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TheVirtualBrain, an open-source platform for large-scale network modeling, can be
personalized to an individual using a wide range of neuroimaging modalities. With the
growing number and scale of neuroimaging data sharing initiatives of both healthy
and clinical populations comes an opportunity to create large and heterogeneous sets
of dynamic network models to better understand individual differences in network
dynamics and their impact on brain health. Here we present TheVirtualBrain-UK
Biobank pipeline, a robust, automated and open-source brain image processing
solution to address the expanding scope of TheVirtualBrain project. Our pipeline
generates connectome-based modeling inputs compatible for use with TheVirtualBrain.
We leverage the existing multimodal MRI processing pipeline from the UK Biobank
made for use with a variety of brain imaging modalities. We add various features and
changes to the original UK Biobank implementation specifically for informing large-
scale network models, including user-defined parcellations for the construction of
matching whole-brain functional and structural connectomes. Changes also include
detailed reports for quality control of all modalities, a streamlined installation process,
modular software packaging, updated software versions, and support for various
publicly available datasets. The pipeline has been tested on various datasets from
both healthy and clinical populations and is robust to the morphological changes
observed in aging and dementia. In this paper, we describe these and other pipeline
additions and modifications in detail, as well as how this pipeline fits into the
TheVirtualBrain ecosystem.

Keywords: magnetic resonance imaging, structural connectivity, functional connectivity, connectome-based
modelling, large-scale networks

INTRODUCTION

Neuroimaging data sharing initiatives have expanded substantially in the last decade. Multimodal
data collection initiatives like the Human Connectome Project (HCP; Van Essen et al., 2013), UK
Biobank (Sudlow et al., 2015), and Alzheimer’s Disease Neuroimaging Initiative (ADNI; Mueller
et al., 2005), among others, allow for promising new avenues of neuroscientific research that
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connect different scales of measurement across large samples.
While many efforts are being made to analyze these large datasets
to better understand the inner workings of the brain and,
specific to neurological disorders, identify effective biomarkers
of disease, their potential for creating large and heterogeneous
sets of personalized generative models is not yet fully realized.
TheVirtualBrain (TVB) is an open source software platform for
large-scale network modeling (Sanz Leon et al., 2013; Sanz-
Leon et al., 2015), where models can be personalized to an
individual using a wide range of neuroimaging modalities.
Creating personalized models in TVB from large multimodal
neuroimaging datasets will allow us to not only better understand
individual differences in network dynamics but also allow for
the interrogation of mechanisms of disease across large and
heterogeneous samples.

For modeling large-scale brain networks, TVB requires,
as input, a structural connectivity matrix that represents the
anatomical wiring of the brain. In humans, this is often
derived from anatomical (T1w) and diffusion-weighted magnetic
resonance imaging (dMRI) tractography and specified as the
long-range connections between brain regions of interest (ROIs).
Optional inputs for TVB models include the cortical surface
for surface-based models (e.g., Spiegler et al., 2016), and
functional data (e.g., BOLD-fMRI responses, M/EEG activity,
functional connectivity) for model input (e.g., Schirner et al.,
2018) or parameter fitting (e.g., Shen et al., 2019a), parcellated
into the same ROIs as the structural connectivity. A software
pipeline for processing large datasets for TVB, then, would
ideally be automated and able to preprocess multiple imaging
modalities into a set of matching parcellated inputs for TVB.
Existing popular MRI processing pipelines include fMRIPrep
for anatomical and fMRI data (Esteban et al., 2019), and HCP’s
Minimal Preprocessing Pipeline for anatomical, fMRI and dMRI
data (Glasser et al., 2013). HCP’s pipeline is especially well-
suited for higher resolution images and relies on the FreeSurfer
software package (Fischl, 2012) for working with the cortical
surface. An existing empirical data processing pipeline already
exists for processing anatomical, fMRI and dMRI data for
TVB inputs, and also relies on FreeSurfer-generated surfaces
(Schirner et al., 2015).

Data re-use of publicly-available datasets offers great promise
for improving both accessibility and replicability. Within the
scope of connectome-based modeling, these data also present
the opportunity to generate models that capture a population-
level understanding that no single empirical dataset can offer.
However, considerations for data processing and analysis of
data acquired using older protocols and in special populations
are warranted. For example, a user may wish to avoid the
projection of lower resolution data (e.g., fMRI) to cortical surface
vertices (Alfaro-Almagro et al., 2018). With data from aging
and clinical populations, FreeSurfer tissue-class segmentations
can also be inaccurate and may require manual intervention
(McCarthy et al., 2015; Henschel et al., 2020; Srinivasan et al.,
2020), something that is not reasonably feasible with large
samples. Moreover, with automated processing, a quality control
(QC) workflow that detects processing inaccuracies is also
needed. This is especially important for aging and clinical

datasets where inaccuracies in preprocessing MRI data are
common due to differences in brain morphology and image
contrast. The HCP pipeline can be used with an fMRI QC
pipeline that computes summary statistics to capture signal
quality and subject motion of fMRI scans (Marcus et al.,
2013). QC of other imaging modalities (e.g., T1w, dMRI)
processed with the HCP pipeline relies on extensive manual
inspection of raw and processed images. MRIQC (Esteban
et al., 2017) is an fMRIPrep-compatible software package
that computes image-based metrics for raw or minimally-
processed T1w and fMRI data. It outputs a set of HTML-
based reports of the individual and group-wise summary
metrics to allow identification of outlier images. MRIQC also
offers an automated pass-fail classification of T1w images.
These existing tools, however, do not allow for identification
for common preprocessing errors such as poor tissue-class
segmentation, and poor registrations to templates and across
modalities. Often, these errors are detected via detailed manual
QC but the visual inspection of hundreds to thousands of
subject’s processed multi-modal data derivatives is unfeasible
and a streamlined QC workflow at the scale of such large
datasets is needed.

The UK Biobank offers an alternative multi-modal MRI
(anatomical, fMRI, dMRI, susceptibility-weighted MRI)
processing pipeline that mostly relies on tools from the FMRIB
Software Library (FSL; Jenkinson et al., 2012) and maintains
images in volumetric space. The pipeline is fully automated, built
to process the very large and longitudinal UK Biobank sample of
aging individuals. It generates a number of image-based metrics
of raw and processed intermediates, mostly from their structural
preprocessing sub-pipeline. Referred to as “Imaging-Derived
Phenotypes,” these metrics were used for automated QC of the
large UK Biobank aging sample. Here, we describe an extension
of the UK Biobank pipeline that addresses the expanding
scope of TheVirtualBrain project. The extension includes the
generation of matched structural and functional connectivity
data based on a user-defined brain parcellation, expanded
capability for additional MRI modalities and manufacturers,
additional preprocessing considerations for aging data (e.g.,
age-specific templates), an expanded number of image-based
metrics for fMRI and dMRI, and the addition of new metrics for
structural and functional connectivity. We have also developed
an extensive new HTML-based QC report for quick assessment
of raw, intermediate and processed outputs, and containerized
the pipeline to maximize portability and ease of installation.
The pipeline supports data from aging and neurodegenerative
populations, and has been tested on a number of different
datasets including multi-modal MRI data from the Cambridge
Centre for Ageing and Neuroscience study (Cam-CAN; Taylor
et al., 2017) as well as the ADNI3 study (Weiner et al., 2016).
Finally, in keeping with TheVirtualBrain’s commitment to the
FAIR guiding principles (Wilkinson et al., 2016) and open
science practices, our pipeline is open source and compliant with
the Brain Imaging Data Structure (BIDS) standard (Gorgolewski
et al., 2016). Below, we describe the software and methodological
modifications and additions we made to the original UK Biobank
pipeline, highlight the new QC pipeline and HTML report, show
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some usage examples, and discuss future work and integrations
with TheVirtualBrain.

METHOD

We refer to our pipeline as TheVirtualBrain-UK Biobank (or
TVB-UKBB) pipeline. It is built from a fork of the UK Biobank
pipeline,1 which has been previously described (Alfaro-Almagro
et al., 2018). The UK Biobank pipeline processes a variety of
MRI modalities but, for the purposes of creating TVB inputs,
we focused on modifying and extending the existing structural
(T1w, T2 FLAIR), functional (resting-state, task), and diffusion-
weighted MRI sub-pipelines. The processing of other MRI
modalities (e.g., susceptibility-weighted imaging) in the TVB-
UKBB pipeline remain unaltered and untested.

Figure 1 shows the general workflow of the whole pipeline,
its sub-pipelines, and their outputs. The pipeline accepts MRI
data in both raw DICOM and reconstructed NIfTI formats, and
data may be organized into any directory structure, including
BIDS. The major output of the structural MRI pipeline is the
user-defined parcellation registered to the subject’s T1w image.
The registered parcellation is used by both the functional and
diffusion MRI sub-pipelines to define ROIs for computing
average regional timeseries and connectivity measures for TVB
inputs. Following the completion of the functional and diffusion
MRI sub-pipelines, an “IDP” pipeline computes image-based
metrics for all modalities. Finally, our newly developed QC
pipeline generates a comprehensive HTML-based report for
manual quality assurance procedures.

Structural Sub-Pipeline
Our pipeline largely retains the structural (T1w, T2 FLAIR)
preprocessing steps from the UK Biobank pipeline (Alfaro-
Almagro et al., 2018). These include brain extraction and
non-linear registration to the MNI152 standard-space T1
template, defacing, bias correction, and tissue-class segmentation
(Figure 2). Processing of T2∗ images (brain extraction,
registration to MNI152 and T1w, bias correction) has been added.
Other major modifications and additions to the structural sub-
pipeline are outlined below.

Parcellation
To support connectome-based modeling in TVB, our additions
to the structural sub-pipeline allow users to create connectomes
from T1w, dMRI, and resting-state fMRI data by specifying
a brain parcellation of their choice. Currently, our pipeline
supports parcellations defined on the MNI152 1mm template.
For ease, we include three different parcellations in our
repository. Two are combinations of the Schaefer cortical
(Schaefer et al., 2018) with either the Tian subcortical (Tian
et al., 2020) or Harvard-Oxford subcortical (Frazier et al., 2005)
parcellation and the third is the Regional Map parcellation
(Bezgin et al., 2017). The Schaefer-Tian parcellation is offered
at three different scales of granularity and, if the user wishes,

1https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1

other scales can be created from the parcellations shared on the
respective GitHub repositories. A tab-separated look-up table for
the parcellation that specifies image labels and label names is
required. The parcellation is registered to the T1w image using
the warps from the non-linear registration of the template to T1w.

Segmentation
In both healthy older adult and neurodegenerative samples,
accurate tissue classification using T1w images is hindered
by decreasing image contrast with age (Bansal et al., 2013).
Additional difficulties in T1w tissue classification arise from the
presence of white matter pathology, where white matter lesions
become misclassified as gray matter (Levy-Cooperman et al.,
2008). Since tissue classification is a vital part to defining accurate
ROIs for both structural and functional connectivity, we have
implemented a number of modifications to the segmentation
procedure to improve ROI assignments. We derive an initial
image segmentation following the UK Biobank’s procedure using
FSL’s FAST toolbox. We then refine the gray matter subcortical
segmentation by adding the outputs of FSL’s FIRST toolbox (an
object model-based segmentation and registration tool) to the
gray matter mask.

To address inaccuracies in the gray matter mask due to
the presence of WM pathology, we have implemented two
alternative methods that may be used depending on available
image modalities. The first method, if T2 FLAIR images are
available, uses the outputs of the WM lesion classification (FSL’s
BIANCA) to exclude any misclassified voxels from the gray
matter mask and add them back to the white matter mask. The
second method is an option for when T2 FLAIR images are
not available. In these cases, we use age-specific image classes
(Fillmore et al., 2015) as tissue priors. T1w images from adults
aged 40 or over are registered to the template for their age decile
(e.g., 40–49 years, 50–59 years, etc.) while subjects aged under 40
are registered to the FSL-distributed tissue priors. These template
space-registered T1w images are then segmented using the set
of matching age-specific priors. Segmented images are registered
back to T1w space. Age-specific templates are provided up to the
80s age decile. Subjects older than 89 years are registered to the
80–84 years template.

Defining Regions of Interest for fMRI and dMRI
Sub-Pipelines
The user-provided parcellation is registered to the T1w image and
the gray matter mask is labeled with ROI indices. The labeled gray
matter volume serves as input to the functional MRI sub-pipeline.
The white and gray matter segmentations are both used to create
the gray matter–white matter interface for dMRI tractography.
This interface consists of voxels of white matter that are adjacent
to gray matter and, when labeled, will serve as the seed and target
masks for tractography in the diffusion MRI sub-pipeline.

Functional Magnetic Resonance Imaging
Sub-Pipeline
The fMRI sub-pipeline processes both resting-state- and
task-fMRI data (Figure 3). The processing of both data types
by the UK Biobank pipeline relies on FSL’s FEAT toolbox.
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FIGURE 1 | General workflow of the TVB-UKBB pipeline. The main imaging sub-pipelines of interest for the current paper are shown (structural in green, functional in
red, and diffusion in purple). A TVB-compatible .zip file (TVB Inputs) is created from the relevant outputs of the imaging sub-pipelines. The “IDP Pipeline” collects
image-based metrics from raw, intermediate and processed outputs across imaging sub-pipelines and makes them available for analysis. The final step of the
pipeline is the generation of the QC report.

As best practices for preprocessing of fMRI data are both
dataset-dependent and constantly evolving (Uddin, 2017),
the pipeline allows users flexibility on selecting the right
preprocessing methods for their needs. Users may specify
their preferences, which can include brain extraction, motion
correction via realignment of fMRI images (MCFLIRT), slice
timing correction, spatial smoothing, intensity normalization,
and temporal filtering. Registration to the T1w image and
MNI152 template is performed. For resting-state fMRI
data, automated classification and removal of noise artifacts
is performed using FMRIB’s ICA-based Xnoiseifier (FIX)
(Griffanti et al., 2014).

We have modified the UK Biobank pipeline to now accept an
arbitrary number of fMRI sessions. Other major additions and
modifications are described below.

Field Map Correction
The UK Biobank pipeline performs geometric distortion
correction for the unwarping of EPI (e.g., fMRI and dMRI)
images. This correction requires a reverse phase-encoded B0
dMRI image for estimating the field map, which is not always
available. To support more “traditional” field map acquisitions
for EPI distortion correction, such as those in the Cam-CAN

dataset, we have implemented the option for dual echo-time
gradient distortion correction using FSL’s FUGUE toolbox.

Resting-State fMRI
We have updated the pipeline’s FIX version from 1.063 to
1.06.15. Although FMRIB provides a default trained-weights file,
and we provide trained-weights files for both the ADNI3 and
Cam-CAN datasets, the classifier performs best when trained
with the user’s specific dataset. The most notable addition to
resting-state fMRI processing is the replacement of group-ICA-
based detection of resting-state networks with the parcellation of
the resting-state fMRI data to accommodate connectome-based
modeling. Following denoising, the parcellation output from the
structural sub-pipeline (Figure 2) is registered to a reference
resting-state fMRI volume and the average BOLD response across
voxels is computed for all ROIs (i.e., ROI time series). The
Pearson correlation coefficient between all ROI time series is also
computed to obtain a measure of functional connectivity.

Task-Based fMRI
In our implementation of the fMRI sub-pipeline, task-based
fMRI data are minimally preprocessed but not further analyzed.
Users may choose to re-implement a GLM-based analysis using
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FIGURE 2 | Structural sub-pipeline workflow. Original components of the UK Biobank pipeline with few or no modifications are in green; pipeline components with
major changes or additions are indicated in white; and new components are indicated in orange. Dotted lines indicate components that are included in the QC
report. Black lines indicate components that are used downstream by other sub-pipelines or included in “TVB Inputs.” GM, gray matter; WM, white matter.

FIGURE 3 | fMRI sub-pipeline workflow. Original components of the UK Biobank pipeline with few or no modifications shown in red; pipeline components with major
changes or additions shown in white; and new components shown in orange. Dotted lines indicate components that are included in the QC report. Black lines
indicate components that are included in the TVB Inputs.

FEAT or, alternatively, they may take the preprocessed task-fMRI
data and apply other analytic methods (e.g., Partial Least Squares;
McIntosh and Lobaugh, 2004).

Diffusion Sub-Pipeline
Processing steps for diffusion imaging data that we have retained
from the UK Biobank pipeline include correction of eddy
currents and head motion (EDDY), diffusion tensor image
fitting (DTIFIT) for tract-based analysis (TBSS), and multi-fiber
orientation modeling (BEDPOSTX) (Figure 4). New features and
additions to the diffusion sub-pipeline are described below.

Distortion Correction With Synthesized B0
Our first addition to the diffusion sub-pipeline was the
integration of B0 field estimation for unwarping data that

lack reverse phase-encoded images using the Synb0-DisCo tool
(Schilling et al., 2019). This tool uses a deep learning approach to
create a synthetic undistorted B0 image from a T1w image. The
synthetic undistorted B0 is used as input to FSL’s TOPUP toolbox
for dMRI distortion correction. In our pipeline, users have the
option to implement this tool to improve registrations between
the T1w and dMRI images.

Tractography
The other major addition to the dMRI sub-pipeline was the
replacement of the UK Biobank tractography approach with one
that takes as input the user-defined parcellation for connectome
construction. In our approach, the gray matter–white matter
labeled interface is registered to the distortion-corrected B0
image. This interface is used to define seed and target ROI masks.
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FIGURE 4 | Diffusion sub-pipeline workflow. Original components of the UK Biobank pipeline with few or no modifications shown in purple; pipeline components
with major changes or additions shown in white; and new components shown in orange. Dotted lines indicate components that are included in the QC report. Black
lines indicate components that are included in the TVB Inputs.

The gray matter mask is also registered to the B0 image and used
as an exclusion mask. Probabilistic tractography is performed
using FSL’s PROBTRACKX toolbox to generate a matrix of
the streamlines between all ROIs. The structural connectivity
“weights” matrix is then computed by taking the streamlines
matrix and dividing it by the total number of streamlines that
were successfully sent from the seed ROIs. This weights matrix
therefore encapsulates the probability of connection between
all ROIs. “Distance” matrices (i.e., estimated tract lengths) are
also obtained. Since directionality of fiber tracts cannot be
inferred from dMRI tractography, both the weights and distance
matrices are symmetrized. No other post-processing of structural
connectivity, including thresholding, is performed.

Compatibility With TheVirtualBrain
Our pipeline generates inputs for connectome-based
modeling, with file formats that are directly compatible
with TheVirtualBrain (TVB2) (Supplementary Figure 1).
These include the structural connectivity weights and tract
lengths matrices, as well as the ROI time series and functional
connectivity matrix from resting-state fMRI scans. ROI location
information such as hemisphere or subcortical localization and
centroid coordinates are also included. Toward the end of the
pipeline, these TVB-input files are given the appropriate file
names, placed in the correct folder structure, and compressed
into a zip file that can be accepted by TVB without further
processing. This zip file can be found in the top-level directory
for each processed subject. The TVB website3 has a variety of
resources, including sample code, videos, and documentation,

2http://thevirtualbrain.org/
3https://thevirtualbrain.org/tvb/zwei/brainsimulator-help

available for use with connectivity data such as those generated
by the TVB-UKBB pipeline.

Imaging-Derived Phenotypes
The original UK Biobank pipeline generates various image-
based metrics, or imaging-derived phenotypes (IDPs), for
evaluating the characteristics of input images, pipeline processing
outputs, and derivative files. These IDPs were intended to be
a quantitative measure of the quality of processed subjects
but mostly describe structural sub-pipeline processing and
outputs. To better capture modalities of interest for connectome-
based modeling, we have developed an additional 75 unique
IDPs that describe fMRI and dMRI processing as well
as connectivity outputs (Supplementary Table 1). Notable
examples include IDPs for assessing the alignment of various
modalities to T1 space, the temporal signal-to-noise ratio (tSNR)
in resting-state fMRI, and summary statistics for functional
and structural connectivity. In conjunction with the original
IDPs, these new metrics were developed for the purpose of
flagging subjects whose outputs’ quality is poor, either due to
acquisition errors, subject anomalies, or pipeline errors and
insufficiencies.

We performed a manual QC of 140 (70 female, 70 male)
Cam-CAN subjects using our QC reports (described below)
to enable assessment of the utility of our newly developed
IDPs for quantifying processing errors. The subjects were
pseudorandomly selected, balanced for sex and 20 were chosen
from each age decile to cover the entire age range of the
dataset. Two experienced subject raters (DS, AK) scored the
processing intermediates and outputs. These graders gave
each subject a score along a 5-point scale for each modality
(ranging from excellent [1] to poor [5]) and also gave each
subject a pass/fail classification based on the integrity of
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the TVB inputs as a whole. A fuller description of the
QC procedure and example QC report usage for the Cam-
CAN data is presented in the Section “Results.” We used a
multivariate statistical approach, partial least squares analysis
(Krishnan et al., 2011), to identify a set of latent variables
that represent the maximal covariance between the QC ratings
and the image-based metrics outputted from the pipeline.
First, the covariance between the two sets of variables was
computed. Singular value decomposition on this cross-block
covariance was then performed to produce latent variables, each
containing three elements: (1) a set of weighted “saliences”
that describe a pattern of IDPs; (2) a design contrast of
QC ratings that express their relation to the saliences, and
(3) a scalar singular value that expresses the strength of
the covariance. The mutually orthogonal latent variables are
extracted in order of magnitude, with the first latent variable
explaining the most covariance between the IDPs and QC
ratings, the second LV the second most, and so on. We
report the relative percentage of total cross-block covariance
explained by each latent variable, where the sum of this
percentage across all latent variables is 100. The statistical
significance of each latent variable was assessed with permutation
testing: 1,000 permutations shuffled subjects’ QC ratings without
replacement while maintaining their IDP assignments. This
resulted in 1,000 new covariance matrices which were each
subjected to singular value decomposition to produce a null
distribution of singular values. The reliability with which each
IDP expressed the differences across QC ratings was determined
with bootstrapping: 500 bootstrap samples were created by
resampling subjects with replacement within each rating class.
This resulted in 500 new covariance matrices which were, again,
subjected to singular value decomposition. The 500 saliences
from the bootstrapped dataset were used to build a sampling
distribution of the saliences from the original dataset. The
bootstrap ratio for a given IDP was calculated by taking the ratio
of the salience to its boostrap-estimated standard error. With
the assumption that the bootstrap distribution is normal, the
bootstrap ratio is akin to a Z-score and corresponding saliences
were considered to be reliable if the absolute value of their
bootstrap ratio was ≥ 2.

Quality Control Report
Typical manual QC requires users to manually search for
NIfTI files, load them into visualizer GUIs like FSLeyes, and
adjust various parameters for each overlay. To streamline
these procedures, our pipeline generates a Quality Control
(QC) Report for each subject. The QC sub-pipeline runs at
the end of the TVB-UKBB pipeline and leverages derivative
data to generate brain image overlays, data visualization
plots, and summary tables. These assets are wrapped in
an offline HTML page that can be compressed into a
portable, small, and standalone archive using a script included
in the pipeline. This standalone report may be viewed
on any browser and requires no access to the original
subject’s files.

Our QC Report allows users to view and interact with 17 preset
key QC overlays immediately upon opening the HTML report.

Our QC Report offers the ability to zoom, pan, switch between
planes of view, inspect different analyses, and toggle visibility of
layers in brain overlay images. These controls are also assigned
to various hotkeys, allowing for browsing without a mouse and
further expediting the QC process for more experienced users.
Additionally, each brain overlay shows an array of 18 slices for
each orientation, saving time typically spent seeking slices in
visualization software. Especially when considering that multiple
different overlays need to be generated for QC and certain
overlays may need to be revisited more than once, our HTML
Report can economize users’ time and effort in the QC process.

The QC Report features a page for each sub-pipeline and
multiple analyses on each page, corresponding to various key
steps of the sub pipeline. For instance, brain image overlays,
generated using FSL’s FSLeyes and SLICER, are intended to offer
users qualitative assessment of brain extraction, segmentation,
registration, and labeling for multiple modalities (Figure 5). Data
visualization plots are also included to simplify the verification
of TVB-inputs. IDP tables offer a simple interface for accessing
metrics and assessing the quality of a subject’s processing. Within
these tables, rows of IDPs are color-coded green or red (pass or
fail) depending on their values relative to user-defined thresholds.
A more detailed summary and explanation of QC analyses
included in the report can be found in the Supplementary
Tables 2–4. At the bottom of several QC Report pages, there are
multiple file path links to the depicted overlay image as well as
its source NIfTI image files. If more detailed investigation into a
processed subject is required, then users have the option to load
these files and perform QC with a NIfTI visualizer.

As part of the QC sub-pipeline development, we included
FSL’s EDDY QC toolbox for generating automated reports of
within-(EDDY QUAD) and across-(EDDY SQUAD) subject QC
assessments. Reports automatically generated by these tools,
along with others from FEAT and MELODIC can be found in
our QC Report. Notably, our QC Report reconstructs the existing
MELODIC ICA report and combines it with classified ICA
outputs from FIX into a single MELODIC page. This page groups
signal and noise labeled components for quick assessment of FIX
performance and allows immediate access to every component’s
analyses through a set of dropdown menus and optional hotkeys.

The QC Report is portable, at ∼180 MB for a compressed
QC Report compared to ∼2 GB to ∼5 GB for a compressed
full subject for the datasets we have tested. This enables faster
and lower-overhead report sharing and collaboration without
needing to share potentially sensitive raw or intermediate data.
Furthermore, viewing the report requires no installations and
it can be run on any operating system and modern browser.
The lightweight and portable nature of our report is especially
impactful for users who work on headless servers and may need
to download files for visualization.

The Brain Imaging Data Structure
During processing, we retain and mimic the directory structure
and file organization of the UK Biobank pipeline. We extend the
UK Biobank’s BIDS conversion script, which organizes pipeline
output files in a manner outlined in a filename conversion
dictionary. Our extension updates the conversion dictionary with
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FIGURE 5 | Screenshot of the Anatomical page of a subject’s QC report. Analysis [e.g., extraction, registration (shown), segmentation] and image view can be
navigated with mouse or keyboard.

BIDS-compliant filenames for new TVB-UKBB intermediate
and output files. This ensures interoperability of our pipeline’s
outputs, such that the derivative and raw data files for each

subject are named, documented, and organized in a directory
structure in accordance with BIDS v1.6.0. Additionally, we have
introduced a reversal feature to the BIDS conversion script,
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allowing BIDS-converted pipeline outputs to be reverted to the
original TVB-UKBB file organization to facilitate reprocessing
and reproducibility.

Developed Software
The pipeline has been constructed principally with Linux
compatibility in mind. The software utilizes a Python backbone
which brings together various BASH, MATLAB, and R
scripts to process data moving through the pipeline. This
software environment is encapsulated largely in a conda
environment which can be used standalone or inside a supplied
Singularity container (Kurtzer et al., 2017). The installation is
straightforward and self-contained, with minimal dependencies
on external applications after configuration. The Singularity
container enables users to stage and run the pipeline in myriad
high-performance computing environments and to leverage the
batching capabilities of schedulers like SLURM and SGE.

GitHub Repository and Documentation
The source code for our pipeline is hosted on GitHub.4 Several
versions of the pipeline exist, each catering to different dataset
needs and specifications. These versions are stored as separate
branches on the repository. For example, branch Cam-CAN
is available for pipeline users who want to process Cam-CAN
subjects or datasets similar in specification to the Cam-CAN
dataset using the Singularity container. ADNI3 is similar and is
also the basis for the main branch as it is likely compatible with
the widest range of datasets that the pipeline would be used with.

Extensive documentation on the TVB-UKBB pipeline is
available on the Wiki page of our GitHub repository. This
wiki includes information on the methodological components
of the pipeline as well as installation, troubleshooting, QC
interpretation, usage examples, etc.

A sample subject from the The Amsterdam Open MRI
Collection (Snoek et al., 2021), containing inputs and processed
outputs, is included in the repository so users may test and
validate their own installations.

Installation and Singularity Container
Due to the high degree of complexity involved in the UK
Biobank pipeline installation process, significant efforts were
made to streamline installation and configuration. Singularity
is a core component of these streamlining efforts due to its
use in high performance computing environments as well as its
ability to encapsulate complex and difficult-to-configure software
stacks. Users may wish to install our pipeline with or without
the Singularity container. All dependencies are included in the
Singularity container, with the exception of FreeSurfer, AFNI,
and ANTS. FSL and CUDA 9.1 were installed and configured
in the container because GPU-enabled versions of BEDPOSTX,
EDDY, and PROBTRACKX all require CUDA 9.1. MATLAB
compatibility is packaged into the container using the MATLAB
Compiled Runtime to eliminate the need for a MATLAB license.

4https://github.com/McIntosh-Lab/tvb-ukbb

Technical Features
The pipeline features CPU-only and CUDA-enabled versions.
The CUDA-enabled version allows the FSL toolkit to take
advantage of NVIDIA GPUs to drastically reduce runtimes of
the BEDPOSTX, EDDY, and PROBTRACKX programs and cut
the overall pipeline runtime significantly. If NVIDIA GPUs are
not available, users can specify the CPU-only version which
will run these FSL toolkits serially. To shorten the runtime and
memory requirements of probabilistic tractography on CPU, we
also include a parallelized implementation of PROBTRACKX.

Due to the variety of programming languages and heavy
use of BASH, efforts were made to simplify configuration
of pipeline parameters for end-users. The result is a single
configuration file where the vast majority of environment
variables for pipeline configuration and customization are
specified. Parameters like the location of a FreeSurfer installation,
specification of parcellation, etc. are set in this configuration file
and is sourced prior to running the pipeline.

RESULTS

Usage
The pipeline currently supports several different datasets,
including data from Cam-CAN and ADNI3, and can be
customized with minimal effort to support novel datasets. Here
we demonstrate usage of the TVB-UKBB pipeline using an
example subject from the Cam-CAN dataset (Taylor et al., 2017),
which includes T1w, T2∗, resting-state and task-fMRI, field maps,
and dMRI from ∼650 adults aged 18–99. In these examples, we
used a Schaefer-Tian parcellation consisting of 400 cortical and
20 subcortical regions.

As we have not removed any features from the UK Biobank
implementation, UK Biobank subjects should still work when
processed with the TVB-UKBB pipeline. However, we were not
able to validate this as we did not have access to the UK Biobank
dataset at the time of this writing.

The key TVB inputs generated by the pipeline can be
visualized and analyzed with ease. Figure 6 shows the pipeline
outputs of interest for connectome-based modeling for an
example subject. These include the structural connectivity
weights and tract lengths matrices, and the resting-state BOLD-
fMRI responses and functional connectivity matrix.

Quality Control Procedures and Quality
Control Report Usage
The QC reports allow users to quickly inspect pipeline
intermediates and outputs. A detailed manual QC of a single
subject without the QC report previously took our experienced
raters (DS, KS) up to 30 min to complete, but a subject assessed
with the QC report now takes an average of ∼5 min. Here
we briefly outline our QC procedures for aging (Cam-CAN)
and neurodegenerative (ADNI3) imaging data and provide some
examples of common preprocessing errors detected using the
QC reports. We describe the QC procedures in the order that
the pipeline processes the data, but in practice we start QC
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FIGURE 6 | An example subject’s set of pipeline outputs for connectome-based modeling. These include (A) a weights matrix and (B) a tract lengths matrix from
dMRI processing that capture the subject’s structural connectivity; (C) a functional connectivity matrix of Pearon correlation coefficients, and (D) the region of interest
(ROI) time series from resting-state fMRI processing. The structural connectivity matrices are presented on a log scale to enhance readability. Ten ROIs were chosen
randomly for presentation in panel (D).

investigations with the final outputs of the pipeline (structural
and functional connectivity and functional responses) and work
upstream through the QC report to quickly pinpoint the source
of errors in processed subjects.

Structural Sub-Pipeline Quality Control
Examination of the structural pipeline includes the raw
T1w image and the outputs of T1w brain extraction,
segmentation, and registration to the MNI template. The
reconstructed T1w image is checked for the presence of
major motion or other visible artifacts. The T1w brain mask
is then inspected and inclusion of dura along the lateral
boundaries is noted.

The labeled and unlabeled segmentation outputs are
also examined, and the accuracy of tissue classification
(especially the delineation of gray and white matter) is

assessed. Misclassification of non-brain tissue (i.e., inclusion
in gray and white matter segmentations) is also noted. For
older adults in the Cam-CAN sample (≥50 years), we also
checked if white matter lesions were misclassified as gray
matter during segmentation. This was supported by also
inspecting the T2∗ image in conjunction with the T1w.
Figure 7 shows an example of white matter lesions being
classified as gray matter. In cases with high WML loads,
this will be impossible to avoid, and QC involves deciding
to what extent the misclassification impacts tractography,
namely the placement of seed and target ROIs, which will
be covered below.

Finally, the registrations of the structural images to the
MNI template are also inspected. Poor brain extraction and/or
significant brain atrophy can affect the quality of the registration.
Since the parcellation is defined on the MNI template, poor
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FIGURE 7 | Example of white matter lesion misclassification as gray matter. (A) The labeled gray matter image is shown on the T1w. (B) T2∗ image from the same
older adult subject indicating a significant volume of white matter lesions that are also notable on the T1w. Although performing segmentation on the T1w image
using age-specific tissue priors is largely successful despite the large white matter lesion volume, some misclassification remains [white arrows in panel (A)]. Images
reproduced from the example subject’s QC report.

registrations can substantially hinder the parcellated downstream
outputs from both the functional and diffusion sub-pipelines.

Similar procedures are followed for examining T2∗ images.
For T2 FLAIR images, like those in the ADNI3 dataset, lesion
classification outputs from BIANCA are also examined.

Functional Sub-Pipeline Quality Control
For the purposes of creating modeling inputs for TVB, we focus
here on QC of the processing of resting-state fMRI data. For
these data, the hyperlinked FEAT report is used to check the
field map registration and correction, the relative motion of
the resting-state fMRI scans and their registrations to both the
T1w and MNI152 template. Signal dropout in susceptible areas
such as the temporal pole or orbitofrontal cortex, if substantial,
is also noted. The MELODIC page of the QC report is used
to examine the components classified as signal to determine
whether substantial artifactual components were included post-
processing.

The functional connectivity matrix is visually inspected in the
QC report and is checked for the presence of strong homotopic

connectivity, clear delineation of intra- and inter-hemispheric
quadrants, a sensible range of correlation values and minimal
“banding” which can reflect motion artifacts or misregistration
of the parcellation. The QC report allows users to examine the
matrix in conjunction with a carpet plot of the cleaned ROI
time series and the MCFLIRT motion plots to determine whether
residual motion artifacts impact the functional connectivity
matrix. See Figure 8 for an example of a bad resting-state fMRI
processed outcome.

Diffusion Sub-Pipeline Quality Control
The QC procedure for the diffusion sub-pipeline starts with
examining the undistorted B0 image to check the quality of
distortion correction and the presence of major artifacts. The
brain mask calculated from the distortion corrected B0 is
also checked as it is used to exclude non-brain tissue from
downstream diffusion processing. Brain masks that are too
conservative are noted as they can impact registration and
placement of ROIs for tractography. The principle orientations
of the modeled fibers are also inspected to confirm that
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FIGURE 8 | An example of poorly processed resting-state fMRI. (A) Functional connectivity matrix and (B) distribution of functional connectivity show large number
of strong positive correlations and a compressed range of correlations. (C) Examination of the carpet plot of region of interest (ROI) time series suggests artifacts
remain in fMRI data after cleaning. (D) In the QC report, motion estimations from MCFLIRT are shown alongside the carpet plots for quick assessment. All images
reproduced from the example subject’s QC report.

the b-vectors have been specified appropriately. It is usually
necessary to check the orientations for a single representative
subject per study, but in the case of multi-site studies the
user may wish to check representative subjects from each site.
The registration between the reference B0 image and the T1w
is also examined.

Next, the inputs for tractography are examined. These
include the gray matter exclusion mask, and the seed and
target ROIs that are overlaid on the FA image in the QC
report. Each of these images are checked for accuracy of
their placement. The border of the brain is also inspected
and seeds that are mislocalized to dura or other non-brain
tissue is noted (see Figure 9 for example of poor quality
tractography seed placement). With atrophic cases, poor T1-
MNI template registration can impact the quality of the
tractography within the brain and those with a large white matter
lesion load will have lesions labeled as gray matter which can
cause similar issues.

Finally, the structural connectivity matrices are examined.
This includes the weights matrix, which is displayed with
a logarithmic scale to improve visual assessment, and the
tract lengths matrix. Visual inspection can be aided by the
examination of the distributions of weights and tract lengths.
Extreme sparsity of the connectome is easily detected and

is often apparent in the interhemispheric quadrants of the
matrices (Figure 10).

More examples of well-processed and poorly processed
pipeline outputs can be found in Supplementary Figures 2–9.

Utility of New Imaging Derived
Phenotypes and Other Summary
Statistics
We performed manual QC of 140 Cam-CAN subjects to enable
a preliminary assessment of the utility of existing and newly
developed IDPs and summary statistics. This assessment was
done using a partial least squares analysis of the IDPs with
subjects grouped by the rater’s scores. For the functional sub-
pipeline, this analysis returned one significant latent variable
(Figure 11) showing how IDPs related to head motion,
temporal signal-to-noise ratio, the proportion of signal/noise
components, and the distribution of functional connectivity
values (e.g., center, range, shape) to be reliable indicators of
resting-state fMRI processing quality (p = 0.001, 83.4% cross-
block covariance).

A similar analysis of the diffusion sub-pipeline IDPs resulted
in no significant latent variables. This was likely due to a lack of
variability in the quality of the diffusion processing and structural
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FIGURE 9 | Example of poor quality tractography seed/target placement. The seeds/targets image (blue) as well as the exclusion mask image (yellow) are overlaid
on the FA image. White arrows indicate seeds/targets located in the dura.

FIGURE 10 | (A) An example structural connectivity matrix of poorer quality.
Note the sparsity, especially in the interhemispheric quadrants (top right and
bottom left), which was confirmed by (B) the relatively small distribution of
non-zero weights in the matrix. Upon further examination, the dMRI
registration to T1w was poor, resulting in some tractography seeds and
targets being placed in non-brain tissue. Both images shown are reproduced
from the QC report.

connectivity, where nearly all subjects’ (136/140) diffusion sub-
pipeline outputs were judged by our raters to be either excellent
(1) or very good (2).

DISCUSSION

We have described the development of the TVB-UKBB
pipeline, an open-source, easy to install, automated
multimodal MRI processing solution for generating inputs
for connectome-based modeling that directly interface
with TheVirtualBrain. We have expanded the original UK
Biobank pipeline to accept additional MRI modalities and
data from various manufacturers. Users may now provide
their own parcellation of choice to generate complementary
structural and functional connectivity outputs. We have
also developed a QC report to support the assessment
of pipeline outputs. The pipeline has been containerized
and supports various job schedulers on high performance
compute clusters. We have tested it on both healthy and
clinical populations and added features to improve its
robustness against the morphological changes observed in
aging and dementia.

We developed the TVB-UKBB pipeline with the
processing of aging and neurodegenerative data, such
as those from ADNI (Mueller et al., 2005) and Cam-
CAN (Taylor et al., 2017), in mind. These datasets
present particular challenges such as significant changes
in brain morphology with age and/or disease (i.e.,
brain atrophy) and decreased image contrast, which
can greatly affect registrations to a standard template
and the classification of tissue classes. We addressed
inaccuracies in gray matter classification by either taking
advantage of available T2 FLAIR images for classifying
white matter lesions, or by using age-specific tissue
priors when T2 FLAIR images are not available. Future
developments will include a fuller implementation of
age-specific or, more generally, study-specific templates to
aid registrations.

Our pipeline offers an alternative for generating modeling
inputs to pipelines that rely on working with cortical surfaces.
This avoids the need to project lower resolution data to
high resolution surfaces (Alfaro-Almagro et al., 2018), avoids
manual interventions that might be needed for correcting tissue
segmentations of aging and neurodegenerative data (McCarthy
et al., 2015; Henschel et al., 2020; Srinivasan et al., 2020),
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FIGURE 11 | Partial least squares analysis of functional sub-pipeline IDPs and summary statistics as a function of the functional connectivity QC rating. The analysis
returned a contrast (inset) between good (1 and 2) and bad (4 and 5) scores. The most reliable indicators of a good QC rating included high temporal signal-to-noise
ratios, low relative displacement, a higher proportion of ICA components classified as signal, and Gaussian-like functional connectivity distributions. IDPs and
summary statistics with an absolute value bootstrap ratio > 2 were considered reliable (see Section “Method”), and are indicated in bold.

and avoids the long processing times needed for reconstructing
the cortical surface. It also allows for easier integration of
subcortical region parcels that, until very recently, were not
available on the surface (see Lewis et al., 2022). We added
the ability to perform distortion correction on dMRI data for
datasets without reverse phase-encoded images by adopting
a toolbox that generates a synthetic undistorted B0 image

(Schilling et al., 2019). Tractography methodologies for our
pipeline were chosen based on our previous validation work
comparing probabilistic tractographic outputs to connectomes
derived from anatomical tracer data in macaques (Shen
et al., 2019b). We found this method to produce reasonable
estimates of fiber tract capacities (or “weights”) and fiber tract
lengths. However, like many other reports of probabilistic
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tractography (e.g., Thomas et al., 2014; Maier-Hein et al.,
2017), we also found the method to be susceptible to false
positives, generating connections where there ought not to
be any. There are several thresholding methods to mitigate
the effects of spurious connections (e.g., de Reus and van
den Heuvel, 2013; Roberts et al., 2017; Shen et al., 2019b)
and we leave it to users to decide the method that best
suits their needs.

All of the above considerations were made so that a
greater range of “legacy” datasets could be accommodated
by our pipeline. Although these were all important, we
recognize that cortical surface processing is considered
state-of-the-art because it handles the problem of partial
voluming effects and accommodates spatial smoothing to
increase the signal-to-noise ratio (Brodoehl et al., 2020).
Basic FreeSurfer support is already available as a part of
the UK Biobank pipeline and future in-depth integrations
with our pipeline are planned. GPU-enabled deep learning
implementations, in particular, will be considered because
they are attractive for creating more accurate cortical surface
reconstructions quickly in aging and neurodegenerative data
(Henschel et al., 2020). Given the increasing availability of
GPU processing, this is in line with our efforts to develop
a faster and more consistent pipeline. This type of cortical
surface reconstruction will be especially important for our
future development of M/EEG processing sub-pipelines
where cortical surfaces are needed for computing the
forward solution for source localization. Users may also
wish to use other tractography approaches such as those
that constrain tractography using anatomical priors (Smith
et al., 2012). The modular implementation of our pipeline
allows for these future adaptations to be implemented
with relative ease.

A key component of our pipeline is the development
of user-friendly HTML reports to facilitate QC assessment
and faster subject scoring. With the introduction of
hotkeys, fully navigable pre-generated image overlays, and
re-compilation of FSL reports, our QC Reports make the
novel and essential images generated by the QC sub-pipeline
accessible. Existing reports are also consolidated with these
images into a single, convenient point of access with an
intuitive interface.

To further support QC efforts for large multimodal datasets,
we developed a number of new image-based metrics and
summary statistics for assessing resting-state fMRI and
dMRI processing. The summary statistics, in particular,
capture characteristics of processed data (i.e., connectivity
matrices) that may still reflect residual artifacts that remain
post-processing. For example, high motion indicated by
simple motion related metrics may not warrant exclusion
of a subject because some motion artifacts can be detected
and removed. Post-processing summary metrics related
to the FC can convey information about the successful or
unsuccessful removal of motion artifacts which cannot be
derived from simple motion-related metrics that are typically
available in other QC reports. Image-based metrics from
the UK Biobank’s structural sub-pipeline has proved useful

for training a classifier to detect poorly processed data
(Alfaro-Almagro et al., 2018). Our preliminary assessment
with a partial least squares analysis of our newly developed
metrics suggest that extending the machine learning approach
to include our new downstream metrics could be useful
for automated QC.

We developed our pipeline with the FAIR principles
for data (Wilkinson et al., 2016) and software (Lamprecht
et al., 2019; Katz et al., 2021) management in mind. We
adopt the BIDS neuroimaging standard (Gorgolewski et al.,
2016) for raw data file naming, directory organization and
metadata and extend the standard to the derived data.
The source code is publicly available under the Apache
2.0 License, version controlled and supported by wiki-style
documentation and a discussion board. Its containerization
improves both accessibility and interoperability and its
customization options allow for reuse across different
datasets and research applications. Future iterations of the
Singularity container will include FreeSurfer, AFNI, and
ANTS once a solution to circumvent cloud storage quotas has
been implemented.

Our pipeline generates multi-modal outputs for
connectome-based modeling that are directly compatible
with TheVirtualBrain software package. The high throughput
nature of the pipeline, its robustness against the challenges
imposed by MRI imaging of aging and clinical populations,
and its extended QC capability contribute to the expanding
scope of TheVirtualBrain project. In combination with
the growing availability of datasets that span large
age ranges and different neurological disorders, our
pipeline supports TheVirtualBrain project’s endeavors to
understanding large-scale network dynamics at the level
of the individual.
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