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Abstract: Model-informed precision dosing (MIPD) can aid dose decision-making for drugs such as
gentamicin that have high inter-individual variability, a narrow therapeutic window, and a high risk
of exposure-related adverse events. However, MIPD in neonates is challenging due to their dynamic
development and maturation and by the need to minimize blood sampling due to low blood volume.
Here, we investigate the ability of six published neonatal gentamicin population pharmacokinetic
models to predict gentamicin concentrations in routine therapeutic drug monitoring from nine sites
in the United State (n = 475 patients). We find that four out of six models predicted with acceptable
levels of error and bias for clinical use. These models included known important covariates for
gentamicin PK, showed little bias in prediction residuals over covariate ranges, and were developed
on patient populations with similar covariate distributions as the one assessed here. These four
models were refit using the published parameters as informative Bayesian priors or without priors in
a continuous learning process. We find that refit models generally reduce error and bias on a held-out
validation data set, but that informative prior use is not uniformly advantageous. Our work informs
clinicians implementing MIPD of gentamicin in neonates, as well as pharmacometricians developing
or improving PK models for use in MIPD.

Keywords: gentamicin; TDM; MIPD; neonates; continuous learning; pharmacokinetics; population
pharmacokinetic modeling

1. Introduction

Gentamicin is an aminoglycoside antibiotic used as part of a first-line therapy for
sepsis in neonates [1,2]. Due to its narrow therapeutic index, high inter-individual vari-
ability in pharmacokinetics, and substantial drug exposure-related risks of ototoxicity and
nephrotoxicity [3–7], therapeutic drug monitoring (TDM) is recommended to individualize
dosing and obtain optimal exposure [8]. TDM-guided dosing in neonates is, however,
complicated due to their dynamic development and maturation processes, especially of the
kidneys, where gentamicin is primarily eliminated, and by the limited blood volume of
neonates, which constrains the number of blood samples that can be drawn.

Using model-informed precision dosing (MIPD) in conjunction with TDM holds
particular promise for neonates in that some of this dynamic maturation process and
interindividual variability of this vulnerable patient population can be accounted for using
model covariates. However, MIPD relies on using an adequately predictive population
pharmacokinetic (popPK) model to describe the patient population [9]. Multiple popPK
models for gentamicin in neonates have been published [10–15]. Crcek et al. [16] have
recently compared model structures and assessed dosing recommendations from these
publications. However, to our knowledge, there has not yet been an external meta-analysis
of model predictiveness in a routine clinical care data set, nor any attempts to improve
existing model predictiveness.
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One method of improving model predictiveness for MIPD is continuous learning, in
which an initial model is used in MIPD and then refit as additional data become avail-
able [17–19]. Previous work has shown a 3–13% reduction in error for vancomycin models
using data from only 200 patients [17], and significant improvements in target attainment
for busulfan in a prospective dosing study [18]. Models can be refit using the published
model parameters as an informative prior, or can be fit without a prior, i.e., refit entirely
based on the new collected data. It is not yet clear whether the use of a prior improves
model performance more than a refit on the new data alone.

Here, we investigate the performance of published popPK models for gentamicin in
neonates in routine clinical care data from nine sites in the United States. We refit these
models with and without an informative prior from the published models in a continuous
learning process and evaluate the performance of these refit models against the published
models.

2. Materials and Methods
2.1. Study Population

Routine clinical care data for 788 patients treated at nine sites in the United States
were entered into the InsightRX Nova platform. These nine sites are acute care hospitals or
academic teaching hospitals in California, the Midwest, and the East Coast of the United
States. De-identified data were included in this analysis if the patient was between 0
and 12 weeks old and had at least 1 recorded serum gentamicin concentration. A total
of 313 patients were removed for the following reasons: missing information on serum
gentamicin concentrations, imputed or missing gestational age, gentamicin concentration
measurements during or within 15 min of end of infusion, unrealistic drops in gentamicin
concentration (of 2 mg/L or more within 30 min, indicating a data entry error), or assumed
inaccurate dosing records (e.g., multiple large doses within 10 min). Current weight, serum
creatinine, gestational age, and postnatal age were collected for each patient.

2.2. Population Pharmacokinetic Model Literature Review

A literature review was conducted to identify population pharmacokinetic models
describing gentamicin PK in neonates for clinical use (Figure 1). Models were included in
this analysis if they were: (1) developed on a population closely aligned with the data set
described here [9], i.e., majority neonatal population; (2) developed on a non-specialized
population (i.e., not hypothermic or septic); (3) used routinely collected covariates; (4) de-
veloped in NONMEM; (5) not superseded by a newer model fit; and (6) developed after the
year 2000. The last criteria derives from our experience in implementing and evaluating
over 200 popPK models from the literature, from the estimation methods being more
approximate before 2000 [20], and from the lack of modern consensus on what constitutes
proper model development and diagnostics in models developed before 2000 [21–23].

Clinical practice for gentamicin is to sample at the peak and at the trough, commonly
targeting peaks between 8 and 12 mg/L and troughs less than 1 mg/L for optimal ther-
apy [8]. Dose adjustments are made using samples paired or grouped in this way. To
best capture clinical practice, model predictions were evaluated iteratively: the first group
of gentamicin levels were predicted using population estimates; subsequent levels were
grouped similarly and predicted prospectively, using all preceding samples to estimate
the individual’s PK parameters, and then using these parameters to predict the grouped
sample (see Figure 2, purple box). A group of gentamicin levels was defined as (a) a peak
and a trough during the same dosing interval, or (b) a trough and peak on either side of a
dose, or (c) a single sample that was not collected close in time with another sample.
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Figure 2. Diagram depicting the experimental design of this study. Six population pharmacokinetic
models from the literature were evaluated (purple box). The three models with lowest error and bias
were retrained with and without priors (teal box) and evaluated on a held-out test data set.

2.3. Population Pharmacokinetic Model Refitting and Evaluation

Patients were randomly assigned into the training (70% of data) or the testing (30%
of data) data sets (see Figure 2) and data distributions were checked to confirm that
gentamicin sample types and patient covariates were roughly equal between sets. The
popPK models with lowest predictive error on the full data set (Bijleveld, Fuchs, Garcia,
and Wang models) were refit using NONMEM on the training data, with or without an
informative prior. Model and covariate structures were not modified from the published
models, except for removing the covariate effect of dopamine from the Fuchs model, as
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dopamine co-administration was not available in the data. Any parameter that could not be
estimated due to numerical instability or that converged to zero was fixed to the published
value instead. The refit models with and without informative prior were compared to the
published model on error and bias with the testing data set.

An informative prior was implemented using the NONMEM $PRIOR NWPRI subrou-
tine, with the variance of the parameter priors ($THETAPV) set according to the standard
error (RSE) and the parameter THETA in the published model:

THETAPV =

(
RSE
100
·THETA

)2
(1)

The degrees of freedom of the interindividual variability prior ($OMEGAPD) was set
to 50 for all models, a somewhat informative prior [24].

2.4. Statistics and Error Metrics

The predictive performance of each model was evaluated using root mean square error
(RMSE) and mean percent error (MPE), using the ith prediction (predi) and observation
(obsi), as follows:

RMSE =

√
∑N

i=1(predi − obsi)
2

N
(2)

MPE =
1
N

N

∑
i=1

predi − obsi
obsi

× 100% (3)

Uncertainty in these error metrics was assessed by bootstrapping samples and com-
puting the error metric across these samples. Statistical significance was determined by the
overlap of the 5th to 95th percentiles of bootstrapped samples of performance parameters.
Analysis of data files generated by NONMEM (version 7.4.4, ICON Development Solutions,
Ellicott City, MD, USA) and PsN (Perl-speaks-NONMEM) version 5.2.6 [25] was performed
in R version 4.1.0.

3. Results
3.1. Patients and Data Collection

The resulting data set comprised 475 patients (193 female) treated at 9 sites, as sum-
marized in Table 1. The median (range) gentamicin dose was 12.4 (1.6–24.7) mg or 4.2
(0.96–5.8) mg/kg (see Supplemental Figure S1). There were 304 peak samples (measured
between 0.5 and 2.5 h after the start of infusion), 466 trough samples (measured within 2 h
of the next dose) and 72 samples that were neither a peak nor a trough (“other”). A median
(range) of 2 (1–8) serum gentamicin concentration measurements were taken per patient.

Table 1. Patient characteristics of the overall data set, the training data set for model re-fitting, and
the validation data set for re-fitted model evaluation. Values are median (range).

Characteristic Overall Training Data Validation Data

Number of Patients 475 332 143
Number of Sites 9 9 9

Number of TDMs 842 (304 peaks, 466 troughs,
72 other)

590 (210 peaks, 328 troughs,
52 other)

252 (94 peaks, 138 troughs,
20 other)

Age (days) 1.46 (0.36–81.9) 1.46 (0.36–81.9) 1.46 (0.36–41.1)
Gestational age (weeks) 36.7 (23.7–43) 36.6 (23.9–43) 37 (23.7–41.4)

Serum creatinine (mg/dL) 0.64 (0.15–2.79) 0.64 (0.15–2.79) 0.63 (0.19–2.05)
Weight (kg) 2.76 (0.37–5.44) 2.67 (0.37–4.94) 2.86 (0.49–5.44)
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3.2. Evaluation of the Literature Models

Covariate distributions of collected data were compared to those of the literature
models (Figure 3, Table 2). The De Cock and Wang models were developed on patient
populations including older patients, leading to higher weights and postnatal ages. The
other model development populations generally matched the covariate distributions in our
data, although the median gestational age was younger for all models except the Wang
model.
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The six selected popPK models for gentamicin in neonates were evaluated for error
and bias aggregated by sample timing (peaks, troughs, and other) and by population-level
(a priori) versus individualized (a posteriori) PK parameters (Figure 4). Peaks showed
higher error than troughs across all models, which is expected since peaks are higher in
magnitude than troughs. The published models were also evaluated for accuracy, defined
here as whether the model predicted troughs to within 0.5 mg/L or peaks to within 2 mg/L
(Figure 5). These thresholds were considered clinically relevant allowable error margins.

The De Cock and Germovsek models produced significantly lower precision and
higher bias than the other models considered. The De Cock model, which includes only
weight as a predictor of gentamicin PK (Table 2), showed a strong correlation between pre-
diction error and age metrics (i.e., postnatal, postmenstrual, and gestational age), suggesting
a mis-specified covariate model (Supplementary Figure S2). The higher error observed for
these models could arise from differences between the model validation data set described
here and the model development data sets. While both models were developed in data
sets containing neonatal patients, the De Cock model development population contained
children up to 15 years of age. The Fuchs model showed low error in predicting troughs
but a high degree of error in a posteriori peak predictions. Eliminating the rather high
covariance term in interindividual variability between clearance and volume of distribution
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(87% correlation) improved prediction performance for both a posteriori peak and trough
prediction, resulting in the Fuchs, no covariance (“Fuchs NC”) model. The Bijleveld, Fuchs
NC, Garcia, and Wang models, which were developed on patient populations comparable
to the one described in this paper (Table 1) and showed a good balance of high accuracy
(Figure 5), low error, and low bias (Figure 4) for model re-estimation, were selected for
further consideration.

Table 2. The literature models describing neonatal gentamicin pharmacokinetics selected for evalua-
tion and collected data covariates. Current study data covariates are also described. Values are given
as counts (for patients, samples), median (range) or mean (standard deviation). PNA postnatal age;
GA gestational age; PMA postmenstrual age; WT current weight; HT height; CR serum creatinine;
CRCL creatinine clearance; NG not given.

Model Pts Samples PNA (d) GA (wk) WT (kg) CR (mg/dL) Model Covariates

Bijleveld [13] 65 136 1
(0–31)

32
(25–42)

1.84
(0.43–4.67)

0.63
(0.29–1.3) WT, PMA

De Cock [14] 717 1705 2
(1–5475) (23–43)

2.6
(0.44–80)

0.82
(0.14–1.18) WT

Fuchs [10] 1518 3039 1
(0–94)

34
(24–42)

2.2
(0.44–5.5) NG WT, GA, PNA,

dopamine coadmin

Garcia [15] 200 417 5.49
(5.41)

32.19
(2.97)

1.68
(0.63) NG WT, PNA, CRCL

Germovsek [11] 205 1325 5.1
(1–66)

34
(23.3–42.1)

2.12
(0.53–5.05) NG WT, GA, PNA, CR

Wang [12] 2357 6359 1
(1–6924)

37
(21–42)

3.43
(1.1–5.83)

0.66
(0.14–3.8) WT, HT, CR, PNA, PMA

Current Study Data 475 842 1.46
(0.36–81.9)

36.7
(23.7–43)

2.76
(0.37–5.44)

0.64
(0.15–2.79) -

3.3. Model Re-Estimation

The four models with lowest error were refit on the training data set, with the pub-
lished model parameters used as informative priors (“prior”) or without a prior (“refit”).
Re-estimated model parameters are shown in Figure 6 (see also Supplemental Tables S1–S3).
Informative prior constrains the model parameter to be nearer to the published value,
except in cases where the signal is moved to another parameter. For the Bijleveld model,
the informative prior constrained the parameters closer to the published values, except for
IIV in the central volume of distribution. In the Fuchs model, the effect of postnatal age on
clearance is higher in our data than in their published data set, but using an informative
prior to constrain the parameter for the effect of postnatal age on clearance meant individual
variability moved to other parameters (IIV on clearance and additive error) instead.

3.4. Re-Estimated Model Evaluation

The refit models were evaluated against the published models on the held-out valida-
tion data set. The refit models showed equal or better predictive performance compared to
their published counterparts (Figure 7). The use of an informative prior generally reduced
error and bias in the Fuchs and Bijleveld models, whose model development population
postnatal ages better matched those in this study. In the Wang model, a refit without an
informative prior reduced error and bias, though this comes at the increase in covariance of
inter-individual variability of clearance and volume, a sign of overfitting as noted with the
Fuchs model.
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Figure 4. Prediction error of gentamicin population pharmacokinetic models for neonates, assessed
by (A) root mean square error (RMSE) and (B) mean percent error (MPE). Closed circles (vertical
bars) represent the median (5th to 95th percentile) of 1000 bootstraps. Statistical significance was
determined by presence of overlapping confidence intervals: H represents the model with lowest
median RMSE in that category;4 represents models not statistically different from the best model.
Fuchs NC: Fuchs, no covariance.
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Figure 5. Accuracy of published gentamicin models in predicting target attainment for troughs and
peaks, stratified by population (“a priori”) or individualized (“a posteriori”) predictions. Trough
predictions are accurate if the prediction is within 0.5 mg/L of the actual value. Peak predictions
are accurate if the prediction is within 2 mg/L of the actual value. Statistical significance was
determined by presence of overlapping confidence intervals: H represents the model with highest
median accuracy in that category;4 represents models not statistically different from the best model.
Fuchs NC: Fuchs no covariance.
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popPK models. CL: Clearance; BW_CL: effect of body weight on CL; V: volume of distribution of
central compartment; V2: volume of distribution of peripheral compartment; Q: intercompartmental
clearance; IIV: interindividual variability; add: additive error; prop: proportional error; TH_PMA:
effect of PMA on CL; TH_GACL: effect of GA on CL; TH_GAV1: effect of GA on V1; TH_PNACL:
effect of PNA on CL, TH_CRCLCL: effect of creatinine clearance (CRCL) on CL.
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Figure 7. (A) Root mean square error (RMSE) and (B) mean percent error (MPE) on testing data
for published models (circles), fully refit models (filled squares), and models refit with $PRIOR in
NONMEM (hollow squares). Closed circles (vertical bars) represent the median (5th to 95th percentile)
of 1000 bootstraps. Statistical significance was determined by presence of overlapping confidence
intervals: H represents the model with lowest median RMSE or lowest absolute median MPE in that
category;4 represents models not statistically different from the best model. BL: Bijleveld.
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4. Discussion

While model-informed precision dosing (MIPD) holds promise for gentamicin in
neonates, a meta-analysis on how well previously published models perform in routine
clinical care in this patient population has been lacking. Here, we evaluated the error and
bias of six published popPK models in a large data set of 475 patients aged 0.36–81.9 days
treated at nine sites in the United States. The four models with the highest precision and
lowest bias were then refit to evaluate if predictive performance could be improved further.
Finally, the impact of using the published model as an informative prior in this continuous
learning process was assessed.

We evaluated model predictive performance using only data available to the clinician
at the time of dosing, to ensure our analysis reflects actual clinical performance [26].
There are a limited number of a posteriori gentamicin samples collected, leading to higher
variability in error and bias estimates for a posteriori samples. However, population
(a priori) estimates are critical for initial dosing and rapid target attainment [22], with
most gentamicin treatment courses shorter than 48 h [10]. Model-to-model differences in
prediction error also tend to attenuate for a posteriori samples [17]. Therefore, the results
from this large and diverse set of neonates across nine sites in the United States should
generalize well across similar populations and to clinical practice.

Complex models do not necessarily translate to improved predictive performance
in real-world clinical data on new patients. The Germovsek model used many samples
across many patients to fit a three-compartment model, exploring the physiological PK of
gentamicin, while the Wang model considers neonatal development in some detail, with
a maturation function and mean creatinine based on postnatal age. These more complex
models may describe the drug concentration curve over the whole dosing interval better;
however, in practice, these models perform no better in predicting peaks and troughs than
the Bijleveld model, a simpler, more empiric two-compartment model with two covariates
trained on a data set 68–97% smaller. This suggests popPK model development for clinical
use is less dependent on the number of compartments or parameters of a model than it is
about collecting relevant covariates and sufficient samples per patient in a diverse patient
population.

Selecting a model for clinical use depends not only on patient demographic data and
biomarkers, but also on drug coadministrations such as indomethacin and ibuprofen in
neonates, on biological characteristics such as degree of development (for which gesta-
tional and postmenstrual ages are a proxy), and on other conditions such as therapeutic
hypothermia. Here, we find that the best models for a general population of neonates (that
may contain specialized patients) are the Bijleveld, Fuchs NC, or Wang models, as these
models have the lowest error and bias across all predictions. The Garcia model performs
well a priori but has significantly higher error a posteriori than the other three models.
However, the best model for a population may not be the best model for an individual
patient. For a patient that is not well-described by a model, we recommend the clinician
evaluate why the model is fitting poorly. Are the patient covariates outside of the range
of the model development population? Are similar patients in terms of gestational age
at birth or critically ill status included in the model development population? Could
co-medications be causing an interaction effect? The solution may be to select another
model that better reflects patient covariates or subpopulation such as premature neonates,
or to use clinical judgment in adjusting from the model predictions. We also recommend
sampling drug concentrations earlier and more frequently if feasible for these patients,
to improve pharmacokinetic parameter estimates and predict future drug concentrations
more accurately.

Previous work has shown that vancomycin, a drug with a rich popPK literature, can
benefit from continuous learning on populations as small as 200 patients [17]. We demon-
strate here that for gentamicin, another drug where covariates impacting pharmacokinetics
are well-known, continuous learning on 332 patients improves model prediction accuracy.
This is especially important for population predictions, since most gentamicin treatment



Pharmaceutics 2022, 14, 2089 12 of 14

courses are shorter than 48 h and therefore do not require TDM-based dose individualiza-
tion. For less well-understood drugs or drugs with higher interindividual variability, a
continuous learning process may require more patient data, or that a new model with an
alternate structure or covariate model be developed.

We refit models with and without an informative prior from the published model [24],
using the $PRIOR subroutine in NONMEM. Previous studies have used $PRIOR to boost
sparsely sampled but large data sets [27], to incorporate previous PK studies on a different
population [28], or to increase available information using prior studies [29], but do not
compare the reported model with the same model fitted without the prior. Using an
informative prior during model fitting can be thought of as a way to prevent model
parameter estimates from adapting too strongly to potentially noisy data by anchoring
them to known values. Future work should explore how the differences between prior and
current population affect informative prior use, how training data size impacts this decision,
and how optimizing the informative prior weighting can improve model predictions.

Continuous learning improved predictive performance of popPK models for gentam-
icin in neonates, but the implementation of these models into clinical practice will require
ensuring models continue to accurately fit the patient population by monitoring for model
drift and overfitting. Covariates can vary between sites but also within sites over time,
leading to a phenomenon commonly known as model drift. Model drift may arise from
changes in the population itself, such as demographic shifts or from changes in clinical
practice, such as changes in dosing, co-medications, sampling assays, or other protocols.

Overfitting, where the model fits the training population too well, leads to models that
do not generalize to future patients. The high covariance between clearance and volume
of distribution in interindividual variability in the Fuchs model may be an example of
overfitting, which lead to poor predictive performance in a new population, especially
for peak samples. Monitoring data from incoming patient populations and comparing
these data to the model development population, as well as changes in error and bias of
predictions, are critical in detecting model drift and overfitting. We demonstrated here the
first step in a continuous learning process to improve model predictions for gentamicin
in the vulnerable neonatal population, potentially reducing the need for additional blood
samples for therapeutic drug monitoring of gentamicin. Subsequent implementation of
continuous learning models for the clinic must focus on the reliability, generalizability, and
trustworthiness of these models for clinicians at the point of care.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14102089/s1, Figure S1: initial gentamicin dosing;
Figure S2: prediction residuals by age covariate for the De Cock model; Figure S3: predicted vs.
measured gentamicin sample values for published models; Figure S4: predicted vs. measured
gentamicin sample values for refitted models; Figure S5: prediction corrected visual predictive checks
(pcVPC) for every model. Table S1: Model parameters for the Bijleveld model; Table S2: Model
parameters for the Fuchs model; Table S3: Model parameters for the Wang model.
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