(0, grey) = J(0, green) = 1800, J(grey, grey) = J(green, green) = 900, J
(grey, green) = 9000, ξ(r) = 18, and r = 3 for all neighborhood calculations. The cellular tem-

perature T was set to 600. Some cells are still experiencing large forces since the cluster is still

not equilibrated.

(PNG)

S20 Fig. A checkerboard cell-sorting simulation. Parameter values were as in S19 Fig but

with J(grey, grey) = J(green, green) = 7200, J(grey, green) = 1800.

(PNG)

S21 Fig. A checkerboard cell-sorting simulation at 5000 MCS. Parameter values were as in

S20 Fig.

(PNG)

S22 Fig. Engulfment cell-sorting simulation. Parameter values were were as in S19 Fig but

with J(0, grey) = 1800, J(0, green) = 9000, J(grey, grey) = 1800, J(green, green) = 1800, J(grey,

green) = 3600.

(PNG)

S23 Fig. Engulfment cell-sorting simulation at 5000 MCS. Parameter values as in S22 Fig.

(PNG)

S1 Table. CPM parameter fits for round cell. Top 5 parameters sets from the Latin hypercube

sampling for the round cell, all giving very similar fits. The first set is used in the main text and

the force fields for 2-5 are given in S10 Fig.

(PDF)

S2 Table. CPM parameter fits for polarized cell. As in Table S1 Table, but for the polarized

cell. Multiple parameter sets give very similar fits with SSE around 1.3e6. First set is used in the
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main text and the force fields for 2-5 are given in S11 Fig.

(PDF)

S1 Movie. Forces computed over time for motion of the round cell. A time sequence of cell

motion and force fields from [26] showing experimental data (blue) and CPM (magenta) force

fields. The CPM parameters were as in S11 Fig and row 1 of S2 Table.

(AVI)

S2 Movie. Forces computed over time for motion of the polarized cell. As in S1 Movie, but

for the polarized cell.

(AVI)
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