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Crohn’s disease (CD) is an inflammatory bowel disease (IBD) sub-type characterized

by transmural chronic inflammation of the gastrointestinal tract. Research indicates

a complex CD etiology involving genetic predisposition and immune dysregulation

in response to environmental triggers. The chronic mucosal inflammation has been

associated with a dysregulated state, or dysbiosis, of the gut microbiome (bacteria),

mycobiome (fungi), virome (bacteriophages and viruses), and archeaome (archaea)

further affecting the interkingdom syntrophic relationships and host metabolism.

Microbiota dysbiosis in CD is largely described by an increase in facultative anaerobic

pathobionts at the expense of strict anaerobic Firmicutes, such as Faecalibacterium

prausnitzii. In the mycobiome, reduced fungal diversity and fungal-bacteria interactions,

along with a significantly increased abundance of Candida spp. and a decrease in

Saccharomyces cerevisiae are well documented. Virome analysis also indicates a

significant decrease in phage diversity, but an overall increase in phages infecting

bacterial groups associated with intestinal inflammation. Finally, an increase in

methanogenic archaea such asMethanosphaera stadtmanae exhibits high immunogenic

potential and is associated with CD etiology. Common anti-inflammatory medications

used in CD management (amino-salicylates, immunomodulators, and biologics) could

also directly or indirectly affect the gut microbiome in CD. Other medications often

used concomitantly in IBD, such as antibiotics, antidepressants, oral contraceptives,

opioids, and proton pump inhibitors, have shown to alter the gut microbiota and account

for increased susceptibility to disease onset or worsening of disease progression. In

contrast, some environmental modifications through alternative therapies including fecal

microbiota transplant (FMT), diet and dietary supplements with prebiotics, probiotics, and

synbiotics have shown potential protective effects by reversingmicrobiota dysbiosis or by

directly promoting beneficial microbes, together with minimal long-term adverse effects.

In this review, we discuss the different approaches to modulating the global consortium

of bacteria, fungi, viruses, and archaea in patients with CD through therapies that include

antibiotics, probiotics, prebiotics, synbiotics, personalized diets, and FMT. We hope to

provide evidence to encourage clinicians and researchers to incorporate these therapies

into CD treatment options, along with making them aware of the limitations of these

therapies, and indicate where more research is needed.
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INTRODUCTION

Crohn’s disease (CD) is a sub-type of an inflammatory bowel
disease (IBD) characterized by transmural chronic inflammation
of the gastrointestinal tract (1). Research indicates a complex
CD etiology involving genetic predisposition and immune
dysregulation in response to environmental triggers (1). This
disease can affect any part of the intestine, but it is most
commonly found in the terminal ileum and colon (2). CD
disrupts the body’s normal ability to digest and absorb food,
including eliminating waste (3). The nature of the inflammation
is usually segmental, asymmetrical, and transmural. Most
patients present with an inflammatory phenotype at diagnosis,
but develop complications over time including strictures, fistulas,
or abscesses, which often lead to surgery. Surgery rates for
CD have declined due to novel advances in medical therapy,
but the 5-year risk of first major abdominal surgery in CD
remains at 18% (4). Although biological therapy has significantly
improved patient outcomes, this progressively destructive disease
can lead to bowel damage and disability, including intestinal
failure and short-bowel syndrome (5). Diarrhea, abdominal pain,
weight loss, fever, nausea, and vomiting are only some of the
symptoms that occur in a relapsing and remitting fashion for
patients (1). Up to 47% of patients also experience extra-intestinal
manifestations (EIMs) related to joints, skin, liver, biliary tract,
and eyes (6, 7). Some of these EIMs are associated with disease
course and severity, ultimately contributing to morbidity and
mortality (8–10). The financial burden on health systems is
related to the direct health care costs of IBD hospitalization,
surgery, and medication, especially the rising use of biologics (5).

THE GUT MICROBIOTA

Trillions of microbes comprising bacteria, fungi, viruses,
eukaryotes, and archaea colonize the human gut microbiota.
The microbiome serves many functions including playing a role
in metabolism, immune and nervous system regulation, and
colonization resistance (11, 12). Markedly, the gut microbiota
has been implicated in the initiation and perpetuation of IBD.
Infusion of luminal content into both mice models (13). and
into the excluded ileum after a surgical diversion in patients
with CD (14). triggers a rapid response in the mucosal immune
system. This data suggests that commensal bacteria and dietary
components can trigger the inflammatory response seen in CD
(13, 14). The chronic intestinal inflammation and subsequent
damage of the intestinal mucosa in IBD is associated with
dysbiosis in the structure of the microbiota. Studies have
confirmed that reduced diversity and dysbiosis of the gut
microbiota are more pronounced in CD compared to ulcerative
colitis (UC), a different sub-type of IBD (11, 15).

Intestinal Microbiome in CD
The gut microbiome comprising the intestinal bacteria is the
most widely studied community. The healthy human commensal
intestinal microbiota is composed of bacteria from three major
phyla, namely Firmicutes, Bacteroidetes, and Actinobacteria
(12). The bacterial signature of CD is reported to have

a lower β-diversity (bacterial richness) with a decrease in
obligate anaerobes, and an increase in facultative anaerobes
(16) (Figure 1). This dysbiotic change facilitates the expansion
of pathobionts that thrive in the presence of oxygen (16).
A decrease in the relative abundance of Bacteroides and
Firmicutes, especially Clostridiales butyrate-producing bacteria
such as Faecalibacterium prausnitzii (17, 18). and Roseburia
spp is seen in CD (19). The short-chain fatty acid (SCFA)
butyrate, produced by these bacteria, acts as an energy substrate
for colonocytes which further improves gut permeability by
accelerating tight junction formation (12, 17). Butyrate also has
anti-inflammatory effects such as inhibition of interleukin (IL)-6
release, lipopolysaccharide (LPS)-induced tumor necrosis factor-
α (TNF-α) release, and suppression of the NF-κB inflammatory
pathway via TNF-α activation (20). F. prausnitzii is a commensal
bacterium with anti-inflammatory properties which reduces pro-
inflammatory and increases anti-inflammatory cytokines (17).
The relative lack of F. prausnitzii is associated with postoperative
disease recurrence after ileocecal resection and re-anastomosis
(18). CD is also characterized by an increased abundance
of Ruminococcus gnavus and Gammaproteobacteria, such as
Escherichia coli, which are mucosa-associated adherent-invasive
bacteria. These pathogenic strains cross the mucosal barrier,
adhere to and invade epithelial gut cells, and reproduce within
macrophages to increase secretion of the pro-inflammatory
cytokine TFN-α (11, 17, 21).

Intestinal Mycobiome in CD
Although the mycobiome, or the fungal community, is composed
of a small fraction of the microbiota (∼105 fungal cells per
gram of fecal matters vs. 1011 bacterial cells per gram) (22),
fungi play a myriad of roles related to host metabolism
and host immunity in a broad range of ecosystems. This
community is far more variable and dynamic than the bacterial
community, responsive to environmental changes, and co-exists
with the other microbial communities in the human body.
Data suggests that there are three main fungal phyla in the
gut, Ascomycota, Basidiomycota, and Zygomycota, and 10 “core”
genera made up of Candida (especially Candida albicans),
Saccharomyces (especially Saccharomyces cerevisiae), Penicillium,
Aspergillus, Cryptococcus, Malassezia (especially Malassezia
restricta), Cladosporium, Galactomyces, Debaryomyces, and
Trichosporon. Importantly, as with bacteria, fungal communities
have a spatial organization in the GI tract with luminal subset vs.
mucosa-associated subset, the latter being more conservative and
well-defined (23). Recently, it was shown that human mucosa-
associated fungi, consisting mainly of the “immunoreactive”
fungal genera Candida spp. and Saccharomyces spp. exert
immunoprotective effects via upregulation of barrier function
and transcription of epithelial genes involved in JAK/STAT
signaling and DNA repair (23). Namely, in a healthy state
the mucosa-associated mycobiota promoted barrier function
through induction of CD4+ T helper cell-derived IL-22 and
IL-17, resulting in protection against intestinal injury during
antibiotic treatment and bacterial infection (23). Meanwhile,
studies in patients with CD show an increased fungal
burden in conjunction with an increase in abundance of
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FIGURE 1 | Schematic summary of observed gut microbiota changes associated with Crohn’s disease, the usage of common medications, and approaches for

microbiota modulation.

the Basidiomycota/Ascomycota ratio, C. albicans, C. tropicalis,
Candida glabrata, Gibbrella moniliformis, Aspergillus clavatus,
Alternaria brassicola, Cystofilobasidiaceace family (24), and
Debaryomyces hansenii (25) (Figure 1). C. albicans, a prevalent
fungal species in the gut of patients with CD, is known as an
inducer of T helper 17 (Th17) cells (26). Th17 cells are involved
in immunity at the intestinal mucosal barrier. Under pathological
conditions, such as IBD, Th17 secretes pro-inflammatory
cytokines that aggravate inflammation (27), suggesting a possible
pathobiont role of C. albicans in the case of IBD. Another study
also implied the potential role of Debaryomyces hansenii in the
perpetuation of chronic inflammation and tissue injury in CD
(25). This fungus was found in abundance in patients with CD
within the areas of surgical resections and inflamed regions of
the intestines. Human isolates of D. hansenii effectively impaired
colonic crypt repair in vivo illustrated by increased mucosal
ulcerations and crypt loss (25).

Furthermore, a decrease in S. cerevisiae and Malassezia
sympodialis is observed in CD (24). Sokol et al. demonstrated
that S. cerevisiae significantly enhances the production of
the anti-inflammatory cytokine interleukin (IL)-10 (24). While
less is known about the role of M. sympodialis in intestinal
inflammation, the genus Malassezia is often associated with skin
disorders such as atopic eczema (28). Recent data suggest thatM.
sympodialis can stimulate mast cells to upregulate the release of
cysteinyl leukotrienes and enhance IgE response, which results
in a pro-inflammatory effect (29). More research is required to
understand the exact role ofM. sympodialis in CD.

Fungal-bacterial interactions were first recognized by Seelig
in 1966 after antibiotic treatment in humans resulted in an
overgrowth of Candida spp (30, 31). More recently, Sovran et
al. demonstrated that antibiotic treatment significantly altered
the fungal composition, confirming that bacterial dysbiosis could
contribute to fungal dysbiosis (32). This study also showed
that administration of C. albicans worsened disease severity,
while administration of Saccharomyces boulardii reduced disease
symptoms; however, both effects were lost after antibiotic
treatment (32). It is hypothesized that the co-existence of fungi
with specific intestinal bacteria is essential for the development/
amelioration of colitis. Sovran et al. exemplified this concept
in a female C57BL/6J mice model where both C. albicans
and S. boulardii required Enterobacteriaceace (modeled with
colistin-resistant E. coli strains) to trigger their respective
detrimental and beneficial effects on DSS-induced colitis (32).
To support the role of interdependence between bacteria
and fungi, gut fungal dysbiosis has been associated with
reduced treatment response to fecal microbiota transplants
(FMT) in recurrent Clostridioides difficile infections (CDi)
(33). The microbiome of patients with CD is characterized
by a decrease in fungal-bacterial interactions, as compared
to healthy controls. A decreased abundance in S. cerevisiae
is associated with a reduction in beneficial bacterial genera
such as Bifidobacterium, Blautia, Roseburia, and Ruminococcus,
whereas an elevation in C. tropicalis is positively associated with
opportunistic bacteria such as Serratia marcescens and E. coli in
CD (24).
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Intestinal Virome in CD
There is even less information about the role of virome in
IBD as compared to the mycobiome, since little information
is accessible through the public database, known as “viral
dark matter” (34, 35). Gut virome is composed of eukaryotic
and bacterial viruses (bacteriophages), including single-stranded
DNA (ssDNA), double-stranded DNA (dsDNA), and RNA
viruses. The intestinal virome is the most populated niche in
the body, consisting of ∼1015 bacteriophages, outnumbering
commensal bacteria by a factor of 10 (36, 37). Although large and
diverse, the intestinal virome is highly personalized and stable
(38). The core “phageome” is mostly composed of dsDNA viruses
most commonly from the Caudovirales order (Myoviridae,
Podoviridae, and Siphoviridae families), and ssDNA viruses from
the Microviridae family. More recently, a novel crAssphage and
crAss-like phages have been identified as a common community
in the virome and are associated with the bacterial phylum of
Bacteroidetes (36, 38, 39).

Specific changes in the virome in patients with CD consist
of a loss of the “core phageome” (Figure 1). Norman et al.
describe a significant expansion of disease-specific Caudovirales
bacteriophages and disease-and-cohort-specific changes in the
virome of patients with CD and UC (40). CD-associated
phageome dynamic changes are characterized by an increase in
phages infecting Alteronomonadales and Clostridiales bacterial
orders (41), and an inverse shift in Caudovirales vs.Microviridae
bacteriophages (35). As for the eukaryotic virome, an increase in
the abundance of Retroviridae, Herpesviridae, Hepadnaviridae,
Hepeviridae families, and a decrease in the Virgaviridae family
were observed (36, 37).

Although the exact role of the virome in IBD is not
entirely clear, some evidence suggests that it may contribute
to intestinal inflammation. Bacteriophages are important to
bacteria as they drive bacterial diversity and fitness in the gut
(42). They are involved in the horizontal transfer of genetic
information between bacteria, including material related to
pathogenesis and antibiotic resistance (42–44). In CD, there is
an increase in the abundance of temperate phages which shift
from lysogenic to lytic replication (43). The normal process
of viral reproduction occurs via the lysogenic cycle, which
involves the fusion of the nucleic acid of a bacteriophage
and the host cell leading to proliferation (45). In contrast,
the lytic cycle involves the penetration of a cell membrane,
nucleic acid synthesis, and lysis of the host cell (37, 43).
Lysis of gut bacterial hosts is theorized to release proteins,
lipids, pathogen-associated molecular patterns, and antigens
that trigger inflammatory pathways leading to pro-inflammatory
cytokine induction and tissue damage (40). Additionally, in vitro
studies have demonstrated that bacteriophages can stimulate
macrophages to induce MyD88-dependent pro-inflammatory
cytokine production, suggesting its role in innate immunity
(46). Bacteriophages may also play a therapeutic role in CD
treatment. A cocktail of three bacteriophages was demonstrated
to reduce symptoms and significantly reduce fecal adhesive-
invasive E. coli (AIEC) in DSS-induced colitis in mice. AEIC
colonization of ileal mucosa in CD was correlated with disease
activity and location, as well as postoperative recurrence (47).

This bacteriophage cocktail may thus have therapeutic promise
for patients with CD.

Intestinal Archeaome in CD
Archaea are a domain of prokaryotic, single-cell organisms,
collectively known as the archeaome (48). The knowledge of
the human gut archeaome is limited and is mostly based on
methodological concepts biased toward commensal bacteria. The
majority of detected archaea in the gut are methane-producing
organisms known as methanogens. Methanogens respire
H2 and produce methane gas under anaerobic conditions.
They exist in a syntrophic relationship with bacteria; by
removing H2, methanogens improve bacterial fermentation
efficiency in the gut and allow complete anaerobic degradation
of organic material. Methanogens make up ∼10% of gut
anaerobes, as Methanobrevibacter smithii is the most common
(49–51). Other common species detected in the gut are
Methanosphaera stadtmanae, Methanomassilicoccus luminyensis
(49, 52), as well occasionally several non-methanogenic strains,
such as Desulfurococcales, Sulfolobales, Thermoproteales,
Nitrososphaerales, and Halobacteriales (53–55). M. smithii has
low immunogenic potential, suggesting its commensal role as
a gut microbe. M. luminyensis plays a beneficial role through
the degradation of trimethylamine (TMA) and trimethylamine-
N-oxide (TMAO), both byproducts of choline microbial
metabolism strongly associated with endothelial dysfunction
and increased risk of cardiovascular disease (56). Lastly, M.
stadtmanae has shown high immunogenic potential (57) and
is suggested to be present in high abundance in pathological
conditions (58, 59).

Changes in the archeaome related to CD show at least a 3-
fold increase in M. stadtmanae and a reduction in M. smithii,
as compared to healthy controls (Figure 1). Interestingly, these
numbers normalize with IBD remission (49). The “syntrophic
imbalance hypothesis” suggests that butyric acid, an SCFA
in the gut, is an essential component for the regulation of
archaea/bacteria biofilms in the gut. This hypothesis states that
dysbiosis is a product of archaeal overgrowth and increased SCFA
removal from intestinal biofilms, which in turn triggers bacteria
to become endoparasitic and enter intestinal epithelial tissues,
initiating and perpetuating chronic inflammation in the gut (60).
More research is needed to support the proposed hypothesis,
but recall that SCFAs, such as butyric acid, are reduced in
patients with IBD, therefore promoting that butyrate-producing
bacterial growth to improve intestinal barrier integrity should be
a promising target of therapy (61, 62).

CONVENTIONAL THERAPIES IN CD AND
THEIR MODULATING EFFECTS ON GUT
MICROBIOTA

The goal of CD therapy is to achieve deep remission, that
is, to induce and maintain symptomatic and endoscopic
remission and mucosal healing. Common anti-inflammatory
medications used in CD management include amino-salicylates,
immunomodulators, corticosteroids, and biologics (1, 63, 64).
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Amino-salicylates are less used in CD due to their lack
of efficacy in inducing/maintaining remission and preventing
postoperative recurrence. Corticosteroids are used mainly as
induction of remission medication but not for maintaining
remission, also due to serious side-effects such as osteoporosis,
diabetes, hypertension, and increased risk for infections.
Immunomodulators are commonly used but also have side effects
such as an increased risk for malignancies (such as lymphoma,
non-melanoma skin cancers, myeloid disorders, and urinary tract
cancers). Anti-tumor necrosis factor (TNF) biologics such as
infliximab, adalimumab, and certolizumab, are generally well-
tolerated, however; they are expensive and may increase the risk
of infections as well as melanoma skin cancer. Vedolizumab
(anti-integrin α4β7) and ustekinumab (anti-IL 12/23) are newer
biological drugs with improved safety and efficacy profiles but
lack long-term data (1, 2).

The efficacy of conventional therapy can be affected by
certain factors related to the gut microbiota. For example,
patients with IBD who achieve ‘early’ clinical remission at
14 weeks with anti-cytokine therapy (anti-TNF, anti-IL 12/23)
have significantly higher microbial species richness at baseline
compared to non-responders (65). The same study also found
that nine microbial species at baseline were associated with early
clinical remission in patients treated with anti-TNF and that
three microbial species were related to response to anti-integrin
therapy. Of those species, Phascolarctobacterium faecium,
Agathobaculum butyriciproducens, and Clostridium citroneae
were associated with increases in fecal SCFA production to
produce anti-inflammatory effects. The decrease in inflammation
by anti-TNF therapy is associated with modulation of the
gut microbiome toward eubiosis. The microbiome of patients
successfully treated with anti-TNF therapy slowly resembles
that of healthy individuals. Studies demonstrated a decrease in
Enterobacteriaceae (E. coli in particular) and Ruminococcus, with
an increase in abundance of Bacteroidetes and Firmicutes (66).

CONCOMITANT MEDICATIONS USED IN
CD AND THEIR MODULATORY EFFECTS
ON GUT MICROBIOTA

Recent studies have revealed that many commonly used drugs
other than antibiotics also exhibit profound effects on the gut
microbiota composition and function (Figure 1). An extensive
review of the microbiota-modulation effect of non-antibiotic
medications and the potential clinical consequences can be
found elsewhere (67). Here, we summarize data with respect to
drugs commonly used by patients with CD and their potential
contribution to the observed intestinal dysbiosis, as well as
disease onset and progression.

Antibiotics
Antibiotic exposure has been identified as an environmental
stressor contributing to the pathogenesis of IBD. In healthy
humans, antibiotic use has demonstrated perturbations and a
decrease in colonization resistance of the gut microbiota (68).
Broad-spectrum antibiotics can affect the composition of at least
30% of gut microbes to cause a drastic shift in richness, diversity,

and evenness (69, 70). Repeated exposure to antibiotics leads
to a reduction in diversity, resulting in pathogenic overgrowth
and dysbiosis (69, 70), increasing the risk of infection (71).
Another mechanism in which antibiotics increase the risk of
intestinal infections is related to their role in the thinning of the
mucosal layer leading to barrier dysfunction (72). Various studies
have found a significant association between prior antibiotic
use and the development of CD (73, 74). Both exposures in
the first 5 years of life (75) and 2–5 years prior to diagnosis
(76). contribute to an increased risk of developing IBD. The
association between antibiotic use and CD has been supported
through metagenomic analyses, showing a decrease in the
abundance of Firmicutes (such as C. leptum) and an expansion
of gram-negative bacteria such as Porphyromonadacease, and
Enterobacteriaceae (E. coli) (77–79).

Hormonal Contraception
The use of oral contraceptive pills (OCP) is associated with a
30% increased risk for the development of IBD in a genetically
susceptible host. In particular, there is a 24% higher risk of CD
development in those who are exposed to OCP vs. those who
are not (80). As OCPs function by using estrogen receptors,
van Langen et al. observed that reduced estrogen receptor-β’s
(ER-β) mRNA expression, the most abundant estrogen receptor,
and increased gut permeability preceded the onset of colitis in
two animal models. Furthermore, the study found reduced ER-
β mRNA levels in colonic biopsies from patients with IBD in
relapse. Finally, in vitro experiments demonstrated an association
between ER-β signaling and epithelial barrier function. They
concluded that ER-β signaling has a role in maintaining epithelial
barrier function, which in turn is related to IBD risk (81).

Mihajlovic et al. demonstrated that the use of combined
hormonal contraceptives (CHC), consisting of natural or
synthetic 17-β-estradiol and progesterone, was associated
with significantly lower gut microbial diversity and richness
due to CHC-induced decrease in endogenous estradiol
and progesterone. These authors also identified bacterial
groups such as unclassified Firmicutes, Eubacterium spp, and
Haemophilus spp. that were less abundant in the CHC group,
while Akkermansia and Barnesiella were enriched in the CHC
group in comparison to healthy controls not using CHC. These
data suggest that CHC-induced hormonal changes may affect gut
microbiota diversity (82). Lastly, not only are OCPs associated
with increased risk for CD but long-term use of OCPs in
patients with established CD is also associated with an increased
likelihood of surgery and risk of relapse (83). These recent data
raise the need for a re-evaluation of the benefits vs. risk of OCPs
not only in individuals with established CD but also in those at
increased risk for CD, such as their first-degree relatives.

Opioids
Opioids are the most common analgesics prescribed
for pain management in IBD. In a study assessing the
effect of hydromorphone in both DSS-induced colitis and
spontaneous colitis (IL-10 knockout) mouse models of IBD,
hydromorphone independently induced barrier dysfunction,
bacterial translocation, disruption of tight junction organization,
and increased intestinal and systemic inflammation. This effect
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was exacerbated with significant microbial dysbiosis in mice
receiving hydromorphone in combination with DSS. These
data warn against the use of opioids and that clinicians should
opt for other methods of pain management in IBD as opioids
can accelerate disease progression by dysregulation of the
gut microbiota, leading to expansion of pathogenic bacteria,
followed by their translocation, leading to worsening immune
dysregulation and sustained chronic intestinal inflammation
(84). Despite these adverse effects, a recent systematic review
and meta-analysis found that 21% of outpatients with IBD
and 62% of hospitalized patients with IBD use opioids for
pain management. Opioid use was associated with female sex,
depression, substance abuse, prior gastrointestinal surgery,
biologic use, steroid use, along with a more severe disease
course in IBD and increased healthcare use (85). Male C57Bl/6J
mice subjected to intermittent morphine treatment display a
significant decrease in the relative abundance of Lactobacillus
spp. and an increase in Ruminococcus spp (86). In contrast, mice
exposed to sustained morphine treatment show a significant
increase in abundance in Clostridium spp. and Rikenellaceace
family (86). The depletion of the gut microbiota in these mice
with antibiotic treatment reduced analgesic potency following
intermittent morphine treatment (86). These data suggest that
an alteration in the gut microbiome following antibiotic therapy
or intermittent opioid treatment is detrimental to inflammation
(86). Human data on microbiota modulation by opioids is
currently not available, hence it is not known if observations
made in colitis models can be fully translational in patients
with CD.

Anti-depressants
It is well documented that up to 30% of patients with IBD are
more likely to experience depression and that depression worsens
IBD prognosis. A study assessing six types of antidepressants
(phenelzine, venlafaxine, desipramine, bupropion, aripiprazole,
and (S)-citalopram) for their microbial activity against 12
commensal bacterial strains revealed that certain antidepressive
medications inhibit the growth of beneficial bacteria such
as Akkermansia muciniphila, Bifidobacterium animalis, and
Bacteroides fragilis. There was a significant reduction in bacterial
viability, at a 5 logs cycle reduction (87). These findings
demonstrated that certain antidepressants exhibit a strong
antimicrobial effect against specific commensal gut bacteria (87),
which is often overlooked. Although depression is associated
with the onset of CD and UC, another study found that using
certain treatments for depression, such as selective serotonin
reuptake inhibitor (SSRI) and tricyclic antidepressant (TCA),
was associated with disease reduction in CD (88). Therefore,
while depression increases the risk of CD development, this risk
may be altered by use of specific antidepressants (88). A bi-
directional brain-gut axis interaction in patients with IBD refers
to psychological disorders such as anxiety and depression and
IBD activity. Patients with normal anxiety scores at baseline
with active disease were almost 6 times more likely to develop
abnormal anxiety scores during follow-up. In contrast, those who
had the inactive disease at baseline, but had abnormal anxiety

scores, had 2-fold higher rates of the flare of disease activity or
need for glucocorticoids and escalation of therapy (89).

Proton Pump Inhibitors
Proton pump inhibitors (PPIs) reduce gastric acid secretion and
are widely used in upper GI disorders management, such as
peptic ulcer disease, gastroesophageal reflux disease, and non-
ulcer dyspepsia (90). Although PPIs exhibit a sound safety
profile and have demonstrated significant benefits in acid-related
gastrointestinal disorders, there are controversial data regarding
their safety in IBD. In an observational analysis of three cohorts
made up of 6,40,000 subjects, long-term PPI use was associated
with an increased risk of developing IBD (91). This association
was also found in multiple other studies correlating PPI use to
increased risk of enteric infections such as Clostridoides difficile
and IBD. A recent metagenomic analysis of three population
cohorts (general, IBD, and IBS) also identified that PPI accounted
for the largest number of drug-associated microbiota shifts, with
a total of 40 altered taxa and 166 altered microbial pathways (92).
The mechanisms behind this association are unclear but may
be attributed to the reduction in gastric pH, thus introducing
oral bacteria and promoting the growth of potentially pathogenic
bacteria (as Streptococcus) (92, 93) and direct inhibition of
certain commensal gut bacteria such as Faecalibacterium (92, 93).
This leads to a weakening of barrier function and reduction
of microbial diversity ultimately leading to dysbiosis (93). This
collective data suggest that although PPIs have had profound
effects on certain gastrointestinal diseases, they should not be
prescribed beyond theminimal dose to induce benefit in patients.

METHODS OF MODULATING THE GUT
MICROBIOTA IN CROHN’S DISEASE

Modulation of the gut microbiota is often used as an adjuvant
therapy to conventional medication in IBD. Projects such
as the Human Microbiome Project (94) and the European
Metagenomics of the Human Intestinal Tract (MetaHIT) (95)
have had profound contributions to the identification and
characterization of the microbes that distinguish health and
disease states. Animal models have also been instrumental in the
study of the microbiome and IBD. Hernández-Chirlaque et al.
(96), confirm that the absence of a microbiome in germ-free (GF)
and conventional mice treated with antibiotics cocktail [“pseudo-
GF”] experience reduced DSS colonic inflammation but also
have impaired barrier function. This data suggests that enteric
bacteria are essential for the development of DSS-induced colitis
and epithelial barrier function (96). Germ-free mice studies also
link the commensal microbiota to the promotion of intestinal
immunity through mechanisms such as toll-like receptor (TLR)
expression (97). antigen-presenting cells, lymphoid follicles,
CD4+ T cells (98, 99), and antibody expression (100). Twin
studies demonstrate that despite the heritability of the gut
microbiome, environmental factors related to diet, drugs, and
lifestyle can be larger determinants of microbiota composition
and disease development (101, 102). This data suggests that
enteric bacteria are essential for the development of chronic
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intestinal inflammation. A logical development then is to attempt
to modify the intestinal microbiome (not only its composition
but also the microbial metabolic fitness) in order to sustain or
even reverse pathophysiological changes observed in CD.

Probiotics in CD
The word probiotic originates from the Latin “pro” and Greek
“bios” which translates to “for life” (103). The currently accepted
definition is “live microorganisms that, when administered
in adequate amounts, confer a health benefit on the host”
(104). This definition encompasses all microbes, although the
bacteria of gut microbiota is the most widely studied. The most
common probiotic cocktail with proven efficacy in UC and
chronic pouchitis is Visbiome R© (formerly VSL#3) (105, 106).
Visbiome contains eight different bacterial strains from well-
known probiotic species Lactobacillus plantarum DSM24730,
Streptococcus thermophilus DSM24731, Bifidobacterium breve
DSM24732, L. paracasei DSM24733, L. delbrueckii subsp.
bulgaricus DSM24734, L. acidophilus DSM24735, B. longum
DSM24736, and B. infantis DSM24737 (107). In particular,
bacteria such as Lactobacilli and Bifidobacteria have been
extensively tested for anti-inflammatory effects in colitis and their
beneficial effects on gut motility, particularly for the treatment
of constipation (108). VSL#3 is not yet shown to be effective in
patients with CD, as compared to those with UC (109, 110).

However, Visbiome started within 30 days after ileocecal
resection followed by re-anastomosis prevented disease
recurrence in a study with 120 patients with CD, suggesting that
the timing of this probiotic cocktail after resection is important.
However, more studies are needed within this scope (111).
In vitro supplementation with commensal strains such as F.
prausnitzii seems to show favorable results (18, 112). Some
successes have been demonstrated with the administration of
S. boulardii in combination with mesalazine in patients with
CD, where a significant reduction in the incidence of relapse
occurred as opposed to the mesalazine only-treated group,
however, this was a small study (113). Although there are few
studies assessing the effect of S. boulardii in CD, the existing
evidence only slightly favors the use of the yeasts as a probiotic in
CD in certain populations (such as non-smokers) (114). Table 1
summarizes various probiotics and their clinical efficacy in CD.
Apart from the use of Saccharomyces boulardii as a probiotic,
there is no evidence that sufficiently supports the use of the
current probiotics to induce clinical remission in CD. More
large, high-quality well-powered studies are needed to determine
the specific factors needed for the efficacy of probiotics in CD.

Prebiotics in CD
Prebiotics are defined as “a substrate that is selectively utilized
by host microorganisms conferring a health benefit (129)”. These
health benefits are not necessarily limited to the colon, but
also occur in the oral cavity, urogenital tract, lungs and skin
(130). Typically, prebiotics were thought to be limited to non-
digestible carbohydrate sources, such as fructooligosaccharides,
galacto-oligosaccharides, resistant starches, pectin, arabinoxylan,
and whole-grains, but an updated definition now includes non-
carbohydrate sources, such as polyphenols and certain lipids

(130). The most extensively tested type of prebiotic is inulin-type
β-fructans, which are naturally derived from food sources such as
chicory root, and onions (111, 129).

Prebiotics confer benefit to the host through their
fermentation by some commensal microbes in the gut resulting
in compositional and metabolic modulations/alterations
(111, 131–133). Prebiotics are a non-selective growth substrate,
allowing the simultaneous growth of multiple beneficial strains,
such as F. prausnitzii, Roseburia spp., Eubacterium spp.,
Anaerostipes spp., Coprococcus spp., Bifidobacterium spp (134).
Furthermore, prebiotics is synergistically co-metabolized by
several distinct microbial groups such as butyrate-producing
F. prausnitzii and acetate-producing B. adolescents leading to
more efficient co-fermentation (135). However, it is important
to note that not all non-digestible carbohydrates can be
considered prebiotics. For example, feeding IL-10 knockout mice
with dextrin fibers derived from corn resulted in microbiota
shifts such as an increase of some Bacteroidetes families
(Porphyromonadaceae and Prevotellacea) vs. reduction of
strict anaerobic Firmicutes (Incertae Sedis XIV, Lachnospiraceae,
Ruminococcaceae, and Lactobacillaceae). These changes were also
seen in conjunction with reduced pro-inflammatory pathways
such as IL12p70, IL-6, and chemokine ligand 1 (CXCL) (136).
Despite these differences, these mice did not experience any
improvement in colonic inflammation—or in other words, no
health benefits to the host (136).

Arguably, a major function of prebiotics is their fermentation
by commensal microbes into SCFAs. Propionate, acetate, and
butyrate are the main SCFAs (20, 137, 138). SCFAs enhance
mucus secretion, increase anti-microbial peptides, lower the pH
of the colon to decrease oxygen levels, and inhibit the growth
of pathogenic anaerobes. SCFAs also upregulate the expression
of tight junction proteins to maintain a healthy functional
immune system and intestinal barrier (137, 139) and reduce
the production of putrefactive substances, such as ammonia,
indole, branch-chain fatty acids, and phenol (137). Butyrate
acts as the main energy source for colonocytes. This SCFA
is of particular interest in IBD, as it is significantly reduced
in colonic cells leading to autophagy and energy deprivation
(140). Butyrate inhibits NF-κB activation via an increase in
cytoplasmic inhibit (IKB) thus inhibiting pro-inflammatory
cytokines and chemokines, such as interferon-γ (INF-γ), pro-
inflammatory chemokine CXCL-8 (IL-8) in Caco-2 cells, and
TNF-α (20, 141–143).

In a well-powered placebo-controlled study, Benjamin et
al. found that supplementing 120 patients with active CD
with 15g/day of inulin-type β-fructans had no clinical benefit
(144). However, De Preter et al. and Joossens et al. using
10 g twice daily oligofructose-enriched inulin (OF-IN) in 67
inactive or mild to moderately active CD reported microbiota
shifts toward an increase in B. longum that positively correlated
with an improvement in CD disease activity and that OF-IN
intake increased fecal butyrate and acetaldehyde (145, 146). As
summarized in Table 2, few CD studies with prebiotics have
demonstrated inconsistent results, likely due to a dose-dependent
effect of prebiotics, disease stage/severity, and adverse effects,
such as bloating, which may mask symptom improvement;
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TABLE 1 | Use of probiotics in patients with Crohn’s disease.

Type of

study

Participants (n) Duration

(months)

Intervention Control Reference Outcome

Probiotics to induce clinical remission

Open-label 17 0.5 Saccharomyces boulardii None (115) Modest symptomatic

improvement

RCT 11 6 Lactobacillus rhamnosus GG

+ Corticosteroids

Placebo +

Cortico-

steroids

(116) No benefit

Open-label 10 13 Bifidobacterium longum, B.

breve, Lactobacillus casei +

Plantago ovata

None (117) Symptomatic

improvement

RCT 35 6 B. longum + FOS/inulin Placebo (118) Symptomatic

improvement

Probiotics to maintain clinical remission

RCT 17 3 S. boulardii Placebo (115) Improvement

RCT 28 12 E. coli Nissle 1917 Placebo (119) No benefit

RCT 35 6 S. boulardii Pentasa (113) Prevented relapse

RCT 11 6 LGG Placebo (116) No benefit

RCT 75 42 LGG Inulin (120) Deterioration (NS)

RCT 30 12 VSL #3 Placebo (109) Deterioration (NS)

30 12 S. boulardii Placebo (121) No benefit overall;

favorable in

non-smokers?

RCT 62 1 Symprove (L. rhamnosus, L.

plantarum, L. acidophilus,

Enterococcus faecium)

Placebo (122) No Benefit

Observational 200 - Various - (123) Reduced adverse

events

Probiotics to prevent post-operative recurrence

RCT 40 12 Rifaximin – VSL #3 Mesalamine (124) Lower incidence of

endoscopic recurrence

RCT 45 12 LGG Placebo (125) Deterioration (NS)

RCT 98 6 Lactobacillus johnsonii Placebo (126) No benefit

RCT 30 24 “Synbiotic 2000” Placebo (127) No benefit

RCT 70 3 L. johnsonii Placebo (128) No benefit

RCT 120 12 VSL #3 Placebo (109) No statistically

significant benefit

S. boulardii, Saccharomyces boulardii; LGG, Lactobacillus rhamnosus GG; FOS, fructo-oligosaccharide; NS; not significant; RCT, randomized controlled trial.

therefore, more RCT studies with adequate power assessing
objective disease parameters in association with protective
mechanisms are needed to discern their effect in various
CD phenotypes.

Synbiotics in CD
Synbiotics are a combination of carefully curated prebiotics and
probiotics that work together to exert a synergistic effect. While
prebiotics encourages the proliferation of beneficial intestinal
microbes, probiotics inhibit the growth of pathogenic bacteria
to synergistically improve the integrity of the gut barrier (132).
In a small placebo-controlled randomized control trial of only
35 patients with active CD, those who received a combination

of prebiotic fructo-oligosaccharides/inulin and Bifidobacterium
longum experienced significant improvements in histological
samples after 3 and 6 months of the study. There was also a
significant decrease in TNF-α expression at 3 months that was
maintained through the rest of the study (118). Similar to studies
related to probiotics and prebiotics, more large, high-quality
trials are needed to determine the use and efficacy of synbiotics
in CD.

Therapeutic Dietary Modifications in CD
Diet is a major lifestyle factor that is significantly linked to the
composition/function of the gut microbiota. In an analysis of
genotype and microbiome data of healthy individuals, at least
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TABLE 2 | Use of prebiotics to induce or maintain clinical remission in patients with Crohn’s disease.

Type of study Participants

(n)

Duration

(months)

Intervention Control Outcome Reference

RCT 41 1 FOS, 15g/d Maltodextrin,

15g/d

No benefit (144)

Open label 22 4 Two 8-ounce

cans/day of IBDNF

None Significant decrease in plasma

phospholipid levels of arachidonic

acid with an increase in

eicosapentaenoic acid and

docosahexaenoic acid.

(147)

RCT 67 1 OF-IN, 20g Placebo Improvement in disease activity

associated with increase in

Bifidobacterium longum, and butyrate

(145, 146)

Observational

case-control

303 - None None Patients with active CD presented

lower fructan and lower oligofructose

intakes than inactive CD or control

groups. Negative correlation between

HBI wellbeing score and fructan and

oligofructose intakes.

(148)

RCT, randomized control trial; FOS, fructo-oligosaccharide; IBDNF, Inflammatory Bowel Disease nutrition formula; OF-IN, oligofructose-enriched inulin; CD, Crohn’s disease, HBI,

Harvey-Bradshaw Index.

20% of β-diversity is related to environmental factors, such
as diet, drugs, and anthropometric measurements (102). In a
five-day ad libitum dietary intervention, significant alteration
in the gut microbiome composition and activity was evident
in just 24 h of diet initiation (149). Those consuming an
animal-based diet including meat, cheese, and eggs showed an
increase in bile-tolerant microbes, such asAlistipes, Bilophila, and
Bacteroides. In particular, the increase in Bilophila wadsworthia
supports the association between dietary fat, increased bile acids
secretion, and the expansion of microorganisms implicated in
IBD. Furthermore, a reduction in the levels of Firmicutes, such
as Roseburia, Eubacterium rectale, and Ruminococcus bromii,was
associated with an animal-based diet (149). Analysis of fecal
SCFAs suggested that changes in macronutrients in both diets
resulted in a change in microbial metabolic activity. Animal-
based diets demonstrated significantly high levels of amino
acid fermentation and lower levels of products of carbohydrate
fermentation (149). Branched chain SCFA that are products
of amino acid fermentation were positively associated with
putrefactive bacteria such as Alistipes putredinis and Bacteroides
spp. Meanwhile, products of carbohydrate fermentation, more
abundant in the plant-based diet, were associated with clusters
of saccharolytic microbes such as Roseburia spp., E. rectale, and
F. prausnitzii (149).

Diet may be more relevant and have a stronger effect on CD
than UC since most prior epidemiological studies on dietary risk
factors have identified association with CD, but not UC (150–
152). There also seems to be a slight difference in dysbiosis
in different phenotypes of CD. A greater reduction in butyrate
producers such as F. prauznitzii and increased abundance of E.
coli is seen in ileal CD as compared to colonic CD, suggesting
that there might be a stronger link between diet, microbiome,
and CD phenotype (21). A plethora of studies have explored
dietary patterns associated with CD. Many studies such as the
Healthy Lifestyle in Europe by Nutrition in Adolescence Study

and the prospective cohorts of the Nurses’ Health Study (NHS)
and Nurses’ Health Study II (NHSII) have shown that a higher
intake of fiber, specifically cruciferous vegetables and cereals, is
associated with lower incidence of CD (150, 151). On the other
hand, a prospective study of NHS I and NHSII demonstrated a
reduction in CD risk with high dietary fiber, specifically derived
from fruits (150).

The EPIC-IBD study found no evidence that dietary fiber
was associated with CD or UC. However, a higher intake of
cereal fiber in non-smokers was inversely associated with odds of
developing CD (151). During analysis of 3 ongoing prospective
cohort studies (NHS, NHSII, and The Health Professionals
Follow-up Study (HPFS)), it was demonstrated that dietary
patterns with high inflammatory potential were associated with
increased risk for CD, but not UC. There seemed to be a dynamic
risk with CD; not only was there a long-term pro-inflammatory
diet associated with a higher risk, but also an increase in disease
development from low to high inflammatory potential diet.
In this study, the association between an inflammatory diet
and the risk of CD remained unchanged for additional fiber
intake. These results, confirmed by others (153), suggest that
dietary fiber and low inflammatory potential foods are both
important components of the diet to reduce CD risk (154).
Examples of a high inflammatory potential diet is the Western
diet, which is high in saturated fat, added sugar, and low in fiber
(155). Khalili et al., showed in two large prospective studies in
Sweden that poor adherence to the Mediterranean diet (a low-
inflammatory potential diet) conferred a population attributable
risk of 12% for later-onset Crohn’s disease—suggesting that
greater adherence to a Mediterranean diet is associated with
a lower risk of later-onset CD (152). Moreover, Bolte et al.,
found that processed foods and animal-derived sources were
associated with a higher abundance of microbes associated
with inflammation such as Firmicutes, Ruminococcus spp., and
endotoxin synthesis pathways (153). Meanwhile, plant-derived
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TABLE 3 | Dietary patterns associated with inflammation or increased incidence of CD.

Study Type Participants (n) Duration Outcome Reference

Observational 170 776 26 years Long-term intake of dietary fiber, especially fruit, is

associated with lower risk of CD but not UC

(150)

Prospective cohort 401 326 No associations between fiber from specific sources

and risk of UC/CD

(151)

Prospective cohort 83 147 17 years (SD±5) Mediterranean Diet associated with lower risk of CD (152)

Prospective cohort 208 834 (NHS,

NHSII, HPFS)

- High dietary inflammatory potential associated with

51% higher risk of CD

(154)

Cross-sectional 1425 (CD, UC,

IBS, HC)

- Processed foods and animal- based foods

associated with increased abundances of

Firmicutes, Ruminococcus spp. Plant-based foods

and fish positively associated with short- chain fatty

acid-producing commensal bacteria

(153)

CD, Crohn’s disease; UC, Ulcerative colitis; SD, standard deviation; NHS, Nurses’ Health Study (NHS); NHSII, Nurses’ Health Study; HPFS, The Health Professionals Follow-up Study;

IBS, Irritable Bowel Syndrome; HC, healthy controls.

sources were associated with SCFA-producing bacteria and
improved metabolic pathways (153). Table 3 includes various
diets and their association with inflammation and risk of CD.
These studies suggest that adherence to a low-inflammatory
potential diet (i.e., Mediterranean diet) and the addition of
fermentable dietary fiber may aid in reducing the risk of CD in
those that are genetically predisposed.

Therapeutic diets have the potential to both induce and
maintain remission. Exclusive Enteral Nutrition (EEN) is the use
of a liquid elemental or polymeric formula consumed exclusively
for up to 12 weeks (156). EEN has shown remarkable success in
inducing remission (157, 158) and is especially recommended
as first-line therapy to induce remission in pediatric patients
with CD (159). The mechanisms of EEN are related to its role
in reducing antigens in whole foods, improving micronutrient
and macronutrient deficiencies, and improving gut dysbiosis
(158, 160, 161). EEN reduces microbiota diversity and initiates
modulation of intestinal bacterial communities (156, 162).
Notably, EEN reduces inflammation through the modulation of
Bacteroides species. A significant positive correlation between
a change in Bacteroides-Prevotella groups and a reduction in
pediatric Crohn’s disease activity index (PCDAI) (156, 162).
Following EEN’s success, many dietary therapies have focused
on eliminating certain dietary components to improve disease
severity. The Specific Carbohydrate Diet (SCD) consists of
eliminating all grains, sugars (except for honey), milk products
(except for hard cheeses and fermented yogurt), and most
processed foods (163). This diet has shown some efficacy in
inducing remission; however, long-term adherence is difficult
due to the limitations of this diet. Therefore, diets offering
a greater variety of foods, such as the modified-Specific
Carbohydrate Diet (mSCD) and Mediterranean diet (MD), have
been explored as an alternative means of dietary intervention.
Both the mSCD and MD show comparable results to the SCD
but boast a more liberal dietary pattern that is customizable
and easier to follow. Studies involving the Mediterranean
diet have shown promise regarding inducing and maintaining
remission, improving inflammatory biomarkers, and quality of
life (QoL). The Crohn’s Disease Exclusion Diet and Partial

Enteral Nutrition (CDED + PEN) approach has been explored
and has shown to induce and sustain remission in 75% of
pediatric CD patients at 12 weeks (164, 165). The CDED consists
of the removal of animal fat, wheat, dairy, red meat, emulsifier,
maltodextrin, inulin, and carrageenan and the addition of fruits
and vegetables. CDED + PEN was associated with a reduction
in Proteobacteria and intestinal permeability, as measured by a
Lactulose/Mannitol Test (165). In addition, this diet-induced a
decrease in abundance inHaemophilus, Veillonella, Anaerostipes,
and Prevotella, and an increase in Roseburia and Oscillibacter
(165). As shown in Table 4, plant-based and low inflammatory
diets contribute to an improved microbiome profile along with
disease amelioration.

Fecal Microbiota Transplantation in CD
Fecal microbiota transplantation (FMT) is the transfer of fecal
matter from a healthy donor to a person with dysbiotic gut
microflora. The aim of FMT is the restoration of a healthy
microbiota (173). FMT has been remarkably successful in the
treatment of Clostridioides difficle infections (CDi) and is being
explored as a therapeutic option for IBD; however, the results
have not been as promising. Certain randomized control trials,
such as a landmark FMT study by Moayeddi et al., have shown
success in inducing clinical remission in patients with UC (174).
In this study, success in remission induction was associated
with a recent UC diagnosis, as the perturbation in microbial
structure was easier to change in its early stages (174). The
inconsistency in FMT results is likely due to the more complex
pathogenesis of IBD as compared to CDi. Similar to probiotics
and prebiotics, data regarding FMT and IBD is limited and
heterogeneous, making it difficult to determine its absolute effect
on IBD disease activity.

In a promising 5-year Chinese study by Xiang et al., a step-
up FMT strategy was used in 174 patients with CD. This 3-
step strategy used integrative treatment consisting of a single or
multiple FMT in conjunction with steroids, immunomodulators,
and exclusive enteral nutrition. Improvements in abdominal
pain, hematochezia, fever, and diarrhea were seen from 1-
month post-FMT to the end-of-study at 3 years post-FMT.
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TABLE 4 | Dietary patterns to induce or maintain remission in Crohn’s disease.

Diet Study type Participants

(n)

Duration

(months)

Outcome Reference

Active Crohn’s disease

Mediterranean Diet Open-label

intervention

142

Adult

6 Improvement in BMI, waist circumference,

liver steatosis, disease severity,

inflammatory biomarkers, and quality of life

(166)

PREDIMED Mediterranean diet

score

Observational 66

Adult

3 Daily intake of leafy green vegetables

associated with FCP ≤ 100µg

Higher omega 6:3 ratio associated with

CRP ≤ 5mg

(167)

Specific Carbohydrate Diet vs.

Mediterranean Diet

RCT 194

Adult

3 Specific Carbohydrate Diet was not

superior to the Mediterranean diet to

achieve symptomatic remission, FCP

response, and CRP response.

(168)

Specific Carbohydrate Diet vs.

Modified Specific Carbohydrate

Diet vs. Whole foods

RCT 18 Pediatric 3 All 3 diets were associated with high and

comparable rates of clinical remission, and

all had improvement in inflammation to

differing degrees

(169)

Crohn’s Disease Exclusion Diet

and Partial Enteral Nutrition vs

Exclusive Enteral Nutrition

RCT 74 Pediatric 3 CDED + PEN is better tolerated than EEN,

both are effective at achieving remission in

the short-term

(164, 165)

Inactive Crohn’s disease

Semi-vegetarian diet Open-label

intervention

22

Adult

24 SVD prevented relapse (170)

High-meat vs. Low-meat Observational 213

Adult

∼11 Red/processed meat is not associated

with time to relapse

(171)

Low FODMAP RCT 52

Adult

1 Low FODMAP diet reduced gut symptoms

scores and significantly lower abundance

of Bifidobacterium adolescentis, B.

longum, and Faecalibacterium. prausnitzii,

no change in microbiome diversity and

markers of inflammation

(172)

RCT, randomized control trial; BMI, body mass index; FCP, fecal calprotectin; CRP, C-reactive protein; CDED + PEN, Crohn’s Disease Exclusion Diet and Partial Enteral Nutrition; ENN,

Exclusive Enteral Nutrition; SVD, Semi-vegetarian diet; Low FODMAP, Low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols.

This study was the largest cohort of patients that underwent
FMT and had a long-term follow-up. It is important to note
that this study neither used a control group, nor assessed
endoscopic biomarkers, quality of life, or microbial analysis
(175). However, the optimal time between FMT doses was
approximately 4 months, a similar time frame as in a previous
study by Li et al. (176). However, it becomes evident that
FMT on its own does not induce long-term remission. In a
multivariate analysis, it was shown that degree of dysbiosis,
longer-disease duration (>5 years), and severity (HBI > 8)
was associated with poorer response to FMT (33, 176). FMT
seems more likely to be successful in CD in early stages, in
milder disease, when administered in multiple courses and
conjunction to other treatment modalities. FMT has the potential
to provide a profound improvement in specific patients with
CD, but information regarding donor characteristics and time
of administration (early vs. late disease course) has yet to be
explored in a standardized and controlled manner. One major
issue with the majority of these FMT studies is that they are
underpowered, are often open-label, do not account for the
healthy donor effect, and have a lack of reproducibility.

INTESTINAL PERMEABILITY AND
CROHN’S DISEASE

Intestinal permeability (IP) refers to the functional property of
the intestinal mucosal barrier that controls the interactions
between the gut and gut microbes. Normal intestinal
permeability allows for the coexistence of microbial symbionts of
the host while preventing luminal penetration ofmacromolecules
and pathogens (177). The purpose of the intestinal barrier is
to reduce contact between luminal microbial contents and the
mucosal immune system (178). In healthy humans, it acts as a
semi-permeable physical barrier allowing selective movement of
nutrients while protecting the body from pathogenic invasion
(179). An impaired intestinal barrier and increased IP, also
known as “leaky gut,” has been the focus of research as it appears
to be a defining factor in the pathogenesis of IBD (177, 179).
Epithelial integrity is characterized by a 4–5-day turnover of
cell shedding into the intestinal lumen at the surface and the
proliferation of multipotent stem cells within the intestinal
crypt to replace the loss of cells (180). Disruption of intestinal
barrier turnover contributes to invasion of luminal antigens and
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intestinal inflammation as seen in ulcerative colitis (UC) and
Crohn’s disease (CD) (181, 182).

Intestinal epithelial cells (IECs) are mechanically attached
by the junctional complexes of tight junctions (TJs), adherence
junctions, and desmosomes (183–185). These structures also
control the paracellular transport of ions and small molecules
between adjacent cells via passive transport. Patients with IBD
display several TJ abnormalities leading to increased paracellular
transport (186, 187). Patients with IBD display reduced
expression and redistribution of TJs and their constituents such
as occludins, claudins, and junctional adhesion molecules (JAM)
(181, 182, 188, 189). Tumor-necrosis factor-α (TNF-α), a pro-
inflammatory cytokine implicated in the progression of IBD,
has been shown to modulate the transcription of TJ proteins
(190, 191). Not only does TNF-α increase IP, but it also increases
the rate of shedding of enterocytes via apoptosis which results in
a lag of TJ redistribution to adhere cells together (181, 192).

Paracellular movement of molecules is limited by the function
of TJs between IECs. Therefore, regulation of TJ function is
essential for the normal movement of solutes between cells.
Another factor affecting paracellular transport is epithelial
damage through erosion or ulceration (193). Zonulin is a
protein in humans that has been identified as a reversible
regulator of TJ function. Zonulin modulates permeability by TJs
disassembly leading to increased intestinal permeability (194). In
autoimmune conditions, such as IBD, Celiac Disease, and Type
1 Diabetes, enhanced expression of zonulin has been observed,
making it a biomarker of impaired gut function along with
a potential target for therapy. Other biomarkers of intestinal
permeability include glucagon-like peptide-2 (GLP-2). GLP-2 is
involved in intestinal cell proliferation in the crypts of IECs,
therefore beneficial in reducing the permeability of the gut (193,
194).

ROLE OF MICROFLORA-ALTERING
THERAPY TO PREVENT CROHN’S
DISEASE

It is well-documented that there is a genetic component to
CD susceptibility with up to 12% of patients having a family
history of IBD. Genome-wide association studies (GWAS) have
identified 240 single nucleotide polymorphisms (SNPs) in IBD
(195). However, genetics alone do not explain the onset of CD,
as many people with the identified alleles do not develop the
disease (196). In a prospective study, Turpin et al. measured
intestinal permeability by the urinary fractional excretion of
lactulose-to-mannitol ratio (LMR) in 1,420 asymptomatic first-
degree relatives (FDR) of patients with CD with a median follow-
up of 7.8 years. An abnormal LMR (>0.3) was associated with a
diagnosis of CD onset during the follow-up period, whereas the
test was performed more than 3 years before the diagnosis of CD.
Not only did these results demonstrate that increased intestinal
permeability is associated with the risk of development of CD, but
they also support the hypothesis that abnormal intestinal barrier
function can contribute to the pathogenesis of CD and can serve
as a biomarker for the risk of CD onset in healthy asymptomatic

FDR (197). Another analysis by Turpin et al. of a GWAS of
LMRwithin the same study population showed that host genetics
provide only a small contribution to an abnormal LMR in FDR
of patients with CD, suggesting that an abnormal LMR may be
more likely a result of environmental triggers or insult (198).
Morkl et al. found that intestinal permeability in women, as
measured by serum zonulin, was reflective of diet composition
including calories, protein, carbohydrate, sodium, and vitamin
B12 intake. It also was associated with the composition of the gut
microbiota. Specifically, butyrate-producing Faecalibacterium
and Ruminococcaceae were significantly more abundant in the
low-zonulin group (199). These results suggest that controlling
environmental factors using diet and dietary supplements
may affect abnormal LMR to improve intestinal permeability.
Currently, there are no therapies approved by US Food and
Drug Administration or Health Canada to directly target and
restore the abnormal intestinal barrier. The use of prebiotics
and a low-inflammatory diet could be promising as therapeutic
agents to restore a defective mucosal barrier and reduce
intestinal permeability, either directly and/or by restoring gut
dysbiosis (177, 200).

CONCLUSION

Approaches to modulate the gut microbiota in CD toward a
healthier state are a topic of great interest. Despite the great
advances in the gut microbiota field, we are far from fully
uncovering the interrelations between the different bacteria,
fungi, archaea, and viruses and how this is translated into host
health. Current findings imply environmental factors, such as
the Western diet, and some medications that can modulate
directly or indirectly (through increased intestinal permeability)
the intestinal microbiome, hence enabling the initiation of a
cascade of pathophysiological changes. Concurrently, medicine
regulatory authorities and drug developers should extend
their pharmacodynamics and pharmacovigilance guidelines to
incorporate possible drug-microbiota interactions with respect to
safety and mode of action. In contrast, some diets, specifically
Mediterranean-like diets, are suggested to restore eubiosis
of the gut microbiome. Complementing a diet with other
modulatory approaches, such as the addition of immune-
modulating probiotics and prebiotics may improve the clinical
efficacy and suppress chronic inflammation. Similarly, FMT has
the potential to induce profound changes in the global gut
community, thus rigorous safety and technical implementations
are a prerequisite for a successful application in CD. Given the
complexity of CD, it is crucial that future research focuses on
the nuances of personalizedmedicine to recommend individually
tailored care plans regarding therapeutics and nutraceuticals
to prevent or delay the onset of Crohn’s disease or reduce
disease severity. Such knowledge in this rapidly evolving field
is also important for clinicians and translational scientists
to incorporate these microbiota-altering adjunct therapies
into CD treatment options, along with awareness of the
limitations of these therapies at this time, until more research
is performed.
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